+1 Added to my documents.
Please be aware your selection is temporary depending on your cookies policy.
Remove this selection here

Machine Learning Optimization Algorithms & Portfolio Allocation

 

WP-Image page

Abstract

Portfolio optimization emerged with the seminal paper of Markowitz (1952). The original mean-variance framework is appealing because it is very efficient from a computational point of view. However, it also has one well-established failing since it can lead to portfolios that are not optimal from a financial point of view (Michaud, 1989). Nevertheless, very few models have succeeded in providing a real alternative solution to the Markowitz model. The main reason lies in the fact that most academic portfolio optimization models are intractable in real life although they present solid theoretical properties. By intractable we mean that they can be implemented for an investment universe with a small number of assets using a lot of computational resources and skills, but they are unable to manage a universe with dozens or hundreds of assets. However, the emergence and the rapid development of robo-advisors means that we need to rethink portfolio optimization and go beyond the traditional mean-variance optimization approach.

Another industry and branch of science has faced similar issues concerning large-scale optimization problems. Machine learning and applied statistics have long been associated with linear and logistic regression models. Again, the reason was the inability of optimization algorithms to solve high-dimensional industrial problems. Nevertheless, the end of the 1990s marked an important turning point with the development and the rediscovery of several methods that have since produced impressive results. The goal of this paper is to show how portfolio allocation can benefit from the development of these largescale optimization algorithms. Not all of these algorithms are useful in our case, but four of them are essential when solving complex portfolio optimization problems. These four algorithms are the coordinate descent, the alternating direction method of multipliers, the proximal gradient method and the Dykstra’s algorithm. This paper reviews them and shows how they can be implemented in portfolio allocation.

RONCALLI Thierry , Head of Quantitative Research
PERRIN Sarah , Ecole Polytechnique

Download this article in PDF format

Send by e-mail
Machine Learning Optimization Algorithms & Portfolio Allocation
Was this article helpful?YES
Thank you for your participation.
0 user(s) have answered Yes.