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The success of the “net zero transition” relies on the 
acceleration of the clean technology development to increase 
renewable energy capacity and low-emission solutions, 
but also to improve energy efficiency and enable carbon 
capture. Tracking such technologies and their mineral 
requirements is becoming increasingly important, but has 
traditionally required expert knowledge. In this paper, we 
propose a framework using Large Language Models and 
question-answering tasks to monitor the novelty within the 
clean tech industry, but also the minerals on which these 
technologies rely. It demonstrates the benefits of using 
artificial intelligence, and more specifically NLP techniques, 
to reconstruct expert knowledge and track rapidly changing 
markets.
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Answering Clean Tech Questions with Large Language Models

1 Introduction

The past few years have seen a growing number of promising net zero commitments from
both governments and companies. But there may be some bumps on the road toward
a smooth transition to net zero. Indeed, turning words into action has raised questions
about the capacity of our economies to make such structural changes, which in turn depend
on non-infinite supplies of capital, labour and technological progress. The development of
clean energy is a prerequisite for achieving such ambitious goals by reducing greenhouse gas
emissions (IPCC, 2023), alongside low emission fuels, carbon capture or zero-emission tech-
nologies such as nuclear fusion, as John Kerry proposed during COP281. Indeed, today’s
efforts are not enough as annual global CO2eq emissions have continued to rise, reaching a
new high of 36.8 Gt in 2022 (IEA, 2023a). But clean energy development also requires finan-
cial incentives and policy makers’ actions (Rasoulinezhad & Taghizadeh-Hesary, 2022). On
this front, the Biden-Harris administration enacted the Inflation Reduction Act to promote
clean energy (Rudolph et al., 2022), while the European Commission for its part, proposed
the REPowerEU plan (Deng et al., 2022). Still, inter-governmental collaboration is also
needed to achieve climate targets (IEA, 2023d). For example, the “Sunnylands Statement
on Enhancing Cooperation to Address the Climate Crisis” issued between the US and China
ahead of the COP28, provides a positive outlook for the global development of clean energy
and could contribute to the effective “phasing out [of] all unabated fossil fuels” (UNFCCC,
2023) or a “transition away”, as agreed during the event.

Besides, the International Energy Agency (IEA)’s scenarios (both Announced Pledges
and Net Zero scenarios) assume a rapid growth in the energy supply from clean technolo-
gies - notably sourcing from modern bioenergy, wind or solar (IEA, 2023d) - a topic that
the IPCC has been scrutinizing for more than a decade now (IPCC, 2011). However, the
IEA also warns of the resulting tensions in the critical mineral markets. More precisely,
demand is forecast to double by 2030, putting pressure on lithium, cobalt, nickel, and rare
earth elements (REE) (IEA, 2023b). At the same time, questions are being raised about the
environmental and health impacts of the entire life cycle of derived products, from explo-
ration to recycling (e-waste), particularly for REE (Balaram, 2019). Doubts are also being
cast on the supply side, with the focus on the ability to keep pace with such rapid demand
growth. The burning issues of sources’ diversification and sustainability of supply must
also be addressed (IEA, 2022b). In this context, clean tech development has brought the
focus of policymakers towards critical elements and minerals, already in the late 2000s/early
2010s (Eggert, 2011). This is a sizeable market: processed mineral materials (deriving from
mineral raw materials transformation) represented 933 billion USD in 2022 according to US
Geological Survey (2023), and their value added to the US economy is estimated to 3.64
trillion USD, representing 14% of the US GDP in 2022, as shown in Figure 1. The US is
particularly vulnerable to imbalances in these markets, in the sense that demand and prices
have been rising while import reliance is high: among the latest list, 31 critical minerals
have net import reliance greater than 50%, and 15 at 100%.

Understanding the mineral requirements for clean technologies requires specialist knowl-
edge and generic taxonomies may not be sufficient. To illustrate, as of the time of writing of
this paper, the World Bank Group’s topical taxonomy2 has a “metal ore mining” category
that includes the narrower concepts of copper, gold, industrial minerals, iron, nickel, silver,
tantalum, tin, tungsten, and zinc. But it does not cover lithium for example, yet critical for
clean tech (Haddad et al., 2023). Furthermore, tracking mineral requirements for a net zero

1https://www.reuters.com/business/energy/us-envoy-kerry-launches-international-nuclear-fusion-plan-
cop28-2023-12-05/.

2https://vocabulary.worldbank.org/taxonomy.html.
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Figure 1: The Role of Nonfuel Mineral Commodities in the US Economy
(Estimated values in 2022)

Net Exports of Mineral
Raw Materials (4.9BUSD)

Domestically Mined Mineral
Raw Materials (98.2BUSD)

Domestically Recycled Metals
and Mineral Products (42BUSD)

Net Exports of Old Scrap
(15BUSD)

Domestically Pocessed
Mineral Materials (815BUSD)

Net Imports of Processed
Mineral Materials (118BUSD)

Value Added to GDP by Major
Ind. that consume Processed
Mineral Materials (3,640BUSD)

US Economy
(25,461BUSD)

Source: US Geological Survey (2023).

transition requires a given set of clean technologies. However, the latter cannot be bounded,
as innovation may lead to the emergence of new clean technologies. Similarly, today’s niche
technologies could be industrialized on a global scale tomorrow, as demonstrated by the
rapid increase in photovoltaic capacities over the last decade. In this context, Natural Lan-
guage Processing (NLP) approaches seem particularly relevant. These methods are being
increasingly used, notably in the finance industry (Kim et al., 2023a, 2023b). They are
fuelled by the emergence of generative AI offerings such as ChatGPT (Brown et al., 2020),
powered by Large Language Models (LLMs). Although researchers have questioned the
performance trend of the most emblematic generative AI (Chen et al., 2023), the financial
industry has developed innovative tools. Li et al. (2023) propose a framework for the use
of LLMs in finance, while on the sustainability aspects, Vaghefi et al. (2023) provide ac-
cess to the expertise of the IPCC authors through conversational AI. We believe that NLP
techniques - and in particular question-answering, could allow us to efficiently monitor clean
technologies and thus demand for minerals.

In this paper, we aim to illustrate the benefits and pitfalls of using language models for
understanding clean techs. Monitoring the development of clean techs and their demand
for minerals with such techniques, without expert knowledge, would be valuable from the
point of view of policy makers, but also of investors. We provide several tests and introduce
a question-answering framework to monitor clean techs. Our results show it is possible for
our industry to dramatically increase productivity through AI. This paper is structured as
follows. Section 2 presents our benchmark analysis, testing NLP techniques and LLMs to
replicate an IEA synthesis table of the critical minerals needs for clean techs. Section 3
introduces a “novelty detection pipeline” for the monitoring of novelty in clean tech from
the Global Database of Events, Languages and Tone (GDELT). Finally, Section 4 offers
some concluding remarks.

2 Identifying critical mineral needs for clean techs in
the era of LLMs

Our objective is to measure the ability of modern NLP tools, such as naive extraction al-
gorithms, to replicate the knowledge of analysts without a priori] knowledge in the clean
tech domain. We take the particular case of the IEA’s synthesis on the relevant connections
between clean technologies and raw materials (IEA, 2022b). For this purpose, we create a
collection of topical documents (CTD). When the IEA mentions the “list of critical miner-
als”3, the explicit reference is to section 7002 on mineral security of the Energy Act of 2020
(US Senate Committee on Energy and Natural Ressources, 2021). A brief history of the
IEA can be found in Appendix A.3. Considering its member states (see Figure 11 in the
same subsection), the IEA is exposed to both the EU list of critical raw materials and the

3https://www.iea.org/policies/15271-final-list-of-critical-minerals-2022.
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US list of critical materials. They are not the same. The US Geological Survey relies on the
methodology of Nassar et al. (2020) to evaluate the supply risk of the US manufacturing
sector. They measure the supply risk as a harmonic mean of foreign supply disruption po-
tential, trade exposure, and economic vulnerability. The European European Commission
(2020) has also been tracking “critical raw materials” (CRMs) and produced an initial list
of 14 CRMs in 2011. Following the latest report of the European Commission (2023), a list
of 34 CRMs has been established in the European Critical Raw Materials Act4, based on
economical importance and supply risk. We list the combination of the latest US critical
minerals and EU critical materials in Table 9 in Appendix A.4.

2.1 Named-entity recognition

Named-entity recognition (NER) is often employed for identification purposes on a given
collection of topical documents (Sang & De Meulder, 2003). In our case, an efficient NER
model would require training to recognize the ten clean energy technologies (solar photo-
voltaic, wind, hydro, concentrated solar power, bioenergy, geothermal, nuclear, electricity
networks, electric vehicles & battery storage and hydrogen) and nine associated critical min-
erals (copper, cobalt, nickel, lithium, rare earth elements, chromium, zinc, platinum group
metals, and aluminum) identified by IEA (2022b). NER models typically involve a two-
step process that first, detects named entities and then classifies them into the following
categories: “localization”, “organization”, “person” or “misc” (miscellaneous). Given these
categories, we deduce that a classical NER model could recognize clean energy technologies
and critical minerals and classify them in the “misc” category. We test the performance of
benchmark NER models: CamemBERT (Martin et al., 2020) and BERT-large, BERT-base,
roBERTa-large-NER which are fine-tuned on the English version of the CoNLL-2003 NER
dataset. RoBERTa-large-NER (Conneau et al., 2019) is based on Facebook’s RoBERTa
model. Liu et al. (2019) from Meta (Facebook) retrained the original BERT (Devlin et al.,
2019). We develop a custom benchmark dataset - Sample-CTD-NER - for NER consisting
of 200 texts extracted from our CTD. We select 100 articles containing at least one critical
mineral and 100 articles containing at least one clean tech from our aforementioned critical
minerals and clean energy technologies respectively.

Table 1: Performance of NER models (in %)

(a) NER models - critical minerals

NER Model Precision Recall F1-score
camemBERT⋆ 0.75 0.34 0.46
BERT-large⋆⋆ 0.87 0.20 0.32
BERT-base⋆⋆⋆ 0.46 0.09 0.16
roBERTa⋆⋆⋆⋆ 0.50 0.04 0.07
deBERTa⋆⋆⋆⋆⋆ 0.42 0.03 0.06

(b) NER models - clean tech

NER Model Precision Recall F1-score
camemBERT⋆ 0.93 0.41 0.57
BERT-large⋆⋆ 0.60 0.07 0.13
BERT-base⋆⋆⋆ 0.31 0.04 0.07
roBERTa⋆⋆⋆⋆ 0.67 0.08 0.14
deBERTa⋆⋆⋆⋆⋆ 0.65 0.09 0.15

Note: ⋆: Jean-Baptiste/camemBERT-ner, ⋆⋆: dslim/BERT-large-NER, ⋆⋆⋆: dslim/BERT-base-NER, ⋆⋆⋆⋆:
51la5/roBERTa-large-NER, ⋆⋆⋆⋆⋆: Gladiator/microsoft-deBERTa-v3-large ner conll2003

Source: Amundi Investment Institute.

The results are presented in Table 1. The aim of this exercise is to find the exact number
of critical minerals or clean technologies per text that should be classified in the “misc”
category. An article may contain one or more clean technologies or one or more critical
materials. Our performance measure is calculated from the sum of true positives, false
positives, and false negatives found in each text. In our case, true positives correspond to
the number of critical minerals and clean energy technologies detected in the text that fall

4https://ec.europa.eu/commission/presscorner/detail/en/ip 23 1661.
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into the “misc” category. False positives translate the recognition of critical minerals and
clean energy technologies in the fields of “localization”, “organizations” or “person”. Finally,
if no critical minerals and clean energy technologies have been detected, it accounts for a false
negative. In line with common practice in information retrieval (Goutte & Gaussier, 2005),
we call precision the ability to minimize false positives and recall the ability to maximize
true positives. The F1-score is the harmonic mean of Precision and Recall.

Thereby, Table 1a shows the F1-score of the selected NER models for the 100 articles
containing at least one critical mineral per text. We find that the model with the highest F1-
score is the CamemBERT model with a score of 46.49%. Accordingly, many critical minerals
are correctly detected in “misc”, particularly lithium, otherwise the others are false positives
(detected as “organization” or “localization”). This model also recognizes elements such as
hydrogen or boron, or minerals such as beryllium 26 ores, sodium or helium. CamemBERT
performs well on English texts since it focuses on words that are identical in French and
English (such as lithium), hence correctly assigned to the “misc” category. However, as
CamemBERT is a French language model it is legitimate to translate the texts from Sample-
CTD-NER to analyze whether the quality of named entity recognition remains interesting.
But translating the text into French means that the model has to classify and focus on a
larger number of words, and therefore sometimes fails to assign minerals or materials to the
“misc” category. In addition, the remaining NER models (BERT, roBERTa and deBERTa)
exhibit low F1-scores ranging from 31.95% to 6.80% for the latter. For these models, lithium
is the critical mineral which is the most frequently detected as a “misc”, resulting in high
precision scores.

In the second step, we seek one or more clean energy technologies per text in 100 articles,
using the aforementioned NER models. The performance scores of the models are presented
in Table 1b and the best-performing model remains the CamemBERT model. In fact, the
F1-score is even higher than in the previous example, reaching 56.83% with an accuracy
of 92.86%. However, after translating the texts of the Sample-CTD-NER into French, the
F1-score falls to 12.86%. For the remaining models, this time, we find that the F1-scores
of the reworked models are lower and inversely ranked compared to the previous exercise,
where the best-performing model after CamemBERT is deBERTa with a score of 15.49% and
the worst-performing is BERT with a score of 7.35%, proving the instability of the models’
performance across different text topics. Therefore we believe that a custom NER model,
trained exclusively on documents in the clean tech lexical domain, is required. Achieving
this goal, however, requires the construction of a sufficiently large text dataset.

2.2 Question-answering

Instead of the NERmethod, we propose an information extraction process based on question-
answering, as shown in Figure 2. We do not simply ask our CTD which minerals are required
for clean technologies in general with a question-answering trained model. We also query
the CTD for each combination of critical minerals × clean energy technology from Table
2a. Critical minerals are derived from section 7002 of the Energy Act of 2020 (US Senate
Committee on Energy and Natural Ressources, 2021). We therefore ask the questions at
the level of each material, rather than at the level of REE and platinum group metals
(PGMs), before recombining the output. For example, we can establish from Table 2c that
the relevant material for REEs is neodymium (Nd), which is used for permanent magnets.
Unlike in the previous NER case, we perform the analysis on the full CTD, not an extract.
We apply two formulations to our question, to remove any bias in the order of appearance
of mineral or clean tech in our question and run our information extraction pipeline in the
Haystack open source framework (Pietsch et al., 2019).
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Figure 2: Information extraction pipeline

Dense
Document
StoreQuestion Formulation I*

Question Formulation II**

Source A Source B Source ...

Critical Minerals

C
le
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n
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ec
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s

Source ...

Extractive QA Pipeline

DensePassage

Retriever***

Reader****

word similarity control

Candidate Answers

Note: ⋆: Is mineral necessary for techno ?, ⋆⋆: Does techno require mineral ?, ⋆⋆⋆: test retrievers,
⋆⋆⋆⋆: test readers for QA task.

Source: Amundi Investment Institute.

Table 2: Critical mineral needs for clean tech

(a) Information detection pipeline

Cu Co Ni Li REEs Cr Zi PGMs Al

Solar PV
Wind
Hydro
CSP ⋆⋆⋆

Bioenergy
Geothermal
Nuclear
Elect Net⋆

EVs / BS⋆⋆

Hydrogen

Source: Authors’ calculations

(b) IEA (2022b)

Cu Co Ni Li REEs Cr Zi PGMs Al

Solar PV
Wind
Hydro
CSP
Bioenergy
Geothermal
Nuclear
Elect Net⋆

EVs / BS⋆⋆

Hydrogen

Source: IEA

(c) Information extraction pipeline (continued)

Heavy Rare Earth Elements Light Rare Earth Elements

Dym Er Eu Gdm Ho Lu Tbm Tm Yb Y Cem La Ndm Prm Smm

Solar PV
Wind
Hydro
CSP ⋆⋆⋆

Bioenergy
Geothermal
Nuclear
Elect Net⋆

EVs / BS⋆⋆

Hydrogen

Source: Authors’ calculations

Note: for Subtable 2b: = high, = moderate, = low;
⋆: Electricity Networks; ⋆⋆: Electric Vehicles and battery storage; ⋆⋆⋆: Concentrated Solar Power (CSP
not being recognized as a proper abbreviation in our pipeline).
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Zhu et al. (2021) conduct a survey on question-answering and introduce the retriever-
reader architecture where the retriever extracts documents with probable answers and the
reader focuses on predicting the start and end position of the answer from the retrieved
documents as illustrated in Figure 10 in Appendix A.2. For a given reader (roBERTa-
base-squad2), we test the performance of different retrievers, namely the Facebook dense
retriever, mpnet and sentence transformers, and present the results in Table 8 in Appendix
A.1. Since the Facebook dense retriever (Karpukhin et al., 2020) performed better in this
test, we use it as our reference retriever in the rest of our analysis. We then test several
readers, namely roBERTa, electra, xlm and alBERT and present the results in Table 3.

Table 3: Performance of information extraction with different reader models

Reader Model Precision Recall F1-score Execution time of the model
roBERTa⋆ 0.76 0.80 0.78 98 minutes and 27 seconds
electra⋆⋆ 0.74 0.70 0.72 144 minutes and 6 seconds
xlm⋆⋆⋆ 0.76 0.65 0.70 146 minutes and 54 seconds
alBERT⋆⋆⋆⋆ 0.83 0.95 0.88 369 minutes and 44 seconds

Note: ⋆: roBERTa-base-squad2, ⋆⋆: electra large discriminator squad2 512, ⋆⋆⋆:
xlm-roBERTa-large-squad2, ⋆⋆⋆⋆: alBERT xxlargev1 squad2 512

Source: Author’s calculations, Amundi Investment Institute.

To complement our information extraction pipeline, we introduce a Term-Frequency
Inverse Document Frequency (TF-IDF) measure (Ramos et al., 2003) and we also control
for cosine similarity. It measures the similarity of two n-dimensional vectors by finding the
cosine of their angle, between the mineral and the answer context, as well as, on the clean
energy technology and the answer context. In this way, we filter out inconsistencies from
the raw results to compensate for the fact that alBERT or the other models that we have
used are not specifically trained to detect clean techs or minerals. This step is important as
our retention rates, shown in Tables 4a and 4b, are in general below 30%. This retention
rate is presented in the bottom-right box of Figure 2. In fact, the retriever and the reader
provide candidate answers, of which only a minority are “confirmed” by the world similarity
control, which acts as a “safety net”. We give an example of the lack of specific training for
minerals/materials and clean energy technologies in Table 5 for the alBERT model.

Table 4: Filtering from word similarity control

(a) Question Formulation I

reader model critical material tech
roBERTa⋆ 0.204 0.248
electra⋆⋆ 0.196 0.229
xlm⋆⋆⋆ 0.196 0.242
alBERT⋆⋆⋆⋆ 0.216 0.245

(b) Question Formulation II

reader model critical material tech
roBERTa⋆ 0.162 0.301
electra⋆⋆ 0.155 0.306
xlm⋆⋆⋆ 0.157 0.271
alBERT⋆⋆⋆⋆ 0.164 0.318

Source: Authors’ calculations, Amundi Investment Institute

Note: ⋆: roBERTa-base-squad2, ⋆⋆: electra large discriminator squad2 512,
⋆⋆⋆: xlm-roBERTa-large-squad2, ⋆⋆⋆⋆: alBERT xxlargev1 squad2 512
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As shown in Table 3, using alBERT5 model we manage to emulate the IEA Table 2b
with an F1-score of 88%. The real significance of this number is that while we lack the
subtlety of the IEA experts to identify a moderate need ( in Table 2b) for critical minerals
for clean energy technologies, we can emulate the IEA experts’ know-how at 88% with
transformer-based language models and a systematic question-answering approach.

Table 5: Word similarity control in application

critical
material

clean
energy
tech

context alBERT
material
to context

clean energy
tech

to context
Final

Aluminium Solar PV

Aluminium is an important input to the
clean energy transition, with the production
of several clean technologies, including
solar PV installations and EVs, requiring
significant amounts

✓ ✓ ✓ ✓

Iridium
EVs and
battery
storage

EVs and battery storage grows nearly
tenfold in the STEPS and around 30 times
in the SDS over the period to 2040. By
weight, mineral demand in 2040 i

✓ ✗ ✓ ✗

Source: Authors’ calculations, IEA (2022b, 2023c), Amundi Investment Institute

In the first example, alBERT returns a context where we can identify both the critical
material (Aluminium) and the clean tech (Solar PV). However, in the second example,
alBERT returns a context with the clean tech (EVs and battery storage) but is not precise
enough for the critical material. It identified the concept of mineral but not precisely Iridium.
In practice, alBERT’s F1-scores are the best of the models we tested. However, if we consider
both the execution time and the F1-score, RoBERTa appears to be the best trade-off, as
shown in Table 3. Hence, we will pursue our analysis with this model. We highlight that the
use of the very precise alBERT model yields powerful results for emulating expert knowledge,
although we choose to use the less dense roBERTa model for computational reasons. The
context extraction feature from the question-answering task enables us to establish a word
similarity control. This purely syntactic layer - with no LLM involved - acts as a very
efficient “safety net” for the outputs of the alBERT model. Indeed, in our information
extraction study, we removed about 70% of the false positives from the candidate responses
generated by alBERT. This double contribution, with the extraction of context using the
language model, and the syntactic check, is a proposal that emulates “human control” from
the context.

3 Monitoring of novelty in clean tech

3.1 Event database

In our previous work, we built economic, societal and geopolitical narratives (Blanqué et
al., 2022), based on news information using the big data framework proposed by Leetaru
and Schrodt (2013). In this second version of the Global Database of Events Language
and Tone (GDELT 2.0), the authors link their dataset to the Conflict and Mediation Event
Observations (CAMEO) framework. We find that the translation of news from over 100
languages into English is a significant advantage of GDELT 2.0 for news and event-based
analysis. This version of the database processes metadata that includes the nature of the
events, the people or entities involved, the location, and codes to describe the event using

5albert xxlarge version 1 language model fine-tuned on SQuAD2.0.
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multiple taxonomies and the dictionary-based tonality of the news. In our previous ap-
proaches, we grouped the components of these taxonomies according to their relationship
to our narratives’ themes. In terms of tonality, Leippold (2023) confirms the vulnerability
of keyword-based approaches, (for example, the one employed by Loughran and McDonald
(2011)) to adversarial attacks. The author uses GPT-3 and synonyms to transform the
keyword-based sentiment measure of texts from negative to neutral “while respecting the
context, the meaning, and the grammar”. Kurakin et al. (2017) and Papernot et al. (2015)
present adversarial attacks as attempts by malicious adversaries to intentionally exploit the
“loopholes” of the deep learning systems to achieve misclassifications. An early example of
an adversarial attack is described by Dalvi et al. (2004) with an analysis of spam filtering.

Leetaru (2021) introduces GDELT’s Web News NGrams 3.0 Dataset (GDELT 3.0). To
illustrate that this new dataset brings context, he uses the example of the term delta. This
approach enables the differentiation between “delta airlines” or the “delta Covid-19 vari-
ant”. An advantage of GDELT 3.0 for news and events analysis is that we can focus our study
on areas that are not a priori dependent on the depth of the third-party taxonomies avail-
able through GDELT 2.0. Specifically in Blanqué et al. (2022) for our “innovation” theme
within the environment narrative, we identify GDELT 2.0 identifiers: ENV Carboncapture,
WB 1853 Hydrofluorocarbons, WB 1851 Biocarbon, WB 2003 Sanitation Technologies, WB
2639 Climate Efficient Industries, WB 2673 Jobs and Climate Change, WB 2674 Green
Jobs, WB 399 Innovation for Green Growth, WB 400 Innovation Driven Inclusive Growth,
WB 408 Green Buildings, WB 568 Climate Services, WB 571 Climate Science, WB 573
Climate Risk Management. The identifiers in GDELT 2.0 with the prefix “WB” refer to the
aforementioned World Bank Group Topical Taxonomy. GDELT 3.0 offers greater flexibility
through its N-grams approach, compared to the constrained set of identifiers available in
GDELT 2.0 through its event taxonomies. As our objective is to create a novelty monitor on
clean techs, we select the GDELT 3.0 dataset over GDELT 2.0 and we manage to recompose
the text of approximately 95% of the articles covered in GDELT 3.0 on a daily basis. This
exercise focuses on news in English as we do not have the 100+ language translation feature
of GDELT 2.0.

As new technologies emerge, we cannot guarantee that the components of the pre-defined
taxonomies will adequately cover them, even if extensive studies can be found (IEA, 2023c).
To anticipate potential novelties, we could go upstream in the innovation cycle and enrich
our taxonomy with the information contained in patents (IEA, 2021). However, Artificial
Intelligence is known to have gone through “AI winters” caused in particular by overly
high expectations of expert systems (Hendler, 2008) and the underlying knowledge bases.
In Figure 12 in Appendix A.5, we present a knowledge graph describing the relationships
between minerals and clean techs, but also their interdependencies. We think that designing
a robust approach to capture novelty is a better option than just expanding our knowledge
base. Accordingly, in subsection 3.2, we present our novelty detection pipeline for clean
techs. A preliminary check consisted of a robustness test of our process. We focus on
the news of December 12th, 2022, when a scientific breakthrough in nuclear fusion6 was
widely reported. We run the novelty detection pipeline on both the raw GDELT 3.0 data
for this given date (Sample-GDELT-Fusion), and on an equivalent dataset (Sample-GDELT-
Bananas) where we replace all occurrences of nuclear fusion with the imaginary concept
of green bananas. The results are presented in Figure 3. Our novelty detection pipeline
was able to identify green bananas as a novel technology, demonstrating the robustness of
our approach.

6https://www.nationalgeographic.com/science/article/scientists-achieve-breakthrough-nuclear-fusion.
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Figure 3: Green bananas detection test on 12/12/2022

(a) raw GDELT 3.0 (b) green bananas in-lieu of nuclear fusion

Source: Authors’ calculations, Amundi Investment Institute.

3.2 Filter, retriever, and reader

To identify novelty in clean tech from global events through GDELT 3.0, we propose a
novelty detection pipeline. We have an upstream process with the filtering, retriever, and
reader steps shown in Figure 4. This section detects relevant news. This is followed by a
downstream process where we classify the detected clean tech news along large families of
clean techs. Our goal is to monitor the daily sentiment distribution for each clean tech class.
These distributions allow us to measure novelty for each clean tech class.

Figure 4: Upstream novelty detection pipeline: filter, retriever & reader
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Source: Amundi Investment Institute.

Given that, on the one hand, the ability of NER models to detect both critical minerals
and clean tech in texts is limited, as exhibited in Section 2, and that on the other hand, word
embedding approaches generally have longer execution times than lexical search methods
(Brunila & LaViolette, 2022), we decided to use the same question-answering approach as
described in Section 2. This decision also takes into account our non-infinite computational
resources. In the spirit of Syed et al. (2021), we build our question-answering detection
pipeline with Haystack.
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We receive news items daily in the N-gram format from GDELT V3 as described in
Figure 5. We apply a simple filter to the N-grams to retain only articles that contain at
least one of the following four words: “new”, “clean”, “technology” or “energy”. This simple
novelty filter for clean tech allows us to eliminate articles discussing unrelated topics and
thus to reconstruct a smaller number of targeted articles. We rebuild full articles from
the N-grams. This step is essential to provide consistent contextual text for transformer-
based models. In fact, as displayed in Table 5, the extracted context can be superior to
15 tokens (7 “pre” tokens + 1 NGram + 7 “post” tokens). In the pre-processing, we clean
up our articles by removing blank lines, redundant spaces, and special characters. Articles
are divided into sub-documents of no more than 200 words. Thus, each article consists of
several sub-documents of fixed size (200 words/tokens), which standardizes our subsequent
searches. Such a “chunk” approach also ensures that we do not exceed the input size that
the language models can accept.

Figure 5: GDELT’s Web News NGrams 3.0 Dataset

✓ News URL
✓ News Date
✓ Ngram from the text
✓ Language of the News
✓ Type of language for Ngram
✓ Decile cut of the news
✓ 7 tokens before “pre” the Ngram
✓ 7 tokens after “post” the Ngram

my tailor is rich but my english is poor while the sky is blue and the people are happy

In this example, poor is the Ngram.

Source: https://blog.gdeltproject.org/announcing-the-new-web-news-ngrams-3-0-dataset/,
Amundi Investment Institute.

The next step in our detection pipeline is retrieval, one of the main components of the
question-answering mechanism, which allows us to classify and select the potential doc-
uments that answer our question. Our query is simply “New clean energy tech ?”. To
perform this type of search, we have two options: either we use sparse methods based only
on the number of occurrences, or we use methods where we create embeddings of both the
query and the texts and calculate cosine similarity scores between the two vectors. The lat-
ter is more powerful and accurate because, unlike sparse methods, it takes the context into
account when vectorizing. This semantic search concept is described in the SentenceTrans-
formers Reimers and Gurevych (2019) documentation as a way “to improve search accuracy
by understanding the content of the search query”. Semantic search has many advantages,
but also some limitations, most notably the execution time since vectorizing the query and
the texts using a transformer-based model is time-consuming. Therefore, to be efficient in
terms of computation time, we use two layers of retrieval. In the first layer, we use “Okapi
BM25” after the preprocessing step to handle sparse retrieval. This battle-tested statistical
term-based model aims to provide accurate and relevant search results by ranking docu-
ments based on term frequency and document length (Robertson, Zaragoza, et al., 2009).
After calculating this score (within [0:1]) for all our document segments, we retain the most
relevant documents (with the BM25 score above 0.5). Our second layer is a dense retriever.
We compute the embeddings of all the retained news segments, as well as those from our
query, using the Facebook transformer-based model, because of its solid results on our IEA
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benchmark. We then compute the cosine similarity between the two vectors. We select the
most relevant scores (scores above the average of a representative sample).

Following the two retrieval layers, as illustrated in Figure 4, we apply the reader which is
the second core component of the question-answering process. The reader extracts potential
answers from the retrieved chunks of news, relying on the transformer-based architecture.
The reader assigns a score to the extracted answer based on its understanding of the text and
the query and provides the context in which the answer was derived. The model chosen for
the reader is roBERTa-base, as it provides the best compromise between extraction accuracy
and execution time (see Table 3 in Section 2).

At the end of the information extraction pipeline, we obtain the most relevant answers
to our query “New clean energy tech ?” along with the associated contexts. The next step
involves mapping these answers back to their corresponding segments within the document
and, then, to the entire article.

3.3 Sentiment scoring and classification

Following the upstream novelty detection pipeline (described in Figure 4), which identifies
new clean technologies and their context, we implement the downstream part of the pipeline,
presented in Figure 6 to evaluate sentiment.

Figure 6: Downstream novelty detection pipeline: sentiment and classification
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Clean tech
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Sentiment analysis

Transformer-based
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or TF-IDF

Monitors Novelty monitors

Source: Amundi Investment Institute.

As described in Van Dijk (1985), the headline and the first sentence of a news article can
be considered as indicators of the most important information (for unbiased news). Since
GDELT v3 decomposes article content into deciles, we pay special attention to the first
decile of the article. We assume that this segment generally contains the headline and the
lead statement of the news article. Therefore to construct the final sentiment score for a
GDELT v3 news article, we average the score of the first decile and the identified contexts
related to clean tech novelty. To decrease vulnerability to adversarial attacks (Leippold,
2023), we use sentiment classification based on transformer models that have been explicitly
fine-tuned to measure tonality.

As described by Potts et al. (2020), we can use several benchmark datasets mostly based
on posts from X - the platform formerly known as Twitter - or movie reviews to evaluate
sentiment classification models (Zimbra et al., 2018). Our case is specific as we extract
top components of news and contexts that significantly differ from the typical benchmark
phrases commonly used in sentiment analysis. Thereby, we chose to refine the evaluation of
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sentiment models and developed a custom benchmark dataset consisting of approximately
150 paragraphs and news headers discussing clean technologies: the Sample-CTD-TONE.
These elements were then manually assigned to a positive, negative, or neutral sentiment by
four investment professionals, based on their perception of the text. The final sentiment was
derived from the average of the scores given by all four professionals. To select our model,
we performed sentiment analysis on our dataset using three different classification models
and calculated their corresponding scores. The results are displayed in Table 6.

Table 6: Performance of sentiment analysis models on our benchmark dataset

Sentiment Analysis models Accuracy Precision (Avg) Recall (Avg) F1-score (Avg) Pos/Neg Gap
sentiment tweet roBERTa 0.63 0.66 0.61 0.63 2.7%
sentiment tweet xlm roBERTa 0.57 0.60 0.58 0.58 3.4%
sentiment finBERT 0.52 0.56 0.50 0.50 5.4%

Source: Authors’ calculations, Amundi Investment Institute.

These models show the probability that the news segment analyzed is either positive,
negative or neutral. We project these probabilities back into a sentiment score between -100
and 100 using the following methodology:

Score(N) =
100

3
((1 + 2pN∈C1)δ1 − (1 + 2pN∈C2)δ2 + pN∈C3sign(pN∈C1 − pN∈C2)δ3) (1)

Where :

• N : the news segment from GDELT v3 on which we are evaluating the sentiment score.

• C1, C2 and C3: represent the positive, negative and neutral class respectively.

• δi: is equal to 1 if class i has the highest probability and 0 otherwise.

We choose the fine-tuned roBERTa model for tweet sentiment analysis (Barbieri et al.,
2020) because of its superior performance on our test dataset. We assign a sentiment score to
each technology detected by our system. These results detail the names of the technologies,
the context in which they were extracted, the first tranche of the news article, and the
sentiment score associated with each technology in the news. We illustrate this step in
Figure 7.

Figure 7: Sentiment score calculation for Techi on a given news article
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We then create clean tech classes. Defining categories produces denser signals than an
approach per individual clean tech. We use the technology mapping provided in the IEA’s
clean energy technology guide (IEA, 2022a) as well as the energy models of the “Witness”
energy models (Gauthier et al., 2022) to create 16 clean tech categories. These categories are:
“solar”,“wind”, “hydropower”, “geothermal”, “nuclear”, “coal”, “natural gas”, “biomass”,
“hydrogen”, “ocean and tidal”, “electric vehicles”, “battery and storage”, “synthesis gas”,
“liquid fuels”, “electricity networks”, “carbon capture and storage CCS”. As we explicitly
intend to capture novelty, we add an “other” class to capture the emergence of a new
technology that would not fit into the existing categories.

Figure 8: Classification
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Note: ⋆: Gauthier et al. (2022), ⋆⋆:IEA (2022a)
Source: Amundi Investment Institute.

Once technologies are detected, we use two methods to classify them. The first approach
involves a multi-label classification of the context and name of the detected clean tech
across the 16 previously defined categories. We use Facebook’s bart-large-mnli zero-shot
classification model (Yin et al., 2019). We could have trained a Support Vector Machine type
supervised classification model (Joachims, 1998), but the lack of labeled and multi-labeled
data in our case study led us to choose zero-shot classification models. These models take
classes as input and compute the probability of belonging to each class without requiring any
specific training. For our second method, we follow the world similarity approach described
in Figure 8. Word similarity allows us to separately classify the well-identified technologies
into their respective categories. By combining both methods (with a union rather than an
intersect approach), we can increase the likelihood of accurately classifying new technologies
into their categories and reclassifying the known technologies into their relevant categories.

3.4 Monitoring and novelty detection

The final step in our exercise is to monitor clean technology developments and potential
innovation (or novelty) in the field. In the spirit of Blanqué et al. (2022), who measure
the Count-Weighted Tone for different narratives, we propose a similar metric but here
calculated on a narrower - detected - set of news, related to clean technologies. We therefore
introduce the Detected Count Weighted Tone(t) (DCWT(t)). This metric is the sentiment
τ(t) associated with the news articles identified by our novelty detection pipeline weighted
by the number of identified news articles v(t). An illustration of the DCWT for the “nuclear”
clean tech class, for the period October 2021 - April 2023, is provided in Figure 9.
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Figure 9: Detected Count-Weighted Tone - Nuclear

Source: Amundi Investment Institute.

Monitoring the DCWT for the different technologies could allow us to track pressures
in minerals markets. For instance, wind power (deriving from wind turbines) and the man-
ufacturing of electric vehicles (through permanent magnet motors for instance) are highly
dependent on REEs, such as neodymium.

On top of monitoring, our framework provides novelty detection. In order to robustly
identify local peaks in our Detected Count-Weighted Tone time series, we propose to use two
metrics. On the one hand, we simply measure whether the most recent DCWT(t) is higher
than the 15-day moving average and a multiple (namely 3) of the standard deviation. On
the other hand, we use the Kullback and Leibler (1951) (KL) divergence, which measures
the novelty of information for each previously defined clean tech class using the following
formula:

DKL(p||q) =
∑
bins

p(x) log

(
p(x)

q(x)

)
dx (2)

The KL divergence is a metric that reflects the dissimilarity between two probability dis-
tributions. For each date t, and for each clean tech class, we compute a distribution p(x)
corresponding to the distribution of DCWT for a 15-day window. The distribution q(x) is
p(x)t−1, or the 15-day distribution p(x) for the same clean tech class on the previous day.
To be comparable, the two density distributions are built on the same bin edges. The KL
divergence provides a metric per bin width and is, by definition, sensitive to zero values. We
then sum the KL divergences per bin.

The results for the nuclear clean tech class over our sample period are shown in Table
7. To distinguish the monitoring from the true innovation (novelty) we follow a two-step
approach. First and for robustness reasons, we assume that to qualify as a true spike, a date
must be identified as such by the two distance metrics we propose (3σ and KL). We then
retrieve the detected clean tech for the given date to check if it contains novelty. We consider
that the novelty in a clean tech class is viral if it was detected as a novelty on the spike
date and consecutive subsequent days. In our case, if the most viral clean tech is simply the
generic term “nuclear”, we disregard this spike since as it does not reflect true novelty. April
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Table 7: Novelty detection - candidate spikes - nuclear

Date 3σ KL Virality Novelty
2021-11-04 ✓ nuclear hydrogen ✓
2022-02-09 ✓ nuclear fusion technology ✓
2022-02-10 ✓ ✓ nuclear fusion ✓
2022-04-06 ✓ ✓ nuclear
2022-04-07 ✓ ✓ nuclear
2022-11-19 ✓ nuclear
2022-12-08 ✓ hydrogen and advanced nuclear ✓
2022-12-13 ✓ ✓ nuclear fusion ✓
2023-04-04 ✓ nuclear ✓

Source: Author’s calculations, Amundi Investment Institute.

2022 is a good example of false novelty detection, when a spike in the series was not associated
with a specific innovation, but with a generic term. Following this two-step process, two
episodes qualify as true novelty detection. The first episode occurred in early February 2022.
It is interesting to note that nuclear fusion technology had already been identified by the
KL divergence the day before. In fact, the first mention of this episode can be traced back
to the 5th of February from our pipeline, but it did not turn into a jump in our monitoring,
because the distance was too weak compared to historical values. This episode is certainly an
echo of the progress made by the Joint European Torus (JET) laboratory on nuclear fusion,
doubling the amount of energy produced from its 1997’s record7. From our monitoring
pipeline, we witnessed that nuclear fusion technology was prevalent for more than 10 days
after this event. The second episode took place in December 2022, when the US Department
of Energy announced another major breakthrough in fusion technology. Scientists at the
Lawrence Livermore National Laboratory (LLNL) have succeeded in producing more energy
from fusion reactions than was needed to start the process8. The impact of this event was
greater, propelling nuclear fusion as the top viral technology for the next 19 days.

Compared to our previous analysis (Blanqué et al., 2022; Cherief et al., 2022), where
we quantified the prominence of narratives and topics based solely on their volume and
sentiment within the full spectrum of news, in this paper we disregard such “mass effect”
by directly filtering the sources used upstream in our novelty detection pipeline. In fact,
such a process reveals that clean tech novelty news does not yet attract significant virality
within the mainstream media. We believe this may represent a compelling opportunity for
investors in the short term, before it cascades into generalist news. This novelty detection
building block provides insightful information on innovative technologies, in addition to our
framework that monitor more general attention to clean tech developments.

4 Conclusion

Monitoring the development of clean technologies requires technical knowledge in many do-
mains, such as electrical, electronic and mechanical engineering, signal processing, heat and
fluid flow processing, robotics or control and systems engineering. The mainstream financial
industry is typically not equipped with such expertise. In this paper, we test whether AI,
and more specifically LLMs, can provide investors with insights into the transformation of
this industry. Our first round of analysis focuses on benchmarking our information extrac-

7https://ccfe.ukaea.uk/fusion-energy-record-demonstrates-powerplant-future/.
8https://lasers.llnl.gov/news/nif-fusion-ignition-shot-hailed-as-historic-scientific-feat.
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tion pipeline based on question-answering. We emphasize how NER models could apply
to our research question if trained on the appropriate documents. The context extraction
feature of the question-answering task allows us to set up a word similarity check. This
purely syntactic layer - without complex LLMs involved - acts as a very effective “safety
net” for the output of the alBERT model.The pipelines we propose allow us to efficiently
replicate specific clean tech dependencies on minerals, as outlined by the IEA. We then
test the accuracy of our framework in a two-step novelty identification exercise based on
the GDELT dataset. Our application to the nuclear technology showcases the detection of
major innovations in the field in 2022 - namely “nuclear fusion” - following major scientific
breakthroughs. It also highlights the ability to track more general developments, related to
the broader “nuclear” dimension or other clean tech, and therefore their demand for min-
erals. Our approach has proven to be very efficient in capturing niche topics from a mass
media dataset such as GDELT, and transforming them into an insightful signal. Finally,
the process we propose for clean technologies could be applied to other topics or industries.
More generally, tools that synthesize expert knowledge and identify novelties within a given
domain could be very valuable for both the financial industry and policymakers. Another
direction could be to adapt our framework to gather information from a large number of
documents, which could be very useful for analysts, for example.
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A Appendix

A.1 Retriever models

Table 8: Performance of information extraction with different retriever models

Retriever Model Precision Recall F1-score Execution time of the model
Facebook⋆ 0.76 0.80 0.78 98 minutes and 27 seconds
mpnet⋆⋆ 0.59 0.95 0.73 98 minutes and 16 seconds
sentence transformers⋆⋆⋆ 0.65 0.85 0.74 113 minutes and 47 seconds

Source: Author’s calculations, Amundi Investment Institute.

Note: ⋆: query embedding model=“Facebook/dpr-question encoder-single-nq-base”,
passage embedding model=“Facebook/dpr-ctx encoder-single-nq-base”, ⋆⋆: multi-qa-mpnet-base-dot-v1 ,
⋆⋆⋆: sentence-transformers/LaBSE. The F1-score is the harmonic mean of Precision and Recall with
Precision and Recall defined as :

Precision =
TruePositive

TruePositive+ False Positive
, Recall =

TruePositive

TruePositive+ FalseNegative

A.2 Question-Answering

Figure 10: Answer extraction

Document
fraction

Question

Start & End logits
dim = S

Padding and
special tokens

Valid answer

No answer

SxD matrix

Source: https://www.deepset.ai/blog/modern-question-answering-systems-explained, Amundi Investment
Institute.
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A.3 IEA history, critical minerals and materials

The IEA was founded in 1974 as an autonomous agency within the framework of the OECD
as a means for “industrialised” countries to organize energy security in the context of the
emerging political power of Middle Eastern oil producers. Membership to IEA is condi-
tioned to membership to the OECD. In the narration of the first twenty years of the history
of IEA, IEA and Scott (2004) also indicates the collaboration with non-member countries
(NMC). This collaboration evolved in 2015 ahead of the COP21 together with the awareness
of the “close relationship between energy and climate change” (Moniz, 2015). In the new
reality of contributing to the fight against climate change, the IEA affirmed its modernisa-
tion objectives with three pillars: “enhanced engagement with major emerging economies,
strengthened and broadened commitment to energy security, and greater focus on clean en-
ergy technology, including energy efficiency”. To highlight this change relative to NMC, the
IEA created the Association framework. A. At the time of writing this paper9, the IEA has
31 Member countries, 4 Accession countries and 11 Association countries as illustrated in
Figure 11.

Figure 11: IEA countries

Member countries
Accession countries
Association countries

Source: IEA, https://gitlab.com/conradolandia/WorldMap-Tikz, Amundi Institute.

9retrieved from https://www.iea.org/about/membership on June 14th, 2023.
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A.4 Critical minerals and materials

Table 9: Critical Raw Materials and Minerals

Critical
Raw Materials
for the EU

Critical Minerals
for the US

Group desc Symbol
Atomic number
(Comment)

Aluminium/Bauxite ✓ ✓ Other non-ferrous metals Al 13
Antimony ✓ ✓ Other non-ferrous metals Sb 51
Arsenic ✓ ✓ Other non-ferrous metals As 33
Baryte ✓ ✓ Industrial and construction minerals BaSO4 - (Barium sulfate)
Beryllium ✓ ✓ Other non-ferrous metals Be 4
Bismuth ✓ ✓ Other non-ferrous metals Bi 83
Boron/Borate ✓ Industrial and construction minerals B 5
Cerium ✓ ✓ Light Rare Earth Elements Ce 58
Cesium ✓ Cs 55
Chromium ✓ Iron and ferro-alloy metals Cr 24
Cobalt ✓ ✓ Iron and ferro-alloy metals Co 27

Coking Coal ✓ Bio and other materials
Bituminous rank
(C content in 76-86% range)

-

Copper (✓)
Strategic (not Critical) Raw Materials
Other non-ferrous metals

Cu 29

Dysprosium ✓ ✓ Heavy Rare Earth Elements Dy 66
Erbium ✓ ✓ Heavy Rare Earth Elements Er 68
Europium ✓ ✓ Heavy Rare Earth Elements Eu 63

Feldspar ✓ Industrial and construction minerals
Albite: (Na2O, Al2O3, 6SiO2)
Microcline: (K2O, Al2O3, 6SiO2)

- (Solid solution)

Fluorspar ✓ ✓ Industrial and construction minerals CaF2 -
Gadolinium ✓ ✓ Heavy Rare Earth Elements Gd 64
Gallium ✓ ✓ Other non-ferrous metals Ga 31
Germanium ✓ ✓ Other non-ferrous metals Ge 32
Graphite (Natural) ✓ ✓ Industrial and construction minerals C 6
Hafnium ✓ ✓ Other non-ferrous metals Hf 72
Helium ✓ Bio and other materials He 2
Holmium ✓ ✓ Heavy Rare Earth Elements Ho 67
Indium ✓ Other non-ferrous metals In 49
Iridium ✓ ✓ Platinum Group Metals Ir 77
Lanthanum ✓ ✓ Light Rare Earth Elements La 57
Lithium ✓ ✓ Other non-ferrous metals Li 3
Lutetium ✓ ✓ Heavy Rare Earth Elements Lu 71
Magnesium ✓ ✓ Other non-ferrous metals Mg 12
Manganese ✓ ✓ Iron and ferro-alloy metals Mn 25
Neodymium ✓ ✓ Light Rare Earth Elements Nd 60

Nickel (✓) ✓
Iron and ferro-alloy metals
Strategic (not Critical) Raw Materials

Ni 28

Niobium ✓ ✓ Iron and ferro-alloy metals Nb 41
Palladium ✓ ✓ Platinum Group Metals Pd 46

Phosphate Rock ✓ Industrial and construction minerals
Ca10(PO4)6(X)2
where X is Fâ, OHâ or Clâ

-

Phosphorus ✓ Industrial and construction minerals P 15
Platinum ✓ ✓ Platinum Group Metals Pt 78
Praseodymium ✓ ✓ Light Rare Earth Elements Pr 59
Rhodium ✓ ✓ Platinum Group Metals Rh 45
Rubidium ✓ Rb 37
Ruthenium ✓ ✓ Platinum Group Metals Ru 44
Samarium ✓ ✓ Light Rare Earth Elements Sm 62
Scandium ✓ ✓ not considered REE Sc 21
Silicon (metal) ✓ Other non-ferrous metals Si 14
Strontium ✓ Other non-ferrous metals Sr 38
Tantalum ✓ ✓ Iron and ferro-alloy metals Ta 73
Tellurium ✓ Other non-ferrous metals Te 52
Terbium ✓ ✓ Heavy Rare Earth Elements Tb 65
Thulium ✓ ✓ Heavy Rare Earth Elements Tm 69
Tin ✓ Other non-ferrous metals Sn 50
Titanium ✓ ✓ Iron and ferro-alloy metals Ti 22
Tungsten ✓ ✓ Iron and ferro-alloy metals W 74
Vanadium ✓ ✓ Iron and ferro-alloy metals V 23
Ytterbium ✓ ✓ Heavy Rare Earth Elements Yb 70
Yttrium ✓ ✓ Heavy Rare Earth Elements Y 39
Zinc ✓ Other non-ferrous metals Zn 30
Zirconium ✓ Other non-ferrous metals Zr 40

Source: European Commission (2023), US Senate Committee on Energy and Natural Ressources (2021),
Bulatovic (2015), Samreen and Kausar (2019), https://energyeducation.ca/encyclopedia/Bituminous coal.
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A.5 Knowledge graph: Clean tech classes vs critical raw materials

In this subsection, following the same structure as Table 2, we construct a knowledge graph
of clean technologies and their raw material requirements, with a focus on critical materials.
We constructed our knowledge graph by first taking the list of clean technologies from
Witness. This list has already been manually classified into our own categories of clean
technologies. There are clean technologies that depend on other clean technologies. To
visualize this interdependence in the clean tech landscape, we reapplied our discovery method
and formulated questions to confront these technologies with each other.

Figure 12: Minerals to clean tech

Cerium

Cesium

Chromium

Indium

Iridium

Tin

Zinc

Zirconium
aluminium

antimony

arsenic

cobalt

cokingcoal

copper

europium
fluorspar

gallium
germanium

graphite

hafnium

helium

lithium

magnesium

manganese
neodymium

nickel

palladium

phosphaterock

phosphorus

platinum

ruthenium

scandium

silicon

tantalum

titanium

yttrium

Solar (Primary)
Wind (Primary)

Hydropower (Primary)
Geothermal (Primary)

Nuclear (Primary)

Coal (Primary)

Natural gas (Primary)

Biomass (Primary)

Hydrogen (Primary)

Ocean and tidal (Primary)

Electric Vehicles (Primary)
Battery and storage (Primary)

Synthesis gas (Primary)

Liquid fuels (Primary)

Electricity Networks (Primary)

Carbon capture and storage CCS (Primary)

Solar (Secondary)

Wind (Secondary)

Hydropower (Secondary)

Geothermal (Secondary)

Nuclear (Secondary)

Coal (Secondary)

Natural gas (Secondary)

Biomass (Secondary)

Hydrogen (Secondary)

Ocean and tidal (Secondary)

Electric Vehicles (Secondary)

Battery and storage (Secondary)

Synthesis gas (Secondary)

Liquid fuels (Secondary)

Electricity Networks (Secondary)

Carbon capture and storage CCS (Secondary)

Sankey Diagram

Source: GDELT, Amundi Investment Institute.

31



Chief Editor

Monica DEFEND
Head of Amundi Investment Institute

Editors

Marie BRIÈRE
Head of Investors’ Intelligence & Academic Partnership

Thierry RONCALLI
Head of Quant Portfolio Strategy



Find out more about 
Amundi Investment Institute Publications

research-center.amundi.com

Important Information

This document is solely for informational purposes.

This document does not constitute an offer to sell, a solicitation of an offer to buy, or a recommendation of any security 
or any other product or service. Any securities, products, or services referenced may not be registered for sale with the 
relevant authority in your jurisdiction and may not be regulated or supervised by any governmental or similar authority in 
your jurisdiction.

Any information contained in this document may only be used for your internal use, may not be reproduced or redisseminated 
in any form and may not be used as a basis for or a component of any financial instruments or products or indices.

Furthermore, nothing in this document is intended to provide tax, legal, or investment advice.

Unless otherwise stated, all information contained in this document is from Amundi Asset Management SAS. Diversification 
does not guarantee a profit or protect against a loss. This document is provided on an “as is” basis and the user of this 
information assumes the entire risk of any use made of this information. Historical data and analysis should not be taken 
as an indication or guarantee of any future performance analysis, forecast or prediction. The views expressed regarding 
market and economic trends are those of the author and not necessarily Amundi Asset Management SAS and are subject to 
change at any time based on market and other conditions, and there can be no assurance that countries, markets or sectors 
will perform as expected. These views should not be relied upon as investment advice, a security recommendation, or as an 
indication of trading for any Amundi product. Investment involves risks, including market, political, liquidity and currency 
risks.

Furthermore, in no event shall any person involved in the production of this document have any liability for any direct, 
indirect, special, incidental, punitive, consequential (including, without limitation, lost profits) or any other damages.

Date of first use:  13 December 2023.

Document issued by Amundi Asset Management, “société par actions simplifiée”- SAS with a capital of €1,143,615,555 - 
Portfolio manager regulated by the AMF under number GP04000036 – Head office: 91-93 boulevard Pasteur – 75015 Paris 
– France – 437 574 452 RCS Paris – www.amundi.com

Photo credit: iStock by Getty Images - monsitj

Working Paper
December 2023


	Template Working Paper.pdf
	Clean_tech_monitor_Part_1_WP.pdf
	Introduction
	Identifying critical mineral needs for clean techs in the era of LLMs
	Named-entity recognition
	Question-answering

	Monitoring of novelty in clean tech
	Event database
	Filter, retriever, and reader
	Sentiment scoring and classification
	Monitoring and novelty detection

	Conclusion
	Appendix
	Retriever models
	Question-Answering
	IEA history, critical minerals and materials
	Critical minerals and materials
	Knowledge graph: Clean tech classes vs critical raw materials



