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Machine learning algorithms dedicated to financial time 
series forecasting have gained a lot of interest. But choosing 
between several algorithms can be challenging, as their 
estimation accuracy may be unstable over time. Online 
aggregation of experts combine the forecasts of a finite 
set of models in a single approach without making any 
assumption about the models. In this paper, a Bernstein 
Online Aggregation (BOA) procedure is applied to the 
construction of long-short strategies built from individual 
stock return forecasts coming from different machine 
learning models. The online mixture of experts leads to 
attractive portfolio performances even in non-stationary 
environments. The inclusion of neural networks experts in 
the aggregation contributes to a better average return, while 
Ordinary Least Squares with Huber Loss experts contribute 
to lower risk. The aggregation outperforms individual 
algorithms, offering a higher portfolio Sharpe ratio, lower 
shortfall, with a similar turnover. Extensions to expert and 
aggregation specialisations are also proposed to improve the 
overall mixture on a family of portfolio evaluation metrics.
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1 Introduction
Over the last decade, data science techniques have been regularly tested in finance to improve
traditional forecasting techniques. Machine learning algorithms promise, among other things, to
address the challenges of high dimensional data and to consider a broader class of functions,
exploiting non-linearities or interactions in the data to improve prediction. These algorithms
have been successfully applied for credit risk (Khandani et al., 2010; Butaru et al., 2016) and
mortgage risk (Sadhwani et al., 2021). On the portfolio construction side, Moritz and Zimmermann
(2016) use tree-based techniques to classify stock returns and build portfolios accordingly, while
Heaton et al. (2017) use deep learning hierarchical models for financial prediction and classification.
Additional work focuses on time series forecasting. For instance, Rapach et al. (2013) explore lead-
lag relationships among country stock returns and take advantage of LASSO models to forecast
stock returns in the US. Freyberger et al. (2020) use adaptive group LASSO to determine which
firm characteristics provide incremental information for the cross section of expected stock returns.
Hutchinson et al. (1994); Yao et al. (2000) consider a non-parametric approach with neural networks
to forecast derivatives prices. Rasekhschaffe and Jones (2019); Kozak et al. (2020) explore how
machine learning models can improve stock return forecasts while avoiding over-fitting. Finally,
Gu et al. (2020) compare the performance of thirteen machine learning techniques including neural
networks, random forests and linear models to forecast stock returns and build portfolios from the
predictions.

In practice however, choosing a model and its hyper-parameters is not straightforward. Ini-
tiated by Bates and Granger (1969) and based on game theory concepts (Blackwell (1956) and
Hannan (1957)), the idea of combining predictions can be very effective for predictive learning
tasks. Averaging models may lead to a reduction in variance and induces smaller generalisation
errors (Breiman, 2001). A key point is the diversity of the models considered in the ensemble
(Brown et al., 2005a,b). Bagging (Breiman, 1996) and Boosting (Freund et al., 1996; Schapire,
1990) are for example two popular methods for generating ensembles. Combining different models
has also been used to improve time series forecasts, such as exponential smoothing with ARIMA
(Bai et al., 2010), AdaBoost with recurrent neural networks (Sun et al., 2018) or to forecast stock
market trading patterns (Lin et al., 2021). Weng et al. (2018) predict stock prices from a neural
network ensemble, a support vector ensemble, a boosted tree and a random forest. Yang et al.
(2020) integrate different reinforcement learning algorithms to learn a stock trading strategy. Nti
et al. (2020); Albuquerque et al. (2022) provide a comprehensive review of ensemble techniques
used in finance. Nevertheless, an algorithm may outperform others during specific time periods
only and such ensemble methods are not robust to data distribution changes.

To tackle unstable accuracy over time, Littlestone and Warmuth (1994) and Vovk (1990) in-
dependently introduced one successful approach for time series forecasting: the online aggregation
of experts. This method allows to combine in a single approach the forecasts of a set of models,
called experts (Cesa-Bianchi and Lugosi, 2006). A new forecast is obtained with the help of se-
quential decision techniques and is guaranteed by the theory to be on average almost as accurate
as the forecast of the best expert (Freund et al., 1997; Vovk, 1997, 1998). The resulting mixture is
continuously updated as soon as the expert forecasts become available. This is a desirable feature
in non-stationary environments as it allows to reconsider regularly the best models. This approach
is all the more appealing that it makes no assumption about the data generation process. The
framework is also a way to meet the challenge of tuning hyper-parameters, by considering every
possible parameter combinations with the same algorithm. In addition, aggregation with expert
advice reduces the average excess risk of the estimator while benefiting from theoretically sound
results on the optimal regret bound, i.e. aggregation guarantees to recover online the best possible
combination of experts.

These attractive properties partly explain why sequential aggregation procedures have been in-
tensively studied in recent years (Azoury and Warmuth, 2001; Vovk, 2006; Atiya, 2020; Petropoulos
et al., 2022). The book by Cesa-Bianchi and Lugosi (2006) provides an in-depth introduction to
this approach. Aggregation methods have been used successfully for time series forecasting appli-
cations, such as energy consumption or electricity prices (Gaillard and Goude, 2014; Nowotarski
and Weron, 2018), weather (Taillardat et al., 2016; Thorey et al., 2017), pollution (Debry and
Mallet, 2014; Auder et al., 2016) or exchange rates (Amat et al., 2018).

In this paper, online expert aggregation is used to address the difficulty of having to choose
between several investment strategies, and to ensure robustness to changing market conditions (i.e.
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guarantee satisfactory performance over time). Thirteen different portfolios are constructed based
on various machine learning algorithms (linear, tree-based, neural networks) forecasting one-month-
ahead stock returns from firms’ financial characteristics. The dataset includes 94 characteristics
(size, momentum, etc.) for a large collection of 30,000 stocks over the 1957-2016 period. Zero-net-
investment portfolios are constituted based on model’s forecasts, buying stocks in the the highest
expected return decile and selling stocks in the lowest. Eventually, the aggregation provides a
convex combination of the long and short strategies based on individual experts’ forecasts to build
a robust portfolio. The mixture assigns every month a weight to each expert according to its
current performance.

Results of this paper show that robust online aggregation leads to attractive portfolio per-
formances even in adversarial environments characterised by strong non-stationarity of the data
distribution. The aggregated portfolio not only outperforms the experts, but also makes the ap-
proach more robust by dynamically adapting to market changes online, which greatly reduces the
shortfall risk. The aggregation allows to build an investment strategy with an annual Sharpe ratio
of 2.73 , slightly higher than the best expert (a neural network) with 2.67, while having a maxi-
mum monthly loss of 5%, more than twice as low as that same best expert (14%). This attractive
performance can be attributed to the aggregation’s ability to leverage the complementarity of
the various experts. In particular, neural networks experts contribute to a better average return,
while Ordinary Least Squares with Huber loss contribute to lower risk. Eventually, the aggregated
portfolio turnover stays close to the one of each individual strategy around 120%.

To our knowledge, this paper provides the first application of online expert aggregation for
financial strategies. This work adds on the growing literature testing machine learning techniques
for portfolio management, using an adaptive mixture of long-short portfolios based on data-driven
individual stock price predictions. The contribution is plural. First, state-of-the-art Bernstein
Online Aggregation (BOA) from Wintenberger (2017) is applied to portfolio construction, whereas
the original work focuses entirely on providing theoretical guarantees for aggregation convergence.
The aggregation ponders directly the stock weights of each individual expert portfolio, allowing
practitioners to use any algorithm, even black-box models enabling practitioners to benefit from
several portfolio strategies they may have developed without having to chose a particular one.
Second, the tests provide a comparison on a large dataset (more than 30,000 US stocks) of the
performance of the aggregated strategy with thirteen machine learning experts, studied by Gu
et al. (2020) where no model or strategy mixture is proposed. Eleven of the thirteen experts used
in the paper are ensemble-based by construction for stability purposes, but also to compare the
performance of online aggregation with static ensemble methods. Moreover, the aggregation adds
a layer of analysis to understand why certain strategies perform better on given periods and to
allows to detect new market regimes. Finally, expert and aggregation specialisations are proposed
to improve the global mixture. An expert outperforming the aggregation gives the opportunity to
increase the initial set of experts with additional models derived from this best expert. In the same
spirit, aggregation specialisation is introduced and explores the possibility to refine the aggregation
depending on the context.

2 Data and Methodology
Instead of relying only on one model forecast, a more robust approach considers ensemble forecasts.
The aggregation framework considered in this paper tackles unstable accuracy of forecasting models
in non-stationary environments in an online manner, without hypothesis on models and the data
distribution.

2.1 Expert Aggregation
A set of forecasting algorithms, called experts, estimate independently the next value of a given
sequence. A set of observations Dt = {(x1, y1), ..., (xt, yt)} is given at each time t > 0 where the
target yt is a bounded value on R and xt ∈ Rd is a feature vector. Each forecasting algorithm k
at t is a function fkt : Rd 7→ R providing a forecast fkt (xt+1) that has to be as close as possible to
yt+1. The forecasts are obtained by learning the (assumed) relationship between the input space
Rd and a bounded subset of R. An online expert fk = (fk0 , f

k
1 , f

k
2 , . . .) is a sequential algorithm
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that produces at each time t an expert fkt .1
The relevance of the expert’s forecast is measured at each time step by a convex loss function ` :

R×R 7→ R+. In an online setting, the goal of the experts is to minimise their cumulative empirical
error

∑
t≥0 `(yt+1, f

k
t (xt+1)) between the true value yt+1 and the expert’s forecast fkt (xt+1).

Experts aggregation is a sequential forecasting framework allowing to mix several forecasting
models in a robust approach (Cesa-Bianchi and Lugosi, 2006). The algorithm provides as forecast
a convex combination of the outcomes from a finite set of experts, where the weights are computed
according to a chosen deterministic policy.2 Let f1, ..., fK be K online experts providing bounded
estimations (so that losses are bounded as well). Aggregation aims at finding the optimal online
convex combination

fw =

K∑
k=1

wkf
k =

(
K∑

k=1

wk,tf
k
t

)
t≥0

with weights wk,t ∈ S where S is a closed and bounded subset of RK . In the following S =

{wk ∈ RK
+ ,
∑K

k=1 wk = 1}. The performance of the online aggregation procedure is measured
by the cumulative error

∑
t≥0 `(yt+1, fw,t(xt+1)) between the target yt+1 to be predicted and the

mixture’s forecast fw,t(xt+1). However, if the experts’ accuracy is low, so will be the accuracy
of the mix, it is thus impossible to ensure a low cumulative loss for the aggregation in absolute
terms. Therefore, the aggregation framework seeks to ensure a low cumulative error compared to
the cumulative errors of the experts. Thus, the mixture is compared to the best possible fixed
combination of experts, called oracle.3 The goal of the aggregation is thus to retrieve online the
oracle.

To do so, the aggregation process minimises the regret (Freund et al., 1997) by comparing a
given mixture with the oracle in terms of cumulative errors. The regret is defined at time T by

RT =

T∑
t=0

`(yt+1, fw,t(xt+1))− inf
u∈S

{
T∑

t=0

`(yt+1, fu,t(xt+1))

}
,

where the first term is the cumulative error of the mixture (relative to the target) and the second
term is the approximation error, i.e. the cumulative error of the oracle compared to the target
yt+1 . By minimising regret, one seeks to avoid sub-optimal mixtures and thus reduce the number
of actions taken where, in hindsight, a better choice would have been possible. These choices are
directed by a given policy, called rule.

The rule of an aggregation determines how the weights are assigned to each expert. The rules
are deterministic, need all expert forecasts at each time4 and depend on a learning rate parameter
η > 0. The learning rate, which is preferably tuned online, guides the aggregation rule adaptability
to the environment. Having a high η leads to follow the best expert, while a lower rate leads the
mixture to a more uniform and conservative distribution.

Various rules have been proposed in the literature, that allow to minimise regret. In the
early 1990’s, Littlestone and Warmuth (1994) and Vovk (1990) propose to use an online convex
aggregation rule called Exponentially Weighted Average (EWA) allowing rough changes in the
weights allocation. Multiple Learning rate (ML Poly, Cesa-Bianchi and Lugosi (2003); Gaillard
et al. (2014)) has its own learning parameter calibration rule which is faster than the empirical
tuning described by Devaine et al. (2013). Fixed Share forecaster (FS, Herbster and Warmuth
(1998)) competes not only with the best fixed expert but also with the best sequence of experts
and Ridge allows non-positive weights and non-convex combinations (Azoury and Warmuth, 2001;
Vovk, 2006). Most of the aggregation rules, in particular the one used in this paper, ensure that
the regret converges to zero when T goes to infinity. So, this study focuses on reducing the
approximation error by increasing the heterogeneity of the expert set (see Gaillard and Goude
(2014) and Stoltz (2005) for further details).

1Online, or real-time algorithms, modify the variables stored with the model each time a new batch of data comes
in. For this reason, online models show good adaptability in fast-changing markets.

2Note that instead of considering convex combination of experts, some policies allow model selection aggregation
problem (see Cesa-Bianchi and Lugosi (2006); Wintenberger (2017)).

3Specific aggregations or settings include non-stationary oracles, see for instance Herbster and Warmuth (1998).
4Devaine et al. (2013); Gaillard et al. (2014) propose theoretical guarantees about regret convergences when some

expert predictions are missing. Called sleeping experts, the missing estimates can be replaced by those from the
aggregation. Mourtada and Maillard (2017) explore aggregations of a set of experts that is no longer fixed but can
increase over time, which is particularly useful for dealing with non-stationarity.
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This paper considers the Bernstein Online Aggregation (BOA, Wintenberger (2017)). At time
t, BOA assigns a new weight to each expert according to its accuracy compared to the other
experts, by minimising the loss `k,t+1 = `(yt+1, fk,t(xt+1)) − `(yt+1, fw,t(xt+1)). Given the losses
`t = (`1,t, . . . , `K,t) suffered by the experts at each instance t, BOA assigns to expert k the weight

wk,t =
exp(−η`k,t(1 + η`k,t))

exp(−η`w,t(1 + η`w,t))
wk,t−1,

where `w,t =
∑K

k=1 wk,t−1`k,t is the loss suffered at time t by the aggregation at time t − 1
(with weights wt−1). BOA procedure is reported in Algorithm 1.

Algorithm 1 Bernstein Online Aggregation (BOA)

Require: weights wk,0 > 0 s.t.
∑K

k=1 wk,0 = 1, learn-
ing rate η > 0
for each t = 1, ..., T do
for each k = 1, ...,K do

wk,t =
exp(−η`k,t(1 + η`k,t))

exp(−η`w,t(1 + η`w,t))
wk,t−1

end for
end for

Starting with a uniform distribution, the experts’ weights evolve dynamically according to an
exponential weighting scheme The second order refinement of the loss is designed to penalise large
errors and stabilises the weight allocation. Intuitively, this procedure favors online learners which
have predicted accurately and whose losses are close to those of the last aggregation, ensuring
the stability of the weights over time. BOA is fully automatised, the learning rate is sequen-
tially updated using past data, avoiding expensive calibration tasks and benefitting from a faster
rate of convergence than previous rules. As demonstrated by Wintenberger (2017), BOA ensures
minimising regret with the fast rate of convergence log(K)/T in deviation.

2.2 Application to Financial Portfolio
The online aggregation procedure is applied to portfolio returns, by minimising the cumulative
loss between each expert’s portfolio and the best possible portfolio, the target.5 The target for
the long (resp. short) portfolio is obtained by buying at each rebalancing date the 10% best (resp.
worst) performing stocks. Note that the target should not be confused with the oracle discussed in
Section 2.1, which corresponds to the best possible mixture of experts (and could be very different
from the target depending on the quality of the experts). The mixture combines sequentially each
expert strategy to form a new portfolio, by assigning a weight to each expert strategy according to
its performance over time. Two aggregations are applied, one for the long strategies and another
one for the short strategies. The best long experts are not necessarily the same as the short ones
at each instant. Using two distinct aggregations allows to take advantage of different experts at
different times. The returns of the long-short aggregation are the difference between the long
aggregation portfolio and the returns of the short one.

2.3 Data
Data comes from Wharton Research Data Services (WRDS), including CRSP and Compustat
database, and covers more than 30,000 US stocks over 1957-2017 period. The 94 standard firm
characteristics used by Gu et al. (2020) are considered as features to feed the stock return forecast-
ing algorithms. Note that in the original paper, Gu et al. (2020) use 920 stock characteristics. For
simplicity, the eight macroeconomic predictors, the 74 industry sector dummies and the interac-
tions between firm-level characteristics and macroeconomic state variables were omitted. However,
the benchmark results obtained in this paper are essentially the same and detailed in Table A.6

5Note that an alternative approach would have been to aggregate stock return forecasts rather than portfolios’
weights. But, because the final goal is to improve directly portfolio performance from any (potentially black-box)
strategy and not return forecast accuracy, the online mixture is applied on portfolio weights.
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in Appendix. Twenty among these features are updated monthly, thirteen updated quarterly and
sixty-one updated annually. Following Gu et al. (2020) and Freyberger et al. (2020), a cross-section
rank transformation is performed each month on all firm characteristics that maps these ranks into
the [−1, 1] interval. Missing data are replaced by their cross-sectional median. Most of these char-
acteristics are disclosed with a delay. In order to avoid forward-looking bias (information at month
t is only known at month t+1 for monthly characteristics, t+4 for quarterly and t+6 for annual
ones), monthly variables are delayed by one month, quarterly data by four months, and annual
data by six months.

3 Expert Portfolio
The online aggregation is compared to the strategies based on single forecasting algorithms and
follow the same methodology as Gu et al. (2020) regarding data construction, forecasting windows
and models construction. This section describes the datasets and the thirteen forecasting models.
Then, the performance of long-short strategies based on individual experts is presented.

3.1 Forecasting Models
Stocks are characterised by a set of features, such as firm size or stock return momentum. For each
month and each stock, a forecasting model is fed with these features to predict next month return.
Due to computationally intensive forecasting procedures, the models are re-calibrated only each
year. The training set starts in 1957 with 18 years and increases with time. Models are re-fitted
by increasing the training sample by one year. The validation set size of 12 years is maintained
constant by rolling it forward to include the most recent year. The unobserved one-year testing
set is picked within a 30-year period from 1987 to 2016. So, the first training (over 30) is done on
the 1957-1974 period, the validation on 1975-1986 and the out-of-sample test on year 1987. The
second training is then done on 1957-1975, validation on 1976-1987, test on 1988, and so on until
the testing year reaches 2016.

A unique model per method is trained for all stocks, and the model stays the same over the
training period as done in Gu et al. (2020). This avoids intensive computational costs and tends
to stabilise return estimates of individual stocks. Note that the forecasting models are not strictly
online, but their associated portfolios are, consistent with the online aggregation framework. The
thirteen models are reported in Table 1 and their hyper-parameters in Table A.5 in Appendix.

Family Model

Linear Ordinary Least Square (OLS+H)
Ordinary Least Square 3 factors (OLS3+H)
Generalised Linear Model with group Lasso (GLM+H)
Elastic Net (ENet+H)

Linear with Partial Least Square (PLS)
dimension reduction Principal Component Regressor (PCR)
Tree-based Random Forest (RF)

Gradient Boosting Regressor Tree (GBRT+H)
Neural network Neural Networks (NN1-NN5)

Table 1: Forecasting Model Description.

Models are trained by minimising the squared error between the observed and the estimated
stock returns, except for models followed by “+H” indicating the use of Huber loss defined in Ap-
pendix B. Huber loss minimises the squared loss when residuals are below an (optimised) threshold
and the absolute loss above. Huber is thus robust to outliers while not ignoring their effects. Or-
dinary Least Square (OLS+H) is using as predictors all 94 characteristics. Ordinary Least Square
3 factors (OLS3+H) restricts to only three main characteristics: size, book-to-market and momen-
tum.

Except for Partial Least Square (PLS) and Principal Component Regressor (PCR), all the
models are ensemble-based by construction. A given model is trained several times on the dataset,
then averaged to produce the forecast. This allows to stabilise the estimators, reducing over-fitting

11



for the linear models with Huber loss and the neural networks trained using gradient descent, but
also to compare aggregation with static ensemble methods.

The performances of the forecasting models are reported in Table C.7 in Appendix. Following
Lewellen (2014), the accuracy of three basic forecasting benchmarks is shown in Table A.6 in
Appendix, based on three ordinary least squared regressions with respectively 3, 7 or 15 variables.

3.2 Performance of Experts’ Portfolios
Stocks are sorted according to each model’s predictions. A long (resp. short) portfolio is built
by buying 10% of the stocks having the highest (resp. lowest) estimated returns. Both equally
and value weighted portfolios are considered. The body of the paper focuses on value weighted
portfolios, that are less sensitive to illiquidity of small cap stocks. Equally weighted portfolio
results are presented in the appendix. When comparing portfolio performance with the estimation
accuracy in Table C.7, improved forecasts do not necessarily lead to better portfolios. For instance,
the portfolio OLS+H outperforms the experts based on linear and tree algorithms, while having
one of the lowest %R2 among the forecasting models. Average monthly returns generally increase
monotonically decile by decile for each algorithm, as reported in Appendix Table C.8 for equally
weighted portfolios and Table C.9 for value weighted.

Table 2 reports the performance of each expert portfolio on the out-of-sample test period. The
evaluation metrics are precised in Appendix B. In general, expert performance improves with the
model complexity. An exception occurs with the linear model OLS+H which provides similar
performance to the neural networks.6 Portfolio performances are in line with forecast accuracy
results. Neural network offer the best portfolio performance, outperforming the other strategies
with an annual Sharpe ratio (SR) always greater than 2.16. The expert NN2 dominates the other
algorithms with an annual return of 0.50 for the equally weighted portfolio and 0.37 for value
weighted, leading to a SR of 2.74 and 2.67 respectively. Linear models ENet+H and GLM+H
are also valuable strategies, with a SR of 1.79 and 1.84 respectively, very close to experts based
on dimension reduction (PLS 1.84 and PCR 1.83). Tree-based models GBRT+H and RF have
a SR of 1.72 and 2.04 respectively, thanks to their low volatility (0.11 and 0.10). Surprisingly,
OLS+H proposes a comparable SR (2.29) as neural networks. While the model is restricted to
linear functions and not particularly well fitted for high-dimensional data, when considering long-
short stock strategies, OLS+H competes with more sophisticated models. OLS3+H (which has a
limited number of stock characteristics) has the lowest SR at 1.13.

OLS OLS3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H +H

Ann Ret 0.27 0.16 0.23 0.23 0.23 0.24 0.21 0.19 0.36 0.37 0.36 0.36 0.32
Vol 0.12 0.14 0.12 0.12 0.13 0.13 0.10 0.11 0.16 0.14 0.15 0.14 0.15
SR 2.29 1.13 1.84 1.83 1.79 1.84 2.04 1.72 2.33 2.67 2.37 2.48 2.16
Skew 0.84 0.82 0.16 0.62 0.13 -0.21 1.28 1.89 2.39 2.48 1.87 1.90 2.71
Kurt 5.30 23.68 9.14 7.84 7.58 9.78 6.52 14.23 23.00 16.41 13.35 13.26 24.58
Max DD 0.16 0.51 0.36 0.21 0.28 0.33 0.16 0.20 0.23 0.14 0.24 0.19 0.38
Max Loss 0.09 0.30 0.19 0.14 0.16 0.22 0.10 0.12 0.23 0.13 0.19 0.18 0.19
Turnover 1.05 1.33 1.02 1.06 0.97 1.07 0.51 0.67 0.66 0.60 0.69 0.55 0.52

Table 2: Performance of Experts’ Portfolios

Note: This table presents the performance of long-short strategies based on individual forecasting
models. Columns Ann Ret, Vol, Skew, Kurt, SR, Max DD, Max Loss and Turnover stand for
annualised average return, volatility, skewness, kurtosis, annual Sharpe ratio, maximum drawdown,
1-month maximum loss and portfolio turnover. The metrics are computed on the test period 1987-
2016. Portfolios are value weighted.

At first sight, selecting a best strategy is not obvious. NN2 offers better returns and SR, but
the low turnover of RF (51% against an average of 82%) or the low maximum monthly loss of
OLS+H (9%) makes these strategies appealing in practice. NN5, although appealing in terms of

6This is a notable distinction from the results of Gu et al. (2020) where tree-based models and neural networks
significantly outperformed OLS+H. This difference can probably be explained by the ensemble approach of our
linear models, which average the predictions of 10 gradient runs, and by the significant reduction in explanatory
variables (94 instead of 920 in the original paper) preventing overfitting of the forecasting models.

12



SR, is characterised by higher extreme risks (highest kurtosis among all experts and a maximum
drawdown substantially greater than that of NN2 (38% against 14%). The qualitative conclusions
remain when considering equally weighted portfolios (reported in Table C.10 in Appendix).

4 Aggregation of Portfolios
This section shows how the aggregation of individual strategies based on machine learning models
can enhance portfolio performance and adapt to changing market conditions. Variant aggregations
that improve the mixtures in specific contexts are presented. Finally, the importance of each expert
in the aggregation is examined and expert specialisation is discussed.

4.1 Aggregated Portfolio Performance

Best Expert Fixed Combination Adaptative Mixture Oracle

NN2 PtfUNI Best Convex Best Convex PtfBOA Best Convex
on Valid. Set One-year Rolling

Ann. Ret. 0.37 0.27 0.27 0.32 0.36 0.37
Vol. 0.14 0.11 0.12 0.12 0.13 0.13
SR 2.67 2.54 2.29 2.57 2.73 2.76
Skew 2.48 1.20 0.84 1.69 3.00 3.21
Kurt 16.41 10.73 5.30 8.95 18.85 22.20
Max DD 0.14 0.20 0.16 0.14 0.09 0.08
Max Loss 0.13 0.15 0.09 0.11 0.05 0.08
Turnover 0.52 0.82 1.05 0.75 0.79 0.73

Table 3: Performance of Aggregated Portfolios.
Note: Columns Ann Ret, Vol, Skew, Kurt, SR, Max DD, Max Loss and Turnover stand for an-
nualised average return, volatility, skewness, kurtosis, annual Sharpe ratio, maximum drawdown,
1-month maximum loss and portfolio turnover. The metrics are computed on the test period 1987-
2016. Expect for NN2, all the portfolios are convex combinations of the thirteen experts. The best
convex combination on the validation set is a fixed combination calibrated on 1986. The best convex
one-year rolling mixture assigns the best convex combination of experts estimated the previous year
to the next year. The oracle is the best possible convex mixture on the test period, unachievable in
practice. Portfolios are value weighted.

BOA rule is applied on the expert portfolios, minimising the square loss between the best
possible portfolio returns and the returns of the K = 13 expert strategies listed in Table 1. The
resulting portfolio is called PtfBOA. By dynamically weighting strategies, one can expect to retrieve
(at least) the best expert’s portfolio returns and reduce the risk of betting on only one expert. A
uniform mixture of the K portfolios, called PtfUNI, is used as a benchmark and assigns a constant
weight of 1/K to each expert throughout the test period.

Table 3 shows the best expert in terms of annual Sharpe ratio (NN2), PtfUNI, PtfBOA and the
oracle, i.e. the best possible convex combination over the test period, unachievable in practice. Two
additional mixtures are presented to compare BOA with simple ensemble approaches. The best
convex combination calibrated over the last year of the validation set provides a fixed weighting
that is less naive than the uniform mixture. To adapt to changing market conditions, the best
one-year rolling convex mixture assigns the best fixed convex combination estimated the previous
year to the next year. The latter does not benefit from the same theoretical guarantees than BOA
and can induce rough variations in portfolio weights through time.

The aggregation PtfBOA brings a significant improvement to classical machine learning tech-
niques and the different mixtures. BOA portfolio provides the highest SR at 2.73, followed by NN2
(2.67), while decreasing substantially the portfolio maximum monthly loss (5%) compared to NN2
(13%) and all mixture portfolios. PtfBOA has the highest skewness (3.00) and the lowest max DD
(9%), with a similar turnover (79%) than other mixtures. These results are all the more encour-
aging that the expert aggregation does not directly optimise these indicators, but only considers
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the error between the monthly returns of the expert portfolios and the target. The uniform aggre-
gation PtfUNI offers the third best SR at 2.54, despite lower annalised returns (0.27) compared to
NN2 and PtfBOA. Equally weighted strategies give similar results (see Table C.11 in Appendix),
PtfBOA being able to outperform the experts and mixtures in multiple metrics. As expected, the
turnover of all equally weighted portfolios is higher than in the value weighted case.

The oracle’s SR (2.76) indicates that there is only marginal room for improvement, by designing
better objective functions or better rules for the online aggregation. The two simple ensemble-based
portfolios (the fixed and one-year rolling best convex combination), with a SR of 2.29 and 2.57
respectively, do not manage to beat the best expert. Both mixtures also underperform PtfBOA
in terms of returns, SR, max DD and max Loss. To put emphasis on the relationship between
experts and the online aggregation, the following analysis focuses on PtfBOA and PtfUNI.

4.2 Mixture Analysis
Weights analysis Figure 1 displays the dynamic weights of the thirteen experts within BOA as
well as the cumulative log returns of both long and short strategies. The bottom graph highlights
how aggregation proceeds: starting with uniform weights, a transition phase over the first few
months favors quickly neural networks and the linear model OLS+H. NN2 is the best expert all
over the test period for the long strategy in terms of cumulative returns. OLS+H leads the short
strategies and its importance in the mixture increase continuously before 2001. After this date,
coinciding with the dot.com bubble burst, the mixture reduces slightly OLS+H weight at the
benefit of neural networks and a long stable regime sarts. Since the mid 1990s, neural networks
manage to get higher average returns than the other experts, and thus keep a dominant position
in the aggregation (Figure C.7 in Appendix). The best experts remain the same and encourage
the mix to “follow the leader” instead of considering a more heterogeneous mixture. This is an
interesting result, especially in a non-stationary environment where the most profitable strategy
may vary from one instant to the next. Here, aggregation is based mainly on the best portfolio
and benefits little from the opinion of the other experts.

Interestingly, during the 2008 Subprime crisis, all experts and the aggregation experience a
large drop in performances. However, the crisis has only a small impact on individual experts’
weights in the aggregation. The best experts seem to keep their leadership in times of crisis. It is
worth noting that the difference in cumulative performance between PtfBOA and PtfUNI is large,
and encourages the adoption of an online mixture. Average weights of the experts on the test
period are given in the Table C.12 in Appendix. In particular, NN2 and OLS+H share 77% of the
mixture weights and PtfBOA has the closest weight combination to the oracle.
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Figure 1: Cumulative Returns of Portfolios and Experts’ Weights of PftBOA.
Note: The first graph presents cumulative log returns of portfolios on the test period as well as
S&P500 (in gray). Full lines (resp. dash lines) indicate long positions (resp. short). Black bold
lines correspond to aggregation PtfBOA and blue bold lines to the uniform mixture PtfUNI. Both
aggregations include the 13 strategies OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H, RF,
GBRT+H, NN1, NN2, NN3, NN4, and NN5. The bottom graph plots the average expert weights
of the long and short aggregations of PtfBOA over the period. Portfolios are value weighted.

Experts ranking Figure 2 illustrates the distribution of each Sharpe ratio’s rank for the thirteen
individual experts, the uniform mixture and the two aggregations (PtfBOA and PtfUNI). Each
column indicates the number of time that the strategy has been ranked 1, 2, 3, . . . , 15 in terms
of SR over the test period (1987-2016).7 PtfBOA reaches rank 1 close to 20% of the time over
the test period, followed by OLS+H (13%). However, OLS+H has a larger distribution in the
less profitable experts, as illustrated by its significant proportion among low ranks (from 9 to 15).
Besides, the ranks of NN2 or OLS+H are more disparate compared to the ranks of the aggregation.
The five neural networks (over thirteen experts) only represent about 40% of the overall area on
the top 3 ranks, highlighting that their dominance over other strategies is not obvious in terms
of Sharpe ratio. The graphs displaying the mixture and Sharpe ratio ranks for equally weighted
portfolio can be found respectively Figure C.8 and Figure C.9 in Appendix.

7Despite illustrating the distribution of experts for each rank, note that the figure does not indicate how close
the Sharpe ratios are between two ranks.
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Figure 2: Experts’ Sharpe ratio Ranks Distribution.
Note: This graph presents the distribution of each annual Sharpe ratio’s rank for the thirteen
individual experts, the uniform mixture and the two aggregations (PtfBOA and PtfUNI). The dis-
tribution is obtained by counting the number of times an expert gets the best, second (and so on)
Sharpe ratio. Portfolios are value weighted.

4.3 Improving Aggregation
A strong advantage of the aggregation lies also in its easy adaptation to alternative objectives. Two
improvements of the aggregation are proposed, either by adding some prior in the global mixture
(Section 4.3.1) or by specialising the best experts (Section 4.3.2).

4.3.1 Pre-trained Aggregation

At initialisation, expert’s weights are uniformly set (at 1/K with K=13 the number of experts) and
are then updated according to their losses and BOA rule. In order to speed up the convergence,
one can pre-train the online mixture on the last year of the validation set, namely 1986. Thus,
over the year 1987, the aggregation benefits from a prior.

Best Expert (NN2) PtfUNI Original BOA Pre-trained BOA

Ann Ret 0.37 0.27 0.36 0.36
Vol 0.14 0.11 0.13 0.13
SR 2.67 2.54 2.73 2.75
Skew 2.48 1.20 3.00 3.02
Kurt 16.41 10.73 18.85 19.01
Max DD 0.14 0.20 0.09 0.10
Max Loss 0.13 0.15 0.05 0.05
Turnover 1.23 1.22 1.23 1.23

Table 4: Pre-trained Aggregation Portfolio Performance.
Note: Columns Ann Ret, Vol, SR, Skew, Kurt, Max DD, Max Loss and Turnover stand for an-
nualised average return, annualised volatility, annual Sharpe ratio, skewness, kurtosis, maximum
drawdown, 1-month maximum loss and portfolio turnover. Metrics are computed on the test period.
Portfolios are value weighted.

Figure 3 presents the portfolio Sharpe ratio, cumulative returns and corresponding weights of
the pre-trained BOA. The top left and top right graphs display respectively the annual Sharpe ratio
and the cumulative log returns of all the strategies. The pre-trained PtfBOA offers on average a
slightly higher annual SR (2.75) than the original PtfBOA (2.73) and the best expert NN2 (2.67).
Looking at cumulative log returns, both PtfBOA out perform significantly the uniform mixture
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Figure 3: Pre-trained Aggregation Analysis.
Note: These four graphs present on the first row: Sharpe ratio (left) and cumulative log returns
(right) of the experts, the original PtfBOA, the pre-trained PtfBOA and PtfUNI ; on the second
row: average weights of the pre-trained PtfBOA (left) and their evolution on the test period (right).
PtfBOA is pre-trained during the year 1986 and then tested on 1987-2016 period. Portfolio are
value weighted.
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also appears more resilient in crisis periods such as 2001 compared to the experts. The bottom
left and right graphs display the boxplot of the weights of the individual experts within PtfBOA
(left) and their evolution over time (right). The PtfBOA starts by giving more importance to
OLS+H and NN2 and converges faster to the first stationary regime. Similar to the standard
aggregation presented in the previous section, OLS+H and neural networks dominate the mixture.
Table 4 reports performance metrics of the best expert, the uniform mixture and the two PtfBOA
aggregations (Table C.13 in Appendix provides the results in the equally weighted case). Small
improvements on SR and skewness come from the validation set prior, but the other performance
metrics are relatively similar. The two BOA aggregations have a significantly higher annual return
than the naive uniform mixture (36% vs 27%) and non-neural network experts, all below 27%.

All in all, pre-training enables to retrieve sooner stable weights that converge to the regimes
observed in the previous section. Adding some prior information is beneficial for the mixture,
which (slightly) improves its portfolio performances compared to the standard aggregation.

4.3.2 Expert Specialisation

Expert importance To analyse the sensitivity of the results to the set of experts considered in
the aggregation, the variation of several portfolio performance metrics are calculated by individ-
ually dropping each expert from the mixture. The study focuses on three performance metrics:
annualised average return, volatility and annual Sharpe ratio over the test period. The expert im-
portance is defined as the difference between the performance of the mixture considering all experts
and the performance obtained by excluding a given expert. The experts’ importance indicator is
then derived by normalising the differences of all the individual experts to sum to one. The expert
importance for each performance indicator is given in Figure 4.

The aggregation has a lower performance when dropping OLS+H or NN2 and this loss cannot
be compensated by other experts or any convex combination of them. Dropping OLS+H from the
aggregation leads to a much larger volatility and a smaller SR. OLS+H seems to be a stable expert
on which the mixture should rely on average, a somewhat unexpected result given that this linear
model can be sensitive to over-fitting in high dimension. On the opposite, the importance of NN2
relies on its high return, at the cost of higher volatility. These results lead to search how variations
of OLS+H or NN2 predictions could affect the mixture.

Figure 4: Experts’ Importance in the Bernstein Online Aggregation.
Note: The three graphs display experts importance computed over the out-of-sample period 1987-
2016 based on three performance indicators: (1) annualised returns (Ann Ret), (2) volatility (Vol)
and (3) annual Sharpe ratio (SR). The importance indicator is obtained by measuring the difference
between the performance of the mixture BOA considering all experts and the performance of the
mixture when dropping a given expert, and then normalised to sum to one. Portfolios are value
weighted.

Expert specialisation An individual expert can provide higher average returns on the test
period than the aggregated Portfolio. This is an opportunity to improve the overall mixture by
adding a slight variation of this best expert to the initial set of experts. To do so, if an expert
obtains a lower loss than the aggregation, the expert is split into several new experts by re-
calibrating it several times with new parameters or less inputs, as done in Devaine et al. (2013) for
time series forecasting. This new set of experts is added to the initial set and a new aggregation
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is performed. Several methods to create new expert have been explored in the literature, such as
Bagging, Specialisation, Temp Double Scale or Boosting (Gaillard and Goude, 2014).

Based on the analysis of experts’ importance, the neural network NN2 and OLS+H are split
in several additional experts with the Bagging method, which gives better empirical results and
is more computationally efficient. The method consists in training a bunch of identical models in
parallel, where each model is trained by a random subset of the data. K

′
= 10 new Ordinary

Least Squared with Huber loss are trained as described in Section 3.1, and differ from the original
OLS+H in the way they are fed during the training process (containing 80% of the original data).
Models optimised with the Huber loss (noted “+H”) are trained by gradient descent which could
be sensitive to local minima. Bagging allows to make the estimation more robust. Then the new
strategies are added to the initial set of experts. Bagging with NN2 is done in a similar way.

Figure 5 shows annual Sharpe ratios of the specialised aggregation with K + 2K
′
(here 33)

experts. The extended PtfBOA outperforms all experts and reaches an annual Sharpe ratio of
2.76, followed by the original PtfBOA (2.73). More statistics can be found in Table C.14 in
Appendix, in particular the extended PtfBOA keeps a low maximum monthly loss (5%). Expert
specialisation brings Sharpe ratio improvement while keeping the attractive properties (especially
in terms of risk) of the original mixture. Performance of the specialised experts are given in Table
C.14 in Appendix.

Figure 5: Portfolio Sharpe ratios with Expert Specialisation.
Note: The graph plots the annual Sharpe ratios of individual experts and aggregated portfolios,
without (Original PtfUNI and PtfBOA) and with (Extended PtfBOA) expert specialisation. Ag-
gregation is performed with the initial set of K experts plus K

′
new specialised neural networks

NN2 and K
′
new specialised OLS+H. New forecasting models are trained by Bagging, then the

corresponding portfolios are added in the initial set of experts. The dash line indicates the best
expert Sharpe ratio. Portfolios are value weighted.

Conclusion
A portfolio construction methodology based on a sequential aggregation of experts is presented.
The strategies, called experts, lie on several forecasting algorithms such as linear models, tree-
based models and neural networks. The aggregation performs online a convex combination of
experts and adapts their weights dynamically according to their performance. The originality
of the approach is to apply online aggregation directly on strategies, which is an easy way to
improve portfolio allocation by combining heterogeneous strategies in a single algorithm. Online
aggregation is particularly promising in finance where market conditions are known to be non-
stationary. The aggregation is not computationally costly and considers directly the forecasts of
the experts without any assumption on the data distribution and the expert models, allowing
to consider any (potentially black-box) strategy. Moreover, the aggregation rules can easily be
interpreted and are theoretically grounded. By building long-short strategy based on US stocks,
numerical tests show that BOA aggregation offers higher performance than individual experts
and simple mixtures. Betting on a single expert could be more attractive when one focuses on
cumulative returns, but the aggregation appears to be more robust over time and reduces the risk
by decreasing significantly the maximum monthly loss and the maximum draw down. Further
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works could examine the design of specific loss functions for portfolio construction, leveraging the
easy adaptation of the aggregation framework to alternative objectives.
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Appendix

A Algorithms and Variables
In this section, some details are provided about the data and the parameters of the experts. All
the variables used in this paper are exactly the same as Gu et al. (2020) and precisely described
in the Table A.6 of its Appendix.

OLS-OLS3+H PLS PCR ENet+H

Huber Loss ξ = 0.999 - - ξ = 0.999
Hyper Param P=94 P=94 α ∈ (10e−4, 10e−1)

Ensemble: 10 ρ = 0.5
Ensemble: 10

GLM+H RF GBRT+H NN1-NN5

Huber Loss ξ = 0.999 - ξ = 0.999 -
Hyper Param α ∈ (10e−4, 10e−1) Nb trees: 300 Nb trees: 1000 Batch size: 10000

Ensemble: 10 Depth∈ (1, 6) Depth∈ (1, 2) Nb epoch: 100
Bootstrap:True Learning rate: {0.01,0.1} Learning rate: 0.01

Adam: Default
Ensemble: 10
Patience: 10

L1 pen∈ (10−5, 10−3)

Table A.5: Description of Hyper-parameters of the Forecasting Models
Note: P=94 number of variables. OLS3+H only includes variables mom12m, size, bm. Hyper-
parameters are optimised with the validation set.

Neural networks denoted NN1, NN2, NN3, NN4 and NN5 have hidden layer(s) of 32, (32,16),
(32,16,8), (32,16,8,4) and (32,16,8,4,2) nodes respectively. ReLU activation function is used for
each hidden layer, and regularisation methods include batch normalisation8, learning rate shrink-
ing (Adam), early stopping and ensemble. These setups are common standards in deep learning
literature.

OLS3 OLS7 OLS15 RF NN3

%R2 0.16 0.19 0.19 0.19 0.45
SR 0.95 1.21 1.33 1.96 2.42
Turnover 0.49 0.48 0.56 0.92 1.20

Table A.6: OLS Benchmark Models.
Note: This table reports the performance of different Ordinary Least Squared benchmark models, as
well as RF and NN3. The predictive R2 for stock return forecasting on test period, the Sharpe ratios
of long-short strategies as well as their turnover are reported. OLS3 includes variables mom12m,
size, bm, OLS7 adds acc, roaq, agr, egr, and OLS15 adds dy, mom36m, beta, retvol, turn, lev,
sp. Models are trained on training and validation set data, as there is no hyper-parameters. This
benchmark can be compared with Table A.11 of Gu et al. (2020).

The forecasting models are implemented in Python using scikit-learn Pedregosa et al. (2011) and
tensorflow Abadi et al. (2015) packages. The online expert aggregation algorithm is computed with
the R package OPERA (Gaillard et al., 2016).

8The standard scale is used: (x− µ)/σ, with µ, σ mean and standard deviation respectively.
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B Metric Definitions
Metrics used in this paper are detailed here. Let be yt and ŷt respectively the observed and the
prediction values of one asset. Mean squared error (MSE) is defined by

`MSE(yt, ŷt) =
1

T

T∑
t=1

(yt − ŷt)2,

and the Huber loss (HL) by

`HL(yt, ŷt; ξ) =
1

T

T∑
t=1

H(yt − ŷt; ξ), where H(x; ξ) =

{
x2 if |x| ≤ ξ
2ε|x| − ξ2 if |x| ≥ ξ.

The Huber loss is less sensitive to outliers in the data distribution than MSE. ξ determines the
threshold from which it is less important to make an error. MSE and HL are used to train the
forecasting models, aggregation optimises MSE. The R2 is used to evaluate the accuracy of asset
return estimation:

R2 = 1−
∑T

t=1(yt − ŷt)2∑T
t=1 y

2
t

.

The maximum draw down, 1-month maximum loss and portfolio turnover are defined by:

Max DD: max
0≤t1≤t2≤T

(crt1 − crt2)

Max Loss: − min
0≤t≤T

rt

Turnover:
1

T

T∑
t=1

(∑
i

|wi,t+1 − wi,t(1 + ri,t+1)|

)

where crt, rt are the cumulative log return and the monthly excess return of a strategy at t respec-
tively, and T the number of dates in the test period.

C Additional Tables and Figures
Performance of the forecasting models are reported in Table C.7 and Figure C.6. The R2 scores
for predicting stock market returns show that the advantage of neural networks over linear models
is not decisive. Moreover, while their accuracy is clearly convincing in some years, neural networks
and random forest suffer from significant forecasting errors in other periods. These unstable scores
complicate the choice of the most appropriate algorithm and light out why aggregation is appealing.
Besides, on average the lowest market caps are better estimated than the top market cap stocks.

Figure C.7 illustrates annualised average returns of each expert’s long short strategy from
1987 to 2016. Up to 2002, strategies are profitable. However in 2003, several experts suffer from
a breakout and are not able to retrieve the same performance afterward, even if models are re-
calibrated each year. The variation in the rankings of the best experts from year to year emphasises
the usefulness of aggregation techniques.
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%R2 OLS OLS3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H +H

All 0.19 0.13 0.22 0.25 0.23 0.24 0.19 0.09 0.48 0.69 0.45 0.37 0.44
Top -0.20 0.13 -0.29 -0.12 -0.07 0.07 -0.07 -0.39 0.13 0.37 -0.23 0.18 0.12
Bot 0.30 0.34 0.47 0.48 0.42 0.39 0.52 0.42 0.94 1.19 0.92 0.84 0.88

Table C.7: %R2 Scores of the Forecasting Models
Note: The table reports the percent of R2 scores (1%R2 = 0.01 R2) of the thirteen forecasting models
OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H, RF, GBRT+H, NN1, NN2, NN3, NN4, and
NN5 on the out-of-the-sample test period 1987-2016. All indicates all the US market universe. Top
(resp. Bot) is the top 1000 (resp. bottom 1000) market capitalisation assets.

Figure C.6: %R2 Scores by Year of the Forecasting Models.
Note: The heatmap reports the percent of R2 scores (1%R2 = 0.01 R2) by year of the thirteen
forecasting models OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H, RF, GBRT+H, NN1, NN2,
NN3, NN4, and NN5 on the out-of-the-sample test period 1987-2016.
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OLS+H
Decile Pred Real Std SR

L -1.35 -0.61 6.95 -0.30
2 -0.41 0.51 6.17 0.29
3 -0.05 0.77 5.61 0.48
4 0.39 0.97 5.23 0.64
5 0.70 1.09 5.07 0.74
6 0.98 1.21 5.05 0.84
7 1.28 1.30 5.05 0.89
8 1.61 1.49 5.23 0.98
9 2.04 1.70 5.45 1.08
H 2.88 2.11 6.00 1.22
H-L 4.49 2.99 4.50 2.28

OLS3+H PLS PCR
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -0.19 0.44 6.77 0.23 -1.03 -0.12 7.22 -0.06 -0.9 -0.12 6.86 -0.06
2 0.16 0.72 5.48 0.46 -0.22 0.55 6.08 0.31 -0.15 0.58 6.0 0.33
3 0.38 0.98 4.83 0.7 0.2 0.79 5.55 0.49 0.24 0.81 5.37 0.52
4 0.58 1.00 4.49 0.77 0.52 0.89 5.21 0.59 0.54 0.9 5.21 0.6
5 0.77 0.98 4.43 0.77 0.82 0.96 5.05 0.66 0.82 0.99 5.12 0.67
6 0.94 0.96 4.79 0.69 1.10 1.07 5.16 0.72 1.08 1.03 5.20 0.69
7 1.11 1.06 5.31 0.69 1.40 1.17 5.18 0.79 1.35 1.18 5.27 0.78
8 1.28 1.22 6.09 0.70 1.74 1.39 5.25 0.92 1.66 1.42 5.27 0.94
9 1.49 1.23 6.44 0.66 2.17 1.65 5.35 1.07 2.04 1.64 5.58 1.02
H 1.81 1.94 8.08 0.83 3.00 2.18 5.87 1.29 2.79 2.11 6.14 1.19
H-L 2.26 1.76 5.47 1.11 4.29 2.57 4.79 1.85 3.96 2.50 4.85 1.78

ENet+H GLM+H RF
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -0.86 -0.21 7.24 -0.1 -0.78 -0.29 7.41 -0.13 0.20 0.37 7.13 0.18
2 -0.16 0.61 6.28 0.34 -0.13 0.64 6.26 0.35 0.47 0.63 5.87 0.37
3 0.2 0.88 5.62 0.54 0.23 0.87 5.65 0.53 0.62 0.71 5.73 0.43
4 0.49 0.97 5.19 0.65 0.50 0.95 5.20 0.63 0.73 0.94 5.51 0.59
5 0.75 1.09 5.03 0.75 0.75 1.09 5.07 0.74 0.85 1.04 5.59 0.65
6 0.99 1.08 4.94 0.76 0.99 1.12 4.93 0.79 1.08 1.07 5.02 0.74
7 1.25 1.21 5.01 0.84 1.23 1.17 5.09 0.80 1.22 1.09 4.7 0.80
8 1.52 1.29 5.20 0.86 1.49 1.25 5.08 0.85 1.35 1.05 4.84 0.75
9 1.87 1.56 5.67 0.95 1.82 1.64 5.59 1.02 1.50 1.23 5.03 0.85
H 2.51 2.05 6.04 1.18 2.42 2.11 5.92 1.23 2.48 2.42 7.25 1.16
H-L 3.63 2.53 4.90 1.77 3.47 2.66 5.06 1.81 2.54 2.31 4.05 1.96

GBRT+H NN1 NN2
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -0.12 0.14 6.91 0.07 -1.46 -0.59 8.17 -0.25 -1.26 -0.63 8.07 -0.27
2 0.21 0.81 5.73 0.49 -0.33 0.46 6.34 0.25 -0.12 0.29 6.26 0.16
3 0.36 0.98 5.45 0.62 0.17 0.70 5.38 0.45 0.36 0.59 5.28 0.39
4 0.49 0.94 5.32 0.61 0.52 0.81 4.88 0.57 0.68 0.79 4.83 0.57
5 0.62 1.16 5.52 0.73 0.82 0.91 4.66 0.68 0.95 0.90 4.64 0.67
6 0.80 1.06 4.95 0.74 1.09 1.05 4.58 0.79 1.20 1.10 4.54 0.84
7 1.05 1.13 4.75 0.82 1.38 1.18 4.62 0.88 1.46 1.21 4.64 0.9
8 1.24 1.12 4.83 0.8 1.72 1.32 4.73 0.97 1.76 1.35 4.70 1.00
9 1.44 1.23 5.72 0.75 2.19 1.52 5.07 1.04 2.19 1.63 5.14 1.10
H 2.26 1.98 7.76 0.88 4.12 3.18 8.62 1.28 4.09 3.31 8.61 1.33
H-L 2.65 2.11 4.25 1.71 5.84 4.04 5.80 2.39 5.61 4.20 5.27 2.74

NN3 NN4 NN5
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -1.54 -0.58 8.27 -0.24 -1.49 -0.61 8.36 -0.25 -0.87 -0.43 8.03 -0.19
2 -0.32 0.44 6.41 0.24 -0.17 0.40 6.38 0.22 0.16 0.49 6.22 0.27
3 0.20 0.68 5.31 0.44 0.38 0.70 5.35 0.45 0.55 0.81 5.27 0.53
4 0.55 0.75 4.91 0.53 0.74 0.80 4.84 0.57 0.82 0.92 4.72 0.68
5 0.85 0.88 4.71 0.65 1.03 0.92 4.61 0.69 1.04 1.04 4.65 0.78
6 1.11 1.07 4.59 0.81 1.30 1.08 4.54 0.83 1.24 0.98 4.60 0.74
7 1.39 1.19 4.63 0.89 1.58 1.22 4.55 0.93 1.45 1.16 4.61 0.87
8 1.70 1.38 4.72 1.01 1.9 1.35 4.74 0.99 1.71 1.26 4.74 0.92
9 2.15 1.58 5.05 1.09 2.36 1.53 5.10 1.04 2.09 1.39 5.31 0.90
H 4.12 3.16 8.43 1.30 4.48 3.16 8.33 1.31 4.10 2.92 8.81 1.15
H-L 5.92 4.01 5.70 2.42 6.23 4.03 5.56 2.58 5.23 3.62 5.64 2.21

Table C.8: Performance of Equally Weighted Portfolios by Decile.

Note: Performance on decile of each model for equally weighted portfolios. Rows L, H and HL
stand for Low, High and High-minus-Low deciles respectively. Columns Pred, Real, Std, and SR
are average predicted monthly returns (in %), average realised monthly returns (in %), realised
monthly standard deviation (in %) and Sharpe ratio, respectively.
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OLS+H
Decile Pred Real Std SR

L -1.13 -0.69 4.99 -0.48
2 -0.47 0.12 4.40 0.09
3 -0.15 0.31 3.95 0.28
4 0.09 0.46 3.68 0.43
5 0.30 0.54 3.58 0.53
6 0.50 0.63 3.56 0.62
7 0.71 0.70 3.58 0.68
8 0.94 0.84 3.73 0.78
9 1.23 1.00 3.87 0.89
H 1.82 1.29 4.27 1.04
H-L 3.20 2.24 3.34 2.32

OLS3+H PLS PCR
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -0.32 0.07 4.95 0.05 -0.90 -0.32 5.30 -0.21 -0.82 -0.34 4.98 -0.23
2 -0.07 0.29 3.95 0.25 -0.33 0.16 4.38 0.13 -0.29 0.18 4.30 0.14
3 0.08 0.47 3.37 0.48 -0.04 0.34 3.96 0.29 -0.02 0.35 3.82 0.32
4 0.22 0.48 3.11 0.54 0.19 0.41 3.70 0.38 0.19 0.41 3.70 0.38
5 0.35 0.47 3.08 0.53 0.39 0.45 3.57 0.44 0.39 0.48 3.63 0.46
6 0.47 0.45 3.37 0.47 0.59 0.54 3.64 0.51 0.57 0.51 3.67 0.48
7 0.59 0.52 3.79 0.48 0.80 0.61 3.65 0.58 0.76 0.62 3.73 0.57
8 0.71 0.65 4.39 0.51 1.04 0.77 3.70 0.72 0.98 0.79 3.71 0.73
9 0.85 0.65 4.64 0.49 1.33 0.95 3.73 0.88 1.25 0.94 3.92 0.83
H 1.07 1.16 5.77 0.69 1.91 1.32 4.06 1.13 1.77 1.29 4.29 1.04
H-L 1.66 1.35 4.14 1.13 3.08 1.91 3.58 1.85 2.86 1.89 3.54 1.84

ENet+H GLM+H RF
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -0.79 -0.39 5.23 -0.26 -0.73 -0.46 5.36 -0.30 -0.05 0.04 5.08 0.02
2 -0.3 0.20 4.47 0.15 -0.27 0.21 4.48 0.16 0.14 0.20 4.14 0.17
3 -0.04 0.40 3.98 0.35 -0.03 0.39 4.03 0.33 0.26 0.26 4.08 0.22
4 0.16 0.47 3.68 0.44 0.17 0.45 3.68 0.43 0.34 0.44 3.83 0.39
5 0.34 0.54 3.54 0.53 0.34 0.55 3.59 0.53 0.43 0.52 3.88 0.46
6 0.51 0.54 3.49 0.54 0.51 0.57 3.48 0.56 0.58 0.54 3.54 0.53
7 0.69 0.63 3.53 0.62 0.68 0.61 3.60 0.58 0.68 0.54 3.36 0.56
8 0.89 0.70 3.68 0.66 0.86 0.66 3.59 0.64 0.77 0.52 3.44 0.52
9 1.13 0.88 4.05 0.75 1.09 0.95 3.94 0.83 0.88 0.65 3.57 0.63
H 1.58 1.24 4.3 1.00 1.51 1.29 4.16 1.07 1.54 1.52 5.17 1.02
H-L 2.63 1.90 3.64 1.81 2.5 2.01 3.74 1.86 1.85 1.74 2.93 2.06

GBRT+H NN1 NN2
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -0.26 -0.13 4.81 -0.09 -1.21 -0.69 6.00 -0.40 -1.07 -0.70 5.89 -0.41
2 -0.03 0.34 3.96 0.29 -0.42 0.08 4.58 0.06 -0.27 -0.04 4.52 -0.03
3 0.07 0.47 3.86 0.42 -0.07 0.27 3.83 0.24 0.07 0.20 3.76 0.18
4 0.16 0.44 3.75 0.41 0.18 0.34 3.43 0.34 0.29 0.34 3.41 0.34
5 0.26 0.60 3.90 0.54 0.39 0.42 3.25 0.44 0.48 0.41 3.25 0.44
6 0.38 0.52 3.56 0.51 0.58 0.52 3.20 0.56 0.65 0.55 3.17 0.61
7 0.57 0.57 3.39 0.58 0.78 0.62 3.23 0.66 0.84 0.63 3.24 0.68
8 0.70 0.57 3.46 0.57 1.02 0.72 3.29 0.76 1.05 0.74 3.28 0.78
9 0.85 0.66 4.14 0.55 1.35 0.86 3.56 0.84 1.35 0.94 3.59 0.90
H 1.41 1.16 5.57 0.72 2.67 2.07 6.27 1.15 2.65 2.15 6.24 1.19
H-L 1.94 1.56 3.10 1.74 4.15 3.03 4.45 2.35 3.99 3.11 3.98 2.71

NN3 NN4 NN5
Decile Pred Real Std SR Pred Real Std SR Pred Real Std SR

L -1.28 -0.67 6.10 -0.38 -1.22 -0.68 6.12 -0.39 -0.80 -0.55 5.84 -0.33
2 -0.42 0.07 4.68 0.05 -0.30 0.04 4.63 0.03 -0.07 0.12 4.45 0.10
3 -0.05 0.25 3.79 0.23 0.09 0.26 3.79 0.24 0.20 0.35 3.75 0.33
4 0.20 0.30 3.48 0.30 0.34 0.34 3.40 0.34 0.39 0.42 3.33 0.44
5 0.40 0.40 3.31 0.42 0.54 0.42 3.23 0.45 0.54 0.51 3.28 0.54
6 0.59 0.53 3.21 0.58 0.73 0.54 3.18 0.58 0.68 0.46 3.21 0.50
7 0.78 0.62 3.21 0.67 0.93 0.64 3.19 0.69 0.83 0.60 3.21 0.65
8 1.00 0.76 3.25 0.81 1.16 0.74 3.32 0.78 1.01 0.67 3.30 0.70
9 1.32 0.91 3.51 0.90 1.48 0.87 3.56 0.84 1.28 0.76 3.74 0.70
H 2.66 2.04 6.04 1.17 2.92 2.05 6.02 1.18 2.65 1.86 6.40 1.01
H-L 4.20 2.98 4.31 2.39 4.40 3.00 4.13 2.51 3.71 2.68 4.27 2.17

Table C.9: Performance of Value Weighted Portfolios by Decile.

Note: Performance on decile of each model for value weighted portfolios. Rows L, H and H-L
stand for Low, High and High-minus-Low deciles respectively. Columns Pred, Real, Std, and SR
are average predicted monthly returns (in %), average realised monthly returns (in %), realised
monthly standard deviation (in %) and Sharpe ratio, respectively.
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OLS OLS3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H +H

All Stocks
Ann Ret 0.36 0.21 0.31 0.30 0.30 0.32 0.28 0.25 0.48 0.50 0.48 0.48 0.43
Vol 0.16 0.19 0.17 0.17 0.17 0.18 0.14 0.15 0.20 0.18 0.20 0.19 0.20
SR 2.28 1.11 1.85 1.78 1.77 1.81 1.96 1.71 2.39 2.74 2.42 2.56 2.21
Skew 0.52 0.77 0.14 0.46 -0.05 -0.26 0.97 1.72 2.18 2.27 1.69 1.75 2.40
Kurt 4.36 17.89 7.96 7.50 7.42 8.63 7.03 12.63 19.44 13.94 11.12 11.47 19.56
Max DD 0.25 0.63 0.44 0.31 0.40 0.40 0.23 0.24 0.28 0.17 0.29 0.23 0.47
Max Loss 0.13 0.36 0.23 0.20 0.22 0.27 0.17 0.16 0.28 0.16 0.23 0.22 0.23
Turnover 1.26 1.50 1.15 1.27 1.28 1.36 0.92 1.25 1.24 1.23 1.20 1.20 1.15

Top 1000 Market Caps
Ann. Ret. 0.15 0.06 0.13 0.12 0.13 0.13 0.08 0.05 0.16 0.16 0.15 0.15 0.11
Vol. 0.16 0.18 0.17 0.16 0.17 0.18 0.16 0.14 0.23 0.22 0.24 0.23 0.21
SR 0.94 0.33 0.78 0.77 0.77 0.73 0.51 0.39 0.70 0.75 0.64 0.65 0.54
Skew 0.39 0.50 1.02 0.89 0.61 0.68 0.50 -0.45 0.24 0.45 0.44 0.76 0.31
Kurt 6.74 7.93 8.92 7.89 7.10 7.31 11.89 14.32 10.37 7.75 7.95 9.64 7.64
Max DD 0.43 0.74 0.53 0.44 0.48 0.55 0.44 0.68 0.67 0.82 1.08 0.87 0.71
Max Loss 0.21 0.26 0.21 0.19 0.21 0.22 0.26 0.30 0.37 0.29 0.32 0.33 0.26

Bottom 1000 Market Caps
Ann. Ret. 0.47 0.58 0.47 0.47 0.45 0.49 0.84 0.74 0.98 1.02 0.97 0.97 0.88
Vol. 0.21 0.26 0.23 0.23 0.23 0.23 0.35 0.33 0.38 0.40 0.39 0.39 0.43
SR 2.22 2.21 2.04 2.01 1.94 2.14 2.41 2.23 2.57 2.57 2.49 2.51 2.08
Skew -0.55 1.61 -1.02 -0.71 -1.34 -1.42 2.80 2.85 2.62 2.78 2.99 2.95 3.20
Kurt 3.34 9.56 6.68 4.96 6.63 7.08 15.79 16.56 14.79 16.27 21.71 20.39 24.84
Max DD 0.32 0.28 0.46 0.44 0.72 0.52 0.16 0.23 0.19 0.17 0.30 0.23 0.50
Max Loss 0.32 0.16 0.42 0.38 0.37 0.36 0.12 0.13 0.14 0.17 0.15 0.12 0.36

Table C.10: Statistical Performance of Expert Portfolios.
Note: Statistical performance of portfolios on all US stock universe, the top 1000 and the bot-
tom 1000 stocks in terms of market capitalisation. Columns Ann Ret, Vol, SR, Skew, Kurt, Max
DD, Max Loss and Turnover stand for annualised average return, annualised volatility, annu-
alised Sharpe ratio, skewness, kurtosis, maximum drawdown, 1-month maximum loss and portfolio
turnover. The metrics are computed on the test period 1987-2016. Portfolios are equally weighted.

Figure C.7: Average Annualised Returns per Year of Portfolios.
Note: The expert portfolios are equally weighted and computed on the 1987-2016 test period. Experts
include OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H, RF, GBRT+H and the five neural
networks (NN1-NN5). PtfBOA is the portfolio obtained with the Bernstein Online Aggregation
and PtfUNI is an uniform mixture of the experts. Portfolios are equally weighted.
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Best Expert Fixed Combination Adaptative Mixture Oracle

NN2 PtfUNI Best Convex Best Convex PtfBOA Best Convex
on Valid. Set One-year Rolling

All Stocks
Ann. Ret. 0.50 0.36 0.36 0.43 0.49 0.50
Vol. 0.18 0.14 0.16 0.16 0.18 0.17
SR 2.74 2.56 2.28 2.60 2.77 2.92
Skew. 2.27 1.19 0.52 1.65 3.11 2.90
Kurt. 13.94 10.17 4.36 10.58 19.63 17.93
Max DD 0.17 0.24 0.25 0.17 0.08 0.07
Max Loss 0.16 0.18 0.13 0.16 0.08 0.07
Turnover 1.23 1.22 1.26 1.22 1.23 1.24

Top 1000 Market Caps
Ann. Ret. 0.16 0.12 0.15 0.11 0.13 0.16
Vol. 0.22 0.15 0.16 0.16 0.15 0.16
SR 0.75 0.83 0.94 0.70 0.86 0.99
Skew 0.45 0.74 0.39 0.35 0.47 0.56
Kurt 7.75 11.72 6.74 9.06 10.46 9.85
Max DD 0.82 0.44 0.43 0.43 0.40 0.41
Max Loss 0.29 0.21 0.21 0.25 0.22 0.22

Bottom 1000 Market Caps
Ann. Ret. 1.02 0.72 0.47 0.96 0.99 1.03
Vol. 0.40 0.22 0.21 0.37 0.37 0.40
SR 2.57 3.33 2.22 2.60 2.65 2.60
Skew 2.78 1.83 -0.55 2.72 2.76 2.88
Kurt 16.27 8.03 3.34 14.53 15.83 16.77
Max DD 0.17 0.14 0.32 0.15 0.17 0.18
Max Loss 0.17 0.14 0.32 0.13 0.12 0.13

Table C.11: Performance of Aggregated Portfolios.
Note: Columns Ann. Ret., Vol., Skew., Kurt., SR, Max DD, Max Loss and Turnover stand for
annualised average return, volatility, skewness, kurtosis, annual Sharpe ratio, maximum drawdown,
1-month maximum loss and portfolio turnover. The metrics are computed on the test period 1987-
2016. Expect for NN2, all the portfolios are convex combinations of the thirteen experts. The oracle
is the best possible convex mixture on the test period and is unachievable in practice. Portfolios are
equally weighted.
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Figure C.8: Cumulative Returns of Portfolios and Experts’ Weights of PftBOA.
Note: The first graph presents cumulative log returns of portfolios on the test period as well as
S&P500 (in gray). Full lines (resp. dash lines) indicate long positions (resp. short). Black bold
lines correspond to aggregation PtfBOA and blue bold lines to the uniform mixture PtfUNI. Both
aggregations include the 13 strategies OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H, RF,
GBRT+H, NN1, NN2, NN3, NN4, and NN5. The bottom graph plots the average expert weights
of the long and short aggregations of PtfBOA over the period. Portfolios are equally weighted.

Figure C.9: Experts’ Sharpe Ratio Ranks Distribution.
Note: This graph presents the distribution of each annual Sharpe Ratio’s rank for the thirteen
individual experts, the uniform mixture and the two aggregations (PtfBOA and PtfUNI). The dis-
tribution is obtained by counting the number of times an expert gets the best, second (and so on)
Sharpe Ratio. Portfolios are equally weighted.
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(a) Value Weighted

(b) Equally Weighted

Figure C.10: Weights of Expert Portfolios for Best Convex One-year Rolling Mixture.

OLS OLS3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
+H +H +H +H +H

Value Weighted
PtfUNI 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Best Convex on Valid. Set 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best Convex One-Year Rolling 0.25 0.01 0.02 0.01 0.03 0.03 0.03 0.03 0.15 0.13 0.07 0.11 0.13
PtfBOA 0.38 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.06 0.39 0.05 0.06 0.02
Oracle 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.50 0.00 0.00 0.00

Equally Weighted
PtfUNI 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Best Convex on Valid. Set 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best Convex One-year Rolling 0.25 0.00 0.02 0.02 0.02 0.03 0.04 0.03 0.15 0.14 0.07 0.11 0.12
PtfBOA 0.23 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.09 0.44 0.08 0.07 0.03
Oracle 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.00 0.11 0.00

Table C.12: Average Weights of the Mixtures.
Note: Average weights of the mixture portfolios on the test period 1987-2016. PtfUNI, Best Convex
on Valid. Set, Best Convex One-year Rolling, PtfBOA, Oracle indicate the uniform mixture, the
best fixed convex combination on the last year of the validation set, the one-year rolling fixed
combination, BOA and the oracle portfolio weights respectively. The rolling best convex and BOA
are adaptive mixtures, the weight evolution of the rolling mixture is given in the graph. Oracle is
the best possible convex mixture on the test period and is unachievable in practice.
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Best Expert (NN2) PtfUNI Original BOA Pre-trained BOA

Ann Ret 0.50 0.36 0.49 0.49
Vol 0.18 0.14 0.18 0.17
SR 2.74 2.56 2.77 2.78
Skew 2.27 1.22 3.11 3.15
Kurt 13.94 10.49 19.63 19.66
Max DD 0.17 0.24 0.08 0.08
Max Loss 0.16 0.18 0.08 0.08
Turnover 1.23 1.22 1.23 1.23

Table C.13: Pre-trained Aggregation Portfolio Performance.
Note: Columns Ann Ret, Vol, SR, Skew, Kurt, Max DD, Max Loss and Turnover stand for an-
nualised average return, annualised volatility, annual Sharpe Ratio, skewness, kurtosis, maximum
drawdown, 1-month maximum loss and portfolio turnover. Metrics are computed on the test period.
Portfolios are equally weighted.

Experts Ann Ret Vol Skew Kurt SR Max DD Max Loss

Value Weighted
NN2_0 0.27 0.12 1.36 9.26 2.22 0.16 0.15
NN2_1 0.30 0.13 1.26 8.25 2.25 0.17 0.17
NN2_2 0.29 0.13 1.13 7.95 2.24 0.29 0.18
NN2_3 0.29 0.15 1.04 11.76 1.89 0.28 0.21
NN2_4 0.28 0.15 0.98 11.63 1.89 0.56 0.20
NN2_5 0.27 0.13 1.49 8.03 2.10 0.16 0.08
NN2_6 0.30 0.15 1.50 11.49 1.97 0.34 0.18
NN2_7 0.27 0.13 3.30 29.14 2.04 0.21 0.11
NN2_8 0.29 0.15 3.09 28.21 2.01 0.51 0.17
NN2_9 0.29 0.13 1.65 13.48 2.25 0.28 0.15
OLS_0 0.25 0.11 0.51 5.99 2.21 0.19 0.12
OLS_1 0.24 0.12 0.45 8.10 1.97 0.19 0.19
OLS_2 0.23 0.12 0.15 6.32 1.95 0.24 0.16
OLS_3 0.24 0.11 -0.21 9.35 2.16 0.21 0.21
OLS_4 0.24 0.12 -1.05 12.18 2.05 0.25 0.23
OLS_5 0.23 0.11 0.59 3.93 2.18 0.14 0.11
OLS_6 0.27 0.12 0.89 4.86 2.25 0.18 0.10
OLS_7 0.24 0.11 0.94 7.24 2.15 0.21 0.11
OLS_8 0.24 0.12 0.40 6.72 2.08 0.29 0.14
OLS_9 0.22 0.14 0.56 7.05 1.58 0.31 0.16
Extended PtfBOA 0.35 0.13 2.95 18.26 2.76 0.09 0.05

Equally Weighted
NN2_0 0.37 0.16 1.27 7.46 2.27 0.19 0.18
NN2_1 0.40 0.18 1.00 7.31 2.27 0.25 0.25
NN2_2 0.38 0.17 1.06 7.34 2.25 0.35 0.22
NN2_3 0.39 0.20 0.77 8.97 1.91 0.42 0.26
NN2_4 0.37 0.20 0.55 10.19 1.89 0.83 0.29
NN2_5 0.37 0.17 1.41 7.89 2.11 0.19 0.10
NN2_6 0.40 0.20 1.15 8.89 1.97 0.51 0.22
NN2_7 0.36 0.18 2.83 22.44 2.06 0.23 0.14
NN2_8 0.39 0.19 2.39 22.49 2.00 0.76 0.26
NN2_9 0.39 0.17 1.22 10.61 2.26 0.41 0.22
OLS+H_0 0.33 0.15 0.12 5.05 2.17 0.33 0.16
OLS+H_1 0.32 0.16 0.22 6.54 1.97 0.24 0.23
OLS+H_2 0.30 0.16 -0.05 5.20 1.92 0.41 0.19
OLS+H_3 0.32 0.15 -0.30 7.40 2.16 0.26 0.26
OLS+H_4 0.32 0.15 -1.03 10.1 2.10 0.31 0.29
OLS+H_5 0.31 0.14 0.24 3.32 2.13 0.21 0.14
OLS+H_6 0.35 0.16 0.53 3.72 2.23 0.22 0.14
OLS+H_7 0.32 0.15 0.60 5.28 2.17 0.26 0.13
OLS+H_8 0.32 0.15 0.30 5.52 2.11 0.36 0.18
OLS+H_9 0.29 0.18 0.19 5.75 1.59 0.41 0.19
Extended BOA 0.47 0.17 2.98 18.39 2.82 0.09 0.07

Table C.14: Performance of Specialised Expert Portfolios and Extended Mixtures.
Note: Columns Ann Ret, Vol, Skew, Kurt, SR, Max DD, Max Loss provide annualised mean return,
volatility, Skewness, Kurtosis, annual sharpe ratio, maximum drawdown and 1-month maximum
loss. Extended BOA includes the K = 13 initial experts plus K

′
= 10 new specialised neural

networks NN2 and K
′
= 10 new specialised OLS+H.
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