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The clean-tech industry has experienced remarkable growth, 
bringing forth groundbreaking technologies and sustainable 
solutions. This research article delves into the examination 
of factors that shape the evaluation of net-zero assets in 
various sectors and themes. Through observational analysis 
utilizing key financial indicators, it becomes apparent that 
companies exclusively involved in the clean-tech industry, 
known as pure players, generally outperform those that 
have less focus in this area, referred to as non-pure players 
in terms of financial performance [50]. The transition 
towards a sustainable energy system is greatly facilitated 
by comprehensive policies and regulations. For instance, in 
the United States, the Inflation Reduction Act (IRA) and in 
Europe, the Net-Zero Industry Act (NZIA) play significant 
roles in shaping the dynamics of asset valuation. These 
regulatory frameworks contribute to the valuation dynamics 
and help drive the growth of clean-tech investments [26]. 
Additionally, the physical and transitional climate risk 
exert a substantial influence on the valuation of net-zero 
assets. To gain a deeper understanding of the drivers behind 
clean technologies and their causal relationships, our study 
employs a specific branch of Bayesian probabilistic approach 
introduced by Judea Pearl, the Ladder of Causation, explained 
in The Book of Why. This approach enables us to model 
the dependency structure among these influential factors 
and evaluate their direct and indirect impacts on cleantech 
stock returns by manipulating the explanatory variables. 
By creating coherent scenarios through interventions on 
these variables, we can address essential what-if questions, 
aiding investors and policymakers in making more informed
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decisions in this ever-evolving and dynamic industry. Within 
the framework of Bayesian analysis, the do-calculus and the 
counterfactual concept play a pivotal role and make it possible 
to calculate the probability distribution of a random variable 
under a hypothetical scenario on the explanatory variables 
different from the observed data. We not only explore the 
direct effects of interventions on explanatory variables but 
also reveal sensitivity groups among clean-tech companies. 
These sensitivity groups consist of companies that exhibit 
a similar sensitivity to a specific causal factor. This insight 
is valuable for pinpointing which clean-tech subsectors or 
companies are particularly affected by certain changes or 
interventions, offering a more detailed understanding of the 
industry’s dynamics.
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1 Introduction

In recent years, the global community has witnessed an increasing sense of urgency to address
the environmental challenges posed by climate change and resource depletion. This height-
ened awareness has led to a growing emphasis on the development and adoption of clean
technologies, commonly referred to as clean-techs. The clean-tech industry encompasses
a diverse range of technologies, processes, and services aimed at mitigating environmental
impact while promoting sustainable economic growth.

Clean-tech represents a paradigm shift in the way industries and societies operate by
incorporating innovative solutions that reduce carbon emissions, optimize resource utiliza-
tion, and minimize waste generation. By leveraging renewable energy sources, implementing
energy-efficient systems, and adopting sustainable practices, the clean-tech industry seeks
to transition societies towards a low-carbon and sustainable future. The urgency to ad-
dress climate change has been underpinned by mounting scientific evidence highlighting the
detrimental consequences of greenhouse gas emissions on global temperatures, ecosystems,
and human health. Governments, corporations, and individuals are recognizing the need to
reduce their carbon footprint and embrace cleaner alternatives. This collective push for sus-
tainability has fueled the rapid growth of the clean-tech industry, which encompasses sectors
such as as solar power, green hydrogen, electric vehicles, water treatment, and sustainable
agriculture.

As the demand for clean and renewable energy solutions intensifies, understanding the
intricate dynamics of the clean-tech equities market becomes imperative for both investors
and policymakers. This paper aims to unravel the causal relationships that underlie the val-
uation of net-zero assets in the clean-tech sector, employing a rigorous Bayesian framework
rooted by Judea Pearl [32].

In the context of clean-tech equities, causality plays a pivotal role in decoding the intri-
cate web of relationships among various macro-economic factors influencing stock returns.
Traditional financial models often fall short in capturing the nuanced cause-and-effect rela-
tionships that define the clean-tech sector’s performance. Judea Pearl’s research provides a
theoretical foundation, allowing us to move beyond correlation and explore the underlying
causal mechanisms. Central to our investigation is the application of Bayesian analysis,
which not only accommodates uncertainty inherent in financial markets but also enables
the modeling of causal relationships through directed acyclic graphs (DAGs). Bayesian net-
works provide a powerful tool to represent and analyze the dependencies among variables.
One of the key challenges in evaluating the clean-tech sector lies in understanding the im-
pact of interventions – policy changes, technological advancements, or market shifts – on
stock returns. The do-calculus in Bayesian analysis facilitates this exploration by allowing
us to estimate the effects of interventions on our observed variables. This is particularly
crucial in an industry where external factors, such as regulatory changes and technological
breakthroughs, can have profound effects on asset valuations. Through the counterfactual
concept, we extend our analysis beyond observed data, answering essential what-if questions.
What if a specific policy had not been implemented? What if a technological innovation
had not occurred ? By manipulating explanatory variables, we create hypothetical scenar-
ios, enabling us to assess the potential impacts of different trajectories on clean-tech stock
returns ([36]).

In section 2, we commence with a comprehensive review of the clean-tech industry, explor-
ing macroeconomic drivers and emphasizing the concept of purity in clean-tech companies.
Following this, in section 3, we introduce the theoretical framework, leveraging Bayesian net-
works, DAGs, and Pearl’s causality concepts such as do-calculus. This groundwork sets the
stage for our empirical investigation into sector-based clean-tech equities. Section 4 outlines

7



Causality Approach Applied to Clean-Tech Equities

our empirical approach and details the case study on sector-based clean-tech equities. We
discuss the causal structure revealed through Bayesian analysis, the impact of interventions
on key explanatory variables, and measures such as the average treatment effect. Finally, in
section 5, we draw conclusions from our findings.

Through this research, we contribute to the growing body of knowledge surrounding
clean-tech equities, providing a robust analytical framework that transcends traditional fi-
nancial models. This research article enables investors and readers to benefit from both
a thorough analysis of the clean-tech sector and access to a comprehensive methodology
involving innovative causal tools. Designed to be applied to specific or general case studies,
this methodology offers a practical approach to constructing evolution scenarios for various
asset types, extending beyond the scope of clean-techs.
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2 Clean-tech industry review

2.1 Valuation challenges in the clean-Tech industry

The clean-Tech industry serves as a dynamic force driving innovation and sustainability
across diverse sectors. In the global effort to combat climate change, clean-techs play a
pivotal role in promoting environmental responsibility and fostering economic growth. Op-
erating within a matrix of sectors, each contributing uniquely to the overarching goal of
sustainability, clean-techs span various domains. The hydrogen/chemicals sector explores
innovative approaches to clean energy production, electric vehicles (EV) and batteries rev-
olutionize transportation, Agribusiness focuses on sustainable farming practices, and envi-
ronmental initiatives address pollution and conservation. Additionally, the energy sector
explores renewable sources, and financial services dedicated to supporting clean-tech initia-
tives complete the industry’s multifaceted nature.

In the United States, the IRA stands as a legislative milestone influencing the trajectory
of clean-tech companies. The IRA incentivizes financial investment in sustainable tech-
nologies and introduces regulatory frameworks to ensure compliance with environmental
standards. Simultaneously, Europe embraces the NZIA, reinforcing the continent’s commit-
ment to achieving carbon neutrality. These legislative measures provide a guiding framework
for clean-tech companies, shaping their strategies and influencing their valuation.

The passage of the IRA in late 2022 has garnered significant attention, signaling wide-
ranging implications across various sectors. The IRA’s impact is anticipated to be substan-
tial, with potential tailwinds driving over 50% incremental earnings upside. This positive
effect could materialize as early as 2024, prominently reflecting in Profit and Loss statements
across multiple companies. Figure 1 displays some clean-tech companies with their sectors
and investments they plan to make to meet IRA criteria. This demonstrates the influence of
government policies on the development of clean-techs, encouraging increased investment in
necessary technologies. Specifically, the IRA presents a significant boon to the US solar and
energy storage sector. The IRA extends the solar investment tax credit from 26% to 30% and
ensures the continuation of these credits for at least a decade. This development is poised
to fuel a decade-long runway for stable installation growth in residential, commercial, and
utility-scale markets. Projections indicate robust growth of +18% compound annual growth
rate (CAGR) in US solar installations from 2022 to 2026 and +16% CAGR through 2040 in
US energy storage installations. Moreover, the IRA introduces generous solar manufactur-
ing credits, offering a significant advantage to suppliers engaged in domestic manufacturing.
Beyond demand tailwinds, these manufacturing credits could incentivize an increase in do-
mestic manufacturing capacity, providing meaningful P&L benefits to manufacturers. It is
estimated that manufacturing credits may account for anywhere between 10%-40% of the
average selling price (ASP) of solar components. Illustrative analyses suggest that buy-rated
solar stocks could potentially see upside of 60%-280% from current levels (Figure 2).

2.2 Pure-player thematics

The term pure-players designates companies exclusively dedicated to the development, im-
plementation, and advancement of clean technologies, operating with an unwavering com-
mitment to environmental sustainability. Purity in this context signifies a comprehensive
dedication to clean-tech endeavors, encompassing a spectrum of attributes that distinguish
these entities within the clean-tech ecosystem.

In our paper, our focus is on conducting a causal analysis exclusively on pure-player clean-
techs with sufficient market capitalization to meet the IRA criteria. Here, we delve into the
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Figure 1: Commentary of clean-techs companies on their leverage to IRA incentives

Source : Data compiled by Goldman Sachs Global Investment Research.

Figure 2: Market performance of solar stocks

Source : Factset.

correlation between thematic purity in stocks and their financial performance. The premium
for thematically pure stocks is predominantly driven by a growth phenomenon. The analysis
of fundamentals (Figure 3) indicates that highly valued pure stocks outperform their non-
pure counterparts in terms of sales, earnings per share (EPS) and CAGRs, suggesting higher
long-term revenue growth. Ongoing debates exist about whether this growth is organic or
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through acquisition. Margin analysis shows little evidence of a clear divide between pure
and impure stocks, while return on equity (ROE) exhibits a fading pattern over a decade for
both categories. Figure 3 illustrates that fundamentals such as growth, margin, and ROE
are higher for pure-player clean-techs than for non-pure-players.

Figure 3: Fundamentals of pure vs non-pure stocks

Source : Thomson, Morgan Stanley Research.

2.3 Key drivers of clean-tech asset valuation

In our paper, we aim to construct evolution scenarios for clean-tech stocks by studying
the causal effects of explanatory macroeconomic variables. We conducted sector-specific
research (solar, agribusiness, EV/batteries, etc.) to identify the macroeconomic variables
influencing the value of clean-techs. After thorough investigation, we identified nine key
factors for causal analysis:

• Oil price: The cost of oil has a direct impact on clean-techs, especially in sectors like
renewable energy and electric vehicles, as it influences production costs and market
competitiveness.

• US interest rate: Changes in US interest rates affect the financing costs for clean-
tech projects, influencing investment decisions and overall market dynamics.

• EU interest rate: Similar to the US, European interest rates play a role in shaping
the financial landscape for clean-tech companies, impacting their valuation.

• Inflation: Inflation rates influence operational costs and pricing strategies.

• Carbon price: The price of carbon credits directly affects clean-tech companies
involved in carbon trading and offsets, making it a crucial factor in their valuation.

• Gas price: Clean-techs, particularly those in the energy sector, are influenced by the
cost of gas, as it can impact their competitiveness in the market.

• Nickel price: Given the significance of nickel in electric vehicle batteries, its price
has a direct impact on the production costs and profitability of EV-focused clean-tech
companies.
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• Technology companies stocks index: As discussed in [8], the impact of both phys-
ical and transition climate risk on the short-term and long-term relationship between
clean-tech stocks and technology stocks holds potential significance for investment de-
cisions. The observed co-movement between clean energy and technology stocks, par-
ticularly the positive association with transition risk shocks, suggests a convergence of
these sectors over the long run.

• Semiconductor stocks index: With increasing integration of semiconductors in
clean-tech products, the semiconductor stocks index provides insights into technolog-
ical trends and potential supply chain challenges impacting clean-tech companies.
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3 Theoretical framework

Understanding and identifying cause and effect relationships between variables or events
is a major goal of hard and social sciences. We describe some methodologies suitable for
extracting such relationships from raw data, despite the lack of consensus within the scientific
community.

The primary objective of this paper is to construct scenarios for evaluating net-zero
assets, specifically clean-tech stocks. To achieve this, we started by identifying the macroe-
conomic factors driving the values of these stocks. We’ll need then to quantify the impact
of disturbances in these factors on the value of a clean-tech stock. The causal framework of
Pearl will enable to generate coherent scenarios and address what-if questions. For instance,
we may explore what would have happened to the value (V ) of the clean-tech company A
if the price of oil had increased by 10% within one year. Or, having observed a value V
equal to v when the oil price P was equal to x, what would have happened to V if I had
intervened to set P to the value x′?. We will delve into the concept of intervention, where
altering a variable with a deterministic value changes the entire probabilistic model, making
it possible to perform what-if inference. To assess these impacts effectively, we will develop
various metrics, each one based on ordered moments of the new, post-intervention probabil-
ity distribution. One intriguing concept is the creation of sensitivity groups for clean-tech
stocks, where stocks are grouped based on the factor to which they are most sensitive. Sen-
sitivity, in this context, relates to causality, where we identify the factor with the strongest
causality – meaning a disturbance in this factor would have the most significant impact on
the value of interest. Once these sensitivity groups are defined, the analysis of clean-tech
stock evolution would then translate into the analysis of the evolution of the factor to which
they are most sensitive. To embark on this extensive process, it is necessary to delve into
the theoretical framework of graphical models. Graphical models serve as tools provid-
ing a theoretical foundation for studying causal hypotheses, non-trivial causal phenomena,
and paradoxes. Judea Pearl’s causal analysis introduces a set of technical rules, such as
the do-calculus, to facilitate the identification of causal effects in non-parametric models.
Regardless of the subject of study, as long as we explore how external factors influence a
variable of interest and how disruptions occur, causal graphs should emerge as a fundamen-
tal tool in our consideration. Causal graphs are special cases of classical random graphs, as
they are induced by mathematical models presented as a set of ordered equations known as
structural equation models (SEM). These models are particularly powerful when the causal
structure is identifiable, enabling the estimation of direct and indirect causal effects, which
play a pivotal role in generating coherent scenarios. Subsequently, calculation metrics are
defined to quantitatively assess these disturbances.

In the subsequent sections, we will find out that the causal graph corresponds precisely
to a DAG. Consequently, the structural causal model linked with the causal graph aligns
perfectly with a Bayesian network (or belief network). This alignment stems from an intu-
itive understanding that, when exploring causality within graphical models, we are naturally
drawn to the use of DAGs (and thus Bayesian networks). This preference is supported by a
straightforward mathematical argument stating that the joint distribution of the model vari-
ables equals the product of the conditional probabilities of each variable given its parents.
This inherent directionality from effect to cause makes DAGs the most efficient representa-
tion for causal models.

Bayesian networks inherently adopt the structure of DAGs. Within these graphs, a topo-
logical order of variables is established, where certain variables act as parent nodes, linked by
interdependence connections to a specific variable of interest, which plays the role of a child
node. The set of edges converging on a specific variable embodies a function, whether linear
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or nonlinear, where each variable serves as a function of its parent variables. These functions
collectively constitute structural equation models, quantifying the causal relationships from
parent variables to their child counterparts. In cases where these functions are linear, they
give rise to structural coefficients, intricately connected to both direct and indirect causal
effects. DAGs serve as tools for uncovering causal links between various variables in the
model. This prompts the question of how to define the graph’s structure and determine the
interdependence links that best reflect reality. While experts can establish causal links man-
ually, we aspire to automate this process using available data. Quality data is essential for
this endeavor, as data quality is considered as divine in mathematical modeling, much like
the Higgs boson in modern physics. To achieve this, we define various causality algorithms,
grouped into four families: constraint-based, score-based, functional-based, and geometric-
based algorithms. These algorithms, each following a specific approach, help establish the
optimal graph structure and the most probable causal links. It’s vital to emphasize that
using causality algorithms in isolation, without expert guidance, may not yield sufficiently
effective results and might even generate counter-intuitive or erroneous links. For instance, a
causality algorithm may, depending on data quality, establish a link like rain causes clouds,
which is not particularly relevant. Thus, expert intervention is crucial, even if it involves
constraining the algorithm within an intuitive and realistic logic.

Once the graph structures are established, our next step involves estimating causal func-
tions. These functions include coefficients, especially in the context of linear functions, which
we’ll predominantly employ throughout this article. These coefficients act as the connecting
threads on the edges of the graph, linking each child variable (the effect) to its parent vari-
ables (the causes). To undertake this estimation, we introduce a crucial mathematical tool
developed by Judea Pearl known as the do-calculus [32]. The do() operator plays a pivotal
role in expressing causal effects as theoretical formulas, offering a detailed understanding of
how changes in one variable translate into changes in another. The do-calculus is inherently
tied to the concept of intervention. The do() operator serves as a powerful notation within
the do-calculus, signifying a deliberate intervention or manipulation of a specific variable to
observe its impact on the overall causal structure. The estimation of these causal effects (or
structural coefficients in the case of linear functions) from data becomes feasible when the
model adheres to certain identifiability criteria. These criteria are intricately linked to the
structure and interdependence links within the graph. Identifiable models pave the way for
estimating these coefficients through partial regressions.

Finally, we will introduce a set of metrics designed to address counterfactual queries.
These queries, often framed as what-if causal questions, arise from hypothetical scenarios.
The metrics we present are essentially ordered moments of counterfactual variables – that
is, variables derived after intervening on the causal model. At the core of these interven-
tions lies the do() operator. One key concept that emerges from such interventions is the
notion of post-intervention probability distribution. When we apply the do() operator to a
specific variable, we essentially ”fix” or set that variable to a particular value, simulating
a controlled experiment where that variable is deterministic. The post-intervention prob-
ability distribution then represents the distribution of the variables in the system, given
this controlled intervention. It provides insights into how the system’s behavior changes in
response to a deliberate alteration of a particular variable, offering a valuable perspective
on causal relationships and their implications. In essence, the post-intervention probability
distribution allows us to quantify the impact of interventions on the overall causal structure,
enabling a more comprehensive understanding of causal effects in hypothetical scenarios.

In summary, our approach follows the following roadmap:

1. We begin with a comprehensive exploration of the foundational concepts underlying
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Bayesian networks and DAGs, establishing the theoretical groundwork.

2. Next, we introduce a diverse range of causality algorithms–a crucial step to optimize
the structure of our causal model, ensuring its accuracy and effectiveness.

3. Subsequently, we delve into structural equation models, as well as the theoretical
framework behind the do-calculus, introducing the concept of causal effects and inter-
vention.

4. Then, we explain the criteria for identifying coefficients and the methods for estimating
them.

5. Finally, we focus on creating sensitivity metrics to quantify variable disturbances, along
with addressing what-if questions to build coherent scenarios. While the theoretical
part may be extensive, it is vital for a complete understanding of our approach.

Figure 4: Overview of the methodology

Data
• Domain knowledge, Weekly data, Europe and USA

• Indexes, Country/Industry, Macroeconomic drivers

Causal
discovery

• Causal discovery algorithms

– Constraint-based methods (PC, FCI,..)

– Score-based methods (GES, NTE,..)

– Functional model-based methods (Granger causality, VAR, LinGAM..)

– Geometric-based methods (CCM,..)

• Integrate expert knowledge

SEM

• Structural causal model

– Xi = fi(Pa(Xi), Ui) (Linear or non-linear function)

– Induces a DAG

• Causal effects estimation

– Identifiability criteria

Inter-
ventions

• Do-calculus

– Estimate interventional distributions from observations

– Answering what-if questions

• Sensitivity metrics

– Variables type: Instrumental, treatment,...

– ATE, CATE,...

3.1 Bayesian networks and directed acyclic graphs

In this subsection, we embark on a rigorous exploration of causality modeling, grounded
in Bayesian principles and an array of probabilistic graphical models. Our objective is to
provide a systematic and analytical approach to understanding the complexities of causal
inference and modeling. At the core of causality modeling lies DAGs, which serve as a graph-
ical framework for representing causal relationships. These acyclic graphs offer a formal and
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expressive means to represent the directional and causal connections between variables, fa-
cilitating a clear visualization of causal structures. Within this framework, we delve into the
notion of conditional dependencies within a graph, a fundamental concept that allows us to
uncover indirect causal effects and identify conditional independence relationships. Bayesian
belief networks, firmly rooted in probability theory, provide a formal foundation for encoding
and analyzing these dependencies, enabling the construction of structured causal represen-
tations. Structural Causal Models (SCMs) further enhance our ability to mathematically
model causality. By specifying structural equations governing variables and their interplay,
SCMs enable us to simulate the outcomes of interventions and rigorously estimate causal
effects within a system.

Let us begin by defining the fundamental components of graphical models:

1. Variables (X): In a graphical model, we work with a set of random variables denoted
as X. These variables can represent various observable or latent factors within a
system.

2. Nodes and Edges: Graphical models are composed of nodes and edges. Each node
in the graph corresponds to a random variable, while the edges represent probabilistic
dependencies between variables.

3. Conditional Independence: One of the key concepts in graphical modeling is con-
ditional independence. Two variables Xi and Xj are conditionally independent given
a set of variables Z, denoted as Xi ⊥ Xj |Z, if their relationship can be explained
solely by the variables in Z. This notion plays a crucial role in modeling probabilistic
relationships.

4. Adjacency (undirected graph): In an undirected graph G, two vertices u and v
are considered adjacent if there exists an edge {u, v} in the graph, denoting that u
and v are directly connected.

5. Adjacency (directed graph): In a directed graph G, vertex u is considered adjacent
to vertex v if there exists a directed edge (u, v) in the graph, indicating that there is
a one-way connection from u to v.

6. Cycle in a directed graph: A cycle in a directed graph is a sequence of distinct
vertices (v1, v2, . . . , vk) for k ≥ 3, where v1 = vk, and for 1 ≤ i < k, vi and vi+1 are
adjacent for 1 ≤ i < k. In other words, a cycle is a closed path in the directed graph
where the first and last vertices are the same, and there are directed edges between
consecutive vertices, following a specific direction from vi to vi+1 for all 1 ≤ i < k.
In a directed cycle, it’s important to follow the direction of the edges, meaning that
you can traverse from one vertex to the next only by following the direction of the
edges, not in the reverse direction. This is in contrast to undirected graphs, where
cycles can be traversed in both directions.

We provide a mathematical framework of graphical models.

Graph Structure:
Let G = (V,E) be a graph, where V = {X1, X2, . . . , Xn} represents the set of random
variables and E represents the set of edges between the variables. Here’s an example of a
Bayesian network that represents the relationships between symptoms (Fever, Cough, and
Sore Throat) and the presence of a disease. Fever influences the presence of Cough and
Sore Throat, while both Cough and Sore Throat contribute to the likelihood of having the
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Disease. This graph is oriented, meaning that hat the edges of the graph have a specific
direction associated with them. The direction of the edge represents a one-way connection,
indicating that there is a specific order or flow between the vertices. The graph is also
acyclic, meaning there are no circular loops or circular dependencies. Each edge has a
specific one-way direction, representing a clear order or flow from one vertex to another.

Disease

Cough
Sore

Throat

Fever

Medical Diagnosis Bayesian Network

Probability Distributions:
For each variable Xi in V , there is an associated probability distribution P (Xi | Pa(Xi)),
where Pa(Xi) denotes the set of parent variables of Xi in the graph G. The probability dis-
tribution P (Xi | Pa(Xi)) quantifies the conditional relationship between Xi and its parents
given the values of the parent variables.

Markov Property:
A graphical model satisfies the Markov property if every variable Xi is conditionally inde-
pendent of its non-descendants in the graph G, given its parents Pa(Xi).

Factorization:
The joint probability distribution of all variables in the graphical model can be factorized
as follows:

P (X1, X2, . . . , Xn) =
∏
i

P(Xi | Pa(Xi))

where the product is taken over all variables Xi in V .

Inference and learning:
Graphical models allow for efficient inference and learning algorithms. Inference involves
computing the probability distribution over a subset of variables given evidence, while learn-
ing aims to estimate the parameters of the probability distributions from observed data.

Now, we can define a DAG :

Definition 1. Directed acyclic graph (DAG) A Directed acyclic graph, often abbreviated
as DAG, is a finite directed graph that satisfies two essential properties:

1. It is a finite set of vertices or nodes.

2. It is a set of directed edges where each edge has a direction, and there are no cycles in
the graph.

Now, let us introduce two prominent types of graphical models:

3.1.1 Bayesian Networks

A Bayesian network is a DAG that represents probabilistic dependencies among variables.
Mathematically, a Bayesian network consists of a set of nodes (random variables) and a set
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of directed edges that indicate the causal relationships between them. The conditional prob-
ability distribution of each variable is defined based on its parents in the graph. The joint
distribution of all variables in the network is factorized according to the graph structure us-
ing the chain rule of probability. Consider a Bayesian network with variablesX1, X2, . . . , Xn,
denoted as B, its joint probability distribution can be represented as:

P(X1, X2, . . . , Xn) =

n∏
i=1

P(Xi|Parents(Xi,B))

In a belief/Bayesian network, conditional independence can be determined by examining
the graph structure and the relationships encoded by the directed edges. If two variables
are not directly connected by an edge or if there is an active trail between them with all
observed variables being on the trail, then these variables are conditionally independent
given the observed variables. We will present some rules that help characterize conditional
dependencies in Bayesian networks. To illustrate these rules, we will refer to the example
depicted in Figure 5.

Figure 5: Bayesian networks

x4 x5x3x2x1

(a) A Bayesian network with 5 variables

D

E F

C

A B

(b) A Bayesian network with 6 variables

The formula for the joint distribution of the Bayesian network given in figure 5a is:

P(x1, x2, x3, x4, x5) = P(x1 | x2, x5) · P(x2 | x3, x4, x5) · P(x3 | x4, x5) · P(x4) · P(x5)

Proof. The proof is based on Bayes’ rule:

P(x1, x2, x3, x4, x5) = P(x1 | x2, x3, x4, x5) · P(x2, x3, x4, x5)

Given that a variable is conditionally independent of its non-descendants given its parents,
we have x1 ⊥ (x3, x4) | x2, x5

= P(x1 | x2, x5) · P(x2 | x3, x4, x5) · P(x3, x4, x5)
= P(x1 | x2, x5) · P(x2 | x3, x4, x5) · P(x3 | x4, x5) · P(x4, x5)
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Given that x4 and x5 are unconditionally independent since there is no edge linking these
two variables, we have P(x4, x5) = P (x4) · P(x5) and thus :

P(x1, x2, x3, x4, x5) = P(x1 | x2, x5) · P(x2 | x3, x4, x5) · P(x3 | x4, x5) · P(x4) · P(x5)

Following Figure 5b, we’ll present some facts on conditional dependencies in a belief
network. Afterward, we’ll discuss the fundamental rules of these dependencies.

• Marginalizing over C makes A and B independent. We say that A and B are uncon-
ditionally independent, i.e., P(A,B) = P(A) · P(B).

• A and B are conditionally dependent given C, i.e., P(A,B | C) ̸= P(A | C) · P(B | C).

• A and B are conditionally dependent given D, i.e., P(A,B | D) ̸= P(A | D) ·P(B | D).

• E and F are conditionally independent givenD, i.e., P(E,F | D) = P(E | D)·P(F | D).

• Marginalizing over D makes E and F graphically dependent, i.e., P(E,F ) ̸= P(E) ·
P(F ).

Remark 1. (Markov Blanket)
The Markov Blanket of a variable xi ∈ χ, denoted by MB(xi), is the set of variables that
corresponds to the parents, spouse, and children of the variable xi. For any other variable
xj that is not in the Markov Blanket of xi, we have:

xi ⊥ xj | MB(xi)

which means that xi is conditionally independent of xj given its Markov Blanket. For ex-
ample, for figure 5a, MB(x3) = x2, x4, x5, so x3 ⊥ x1 | MB(x3).

The d-separation and d-connection criteria can be used to determine conditional inde-
pendence relationships in Bayesian networks. If X and Y are d-separated given a set of
variables Z, then X and Y are conditionally independent given Z. Alternatively, if X and
Y are d-connected by a set of variables Z, then X and Y are conditionally dependent given
Z.

Proposition 1. Rules of d-Separation and d-connection

• X and Y are d-connected if there exists an undirected path between them that do not
contain a collider. A collider is a node in the path where two arrows meet.

• X and Y are d-separated if there is no active path between them. An active path is
one that can be traced without passing through a collider. In this case, X and Y are
(unconditionally) independent.

• X and Y are d-connected by a set of variables Z if there is at least one active path that
does not include any member of Z.

• X and Y are said d-separated by a set of variables Z if every undirected path between
any variable in X and any variable in Y is blocked. A path is blocked if it contains a
node w such that either w is a collider not included in Z and has no descendants in
Z or w is not a collider but it is included in Z.
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• If a path between X and Y includes a collider w, and w is in Z or has at least one
descendant in Z, then X and Y are d-connected by Z. However, if Z contains a
non-collider along this path, then X and Y are blocked given Z.

Example 1. According to the rules of d-separation, we may say that :

1. A ⊥ E | D : The two paths between A and E are A → B ← E and A → C ← D ←
B ← E. The first path is not blocked since B is a collider but it has a descendent in
the conditioning set, namely D. The second path is blocked since C is a collider and
neither C or its descendants is in the conditioning set.

2. D is graphically dependent on E given B,C : The two paths between D and E are D ←
B ← E which is not blocked since B is not a collider and it’s not in the conditioning
set and D → C ← A → B ← E which is not blocked since C and B are colliders but
they are included in the conditioning set.

3. The path E → B ← A → C is unblocked given B or D, since B is a collider and D
is a descendant of B. However, this path is blocked given {A,B} or {A,D}, since the
conditioning set now contains a non-collider A.

A

B C

DE

Remark 2. (Markov equivalence)
Two graphs are Markov equivalent if they imply the same set of conditional independence
relationships or if they have the same underlying independence structure.
Formally, let’s denote two graphs as G1 and G2. G1 and G2 are Markov equivalent if, for
every pair of variables X and Y in the graph, they satisfy the following conditions:

• X and Y are d-separated in G1 given Z if and only if they are d-separated in G2 given
Z, for any subset of variables Z.

• X and Y are d-separated in G1 given Z if and only if they are d-separated in G2 given
Z, for any separating set Z, where a separating set Z blocks all possible paths between
X and Y .

In the context of Bayesian networks, the representation of the network as a DAG is of
utmost importance. This acyclic property is indispensable as it ensures the coherence of
conditional dependencies within the network. In fact, in a Bayesian network, each variable
should be conditionally independent of its non-descendants given its parents. The DAG’s
acyclic nature guarantees that variables do not depend on themselves through circular de-
pendencies. Furthermore, the presence of directed cycles in the graph would lead to circular
dependencies, making the joint probability distribution ill-defined.
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3.1.2 Markov Random Fields (MRFs)

A Markov Random Field is an undirected graph that represents conditional independence
relationships among variables. In an MRF, nodes are connected by undirected edges, and
the absence of an edge signifies conditional independence between the connected nodes.
MRFs are commonly used in image processing, spatial statistics, and other fields where
pairwise interactions are significant. LetM represent a Markov Random Field with variables
X1, X2, . . . , Xn. The joint probability distribution of these variables is defined using a Gibbs
distribution:

P(X1, X2, . . . , Xn) ∝ exp

−∑
C

ΨC(XC)


In this equation, ΨC(XC) represents a potential function defined over cliques (fully con-
nected subsets of nodes) in the graph.

3.2 Causal discovery

Causality discovery involves understanding the causal relationships between variables in a
dataset. This knowledge is crucial for making informed decisions, predicting outcomes, and
uncovering hidden mechanisms in complex systems. In this section, we will explore different
discrete space algorithms used in causality discovery, each with its unique approach to
infer causal relationships from data. By discrete space, we refer to algorithms applied to
discrete-time Bayesian networks where the random variables take values in a discrete space.
These algorithms, corresponding to the left part of Figure 6 can be broadly categorized
into three groups: Constraint-based, score-based, and functional-based algorithms. We will
specifically delve into the details of three key algorithms used in causality discovery: Chow-
Liu, DirectLiNGAM, and Transfer Entropy. This exploration will naturally lead us to discuss
the significance of the topological ordering of variables. Topological ordering is crucial for
determining the sequence in which variables influence each other. This is particularly crucial
in constraint-based methods and, more specifically, in functional methods such as PCMCI
and DirectLiNGAM. PCMCI is a functional-based algorithm that assesses time-lagged causal
relationships between child variables and their parents using statistical measures, while
DirectLiNGAM focuses on identifying causal relationships in observational data through
a linear, non-Gaussian causal structure. This order will be necessary for constructing the
causal network, demonstrating that each variable is a function of its parents in the causal
network.

In the context of Bayesian networks, the notion of topological ordering is pivotal. It
is the arrangement of variables in such a way that if there is an edge from variable A to
variable B, then variable A precedes variable B in the ordering. This elegant structure
adheres to the causal relationships encoded within the network, ensuring that no variable
depends on another occurring later in the order. The significance of topological ordering in
Bayesian networks extends to several key domains. First and foremost, it is the linchpin
of efficient inference. By providing a systematic sequence for variable processing, topo-
logical ordering enables streamlined procedures such as variable elimination and message
passing, ultimately minimizing redundant computations. This efficiency is indispensable
in the analysis of probabilistic models. On another hand, topological ordering empowers
causal reasoning. When variables are meticulously ordered, it becomes easier to discern the
causal relationships between them. Variables positioned at the beginning of the ordering are
often seen as potential causes for those found further along. This structured perspective is
invaluable in investigating and understanding the factors influencing a particular variable of
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Figure 6: Continuous and discrete space causal learning algorithms
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interest. The application of topological ordering is not limited to static models. In dynamic
Bayesian networks (DBNs), it plays a pivotal role in representing the temporal evolution of
variables. By adhering to the temporal sequence, DBNs capture how variables change and
depend on each other over time, making them essential in modeling dynamic systems. To
illustrate the concept, consider a Bayesian network modeling a student’s performance. If we
have nodes representing Intelligence, Difficulty of Course, SAT Score, and Grade, a valid
topological ordering might be as follows:

Intelligence→ Difficulty of Course→ SAT Score→ Grade

We will present a list of causal discovery algorithms. We will outline these algorithms
and go into slightly more detail for the algorithms Chow-Liu, DirectLiNGAM, and Transfer
Entropy.

• Hill-Climbing: Hill-Climbing is a score-based algorithm that starts with an empty
graph and iteratively adds or removes edges to maximize a scoring metric, such as BIC
(Bayesian Information Criterion) [3].

• Chow-Liu: Chow-Liu is a constraint-based algorithm that constructs a tree struc-
ture (tree-shaped Bayesian network) by selecting the most informative conditional
independence relationships among variables [3].

• DirectLinGAM: DirectLinGAM is a functional-based algorithm that aims to dis-
cover causal relationships by considering the linearity and non-linearity of dependen-
cies between variables [43].

• Normalized Transfer Entropy: Normalized Transfer Entropy measures information
flow between variables and can reveal causal relationships when the transfer entropy
is significantly different from zero [38] [39].

• GES (Greedy Equivalence Search): GES is a score-based algorithm that explores
the space of directed acyclic graphs (DAGs) to find the one that best fits the data by
adding or removing edges.
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• PC (Peter and Clark) Algorithm: The PC Algorithm is a constraint-based ap-
proach that infers causality by determining conditional independence relationships
among variables and imposing constraints on the graph structure [48].

• PCMCI: PCMCI is a functional-based algorithm that assesses time-lagged causal
relationships between child variables and their parents using statistical measures [38]
[? ].

Figure 7: Different types of causal algorithms
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3.2.1 Chow-Liu algorithm

The Chow-Liu algorithm [3] is a probabilistic graphical model-based approach used to dis-
cover causal relationships between variables in a dataset. Its primary idea is rooted in
constructing a Bayesian network or a tree structure that represents the conditional inde-
pendence relationships among variables. The algorithm is particularly effective in situations
where we want to uncover the causal structure among variables when we have observational
data but lack interventions, making it suitable for many real-world scenarios.

1. Conditional independence: The fundamental concept behind the Chow-Liu algo-
rithm is conditional independence. It assumes that if two variables are conditionally
independent, there is no direct causal relationship between them. In other words, they
are not dependent on each other once we consider the influence of other variables.

2. Mutual information: The algorithm quantifies the strength of associations between
variables using mutual information. Mutual information measures how much knowing
the value of one variable reduces the uncertainty about the other, which is indicative
of their statistical dependence. The formula for mutual information I(X;Y ) between

23



Causality Approach Applied to Clean-Tech Equities

two random variables X and Y is given by:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)

3. Tree structure: The primary goal of the algorithm is to find a tree structure that rep-
resents the conditional independence relationships. This tree is called the ”maximum-
weight spanning tree” and is derived from the pairwise mutual information scores. It
connects the variables in a way that best captures the conditional dependencies.

4. Causal directions: While the Chow-Liu algorithm establishes an undirected tree, it
does not directly indicate causal directions. However, we can infer potential causal di-
rections based on prior knowledge or by conducting further experiments. For instance,
in a causal chain, we might assume that the earlier variables influence the later ones.

Algorithm 1 Chow-Liu Algorithm

Input: Data D with variables X1, X2, . . . , Xn

Output: Tree-structured Bayesian network G
Initialize an empty undirected graph G.
Calculate mutual information MI(Xi, Xj) for all pairs of variables.
for each variable Xi in X1, X2, . . . , Xn do
Add Xi to G.

end for
for each pair of variables Xi and Xj in G do
Calculate the mutual information MI(Xi, Xj) based on data D.
Update the edge weight between Xi and Xj in G to MI(Xi, Xj).

end for
Find a maximum spanning tree T in G using a suitable algorithm (e.g., Kruskal’s algo-
rithm).
Orient the edges in T to create a tree-structured Bayesian network G.

3.2.2 DirectLiNGAM

DirectLiNGAM [43] is an algorithm used in causality discovery, that builds upon the LiNGAM
(Linear Non-Gaussian Acyclic Model) framework. Its primary objective is to unveil causal
relationships within a dataset by modeling linear associations with non-Gaussian additive
noise components.

A linear structural causal model (SCM) is defined by the system of structural equations:

X = BX + U (1)

where B ∈ Rd×d is the matrix of coefficients that defines Xi as a linear combination of its
parents and the disturbance Ui. Under the assumption of a non-Gaussian distribution of the
noise terms, the model is identifiable. This SCM is known as the LiNGAM. DirectLiNGAM
advances the LiNGAM framework by enhancing the identification of causal directions based
on these relationships and non-Gaussianity. It can estimate a causal graph that illustrates
the direction of influence between variables, making it a valuable tool for causal inference.
More specifically, assuming that observed data is generated by a DAG, represented by an
adjacency matrix B = {bij}, each bij signifying the strength of the connection from variable
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xj to xi in the DAG. The causal order of variables k(i) ensures that no later variable
determines or has a directed path to any earlier variable in the DAG.

These relationships are assumed to be linear. Each observed variable xi is assumed to
have zero mean, and it can be expressed as:

xi =
∑

k(j)<k(i)

bijxj + ui

Here, ei represents an external influence. All external influences ei are continuous random
variables with non-Gaussian distributions, zero means, and non-zero variances. They are
independent of each other, eliminating the presence of latent confounding variables.

This model can be expressed in matrix and we can retrieve the linear SCM defined in
equation 1:

X = BX + U

where X is a p-dimensional random vector, and B can be permuted to become strictly
lower triangular through simultaneous row and column permutations due to the acyclicity
assumption. Each element bij in the matrix is a structural coefficient and represents the
direct causal effect of xj on xi, while each (i, j)-th element of the matrix A = (I − B)−1

represents the total causal effect of xj on xi. We will delve into the details of causal effects
in subsequent sections. It’s crucial to note that xi is equal to ei if no other observed variable
xj (j ̸= i) in the model has a directed edge to xi. In this case, an external influence ei
is observed as xi, and this xi is termed an exogenous observed variable. When there are
directed edges from other observed variables to xi, ei is considered as an error.

For example, consider the model where:

x2 = e2

x1 = 0.5x2 + e1

x3 = 0.1x1 − 2x2 + e3

Here, x2 is equal to e2 since it is not influenced by x1 or x3. Therefore, x2 is classified as
an exogenous observed variable, while e1 and e3 are considered errors. Due to the acyclicity
and the assumption of no latent confounders,1 there will always be at least one exogenous
observed variable (xi = ei). An exogenous observed variable is typically defined as an
observed variable determined outside of the model. In other words, an exogenous observed
variable is a variable that any other observed variable inside the model does not have a
directed edge to. It doesn’t necessarily have to be independent of external influences, and the
external influences of exogenous observed variables may be dependent. The DirectLiNGAM
algorithm can be summarized as in Algorithm 2.

In Figure 8, we can observe a non-Gaussian linear dynamic model. In this context, each
variable is time-indexed, and it’s natural to consider that variables at time t − 1 precede
the variables at time t in terms of a topological order. The coefficients associated with each
edge represent direct causal effects and can be estimated using data, provided the model
satisfies the identification criteria, which we will discuss in the following sections. These
effects quantify the causality from the parent variable to the child variable. For instance, if
you increase the value of x0 at time t by one unit, the value of x2 at time t will decrease

1In causal modeling, confounders are unobserved variables that can affect both the presumed cause and
effect, leading to a misleading association between them. We will explore the concept of confounders in
the next section, but in essence, confounders are unobserved variables that can introduce bias in causal
relationships.
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Algorithm 2 DirectLinGAM Algorithm

Require: Observational data matrix X ∈ Rn×d

Ensure: Causal graph G representing the direction of influence between variables
Preprocessing:
- Center the columns of X to have zero mean.
- Compute the covariance matrix of X: C = 1

nX
TX.

- Perform independent component analysis (ICA) to estimate non-Gaussian components.

- Obtain the matrix A = (I − B)−1, where B is a lower triangular matrix such that
X = BX + E.
Causal Graph Estimation:
for i in 1 to d do
for j in 1 to d do
if i ̸= j then

Compute the causal effect aij from A.
if aij ̸= 0 then
if aji = 0 then
Add a directed edge xj → xi to the causal graph G.

else if aji < 0 then
Add a bidirectional edge xi ↔ xj to the causal graph G.

end if
end if

end if
end for

end for
return Causal graph G

Figure 8: LinGAM model with identified causal coefficients

by 0.37 units. It’s essential to note that these structural coefficients, also known as causal
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effects, exist solely within linear models. In cases where each child variable is connected to
its parents through nonlinear functions, it becomes necessary to employ methods based on
neural networks to estimate these functions.

3.2.3 Normalized Transfer Entropy

The Transfer Entropy (TE) [38] is a powerful tool for detecting non-linear causal relation-
ships, complementing Granger Causality. The Normalized Transfer Entropy (NTE) normal-
izes the strength of causality to the range [0, 1], which is well-suited for integration into the
proposed ensemble model.

Information theory is a prominent research domain for analyzing information flow be-
tween two processes in a temporal order. Transfer Entropy is a non-parametric statistical
measurement and a fundamental method for inferring non-linear causality connections. It
is based on conditional mutual information (CMI) given the past values of the influenced
variable. When measuring information using Shannon’s entropy, TE from a time series X
to another time series Y can be defined as:

TEX→Y = I(Yt;Xt−L:t−1 | Yt−L:t−1) = H(Yt | Yt−L:t−1)−H(Yt | Yt−L:t−1, Xt−L:t−1),
(2)

where TEX→Y is the TE from X to Y , I(x) represents CMI, and H(x | y) represents the
conditional Shannon entropy, as given in Equation (3):

H(X | Y ) = −
∑
x,y

P(x, y) logP(x | y). (3)

Here, P(x, y) is the joint probability density function, and P(x | y) denotes the conditional
probability density. When TEX→Y > 0, it indicates that X is the cause of Y , and the causal
strength becomes stronger with an increase in transfer entropy.

Algorithm 3 Normalized Transfer Entropy for Causality

Require:
1: Two time series: X and Y .
2: Maximum time lag L.
3: Number of bins N for discretization.
4: A significance level α.

Ensure:
5: Normalized Transfer Entropy NTEX→Y .
6:

7: Procedure NormalizeTransferEntropy
8: Input: X, Y , L, N , α
9: Output: NTEX→Y

10:

11: Discretize X and Y into N bins.
12: Compute conditional and joint probability distributions.
13: for l = 1 to L do
14: Compute transfer entropy TEX→Y (l) as in Equation 2.
15: Compute transfer entropy TEY→X(l) by swapping X and Y .
16: end for
17: Determine if NTE is statistically significant at α.
18: Return NTEX→Y .
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3.3 Structural causal model

Bayesian networks offer an elegant framework for capturing probabilistic dependencies among
variables, enabling inferences and predictions in uncertain environments. However, when
it comes to understanding the underlying causal relationships within these systems and
answering counterfactual questions–what would happen if we intervened on a particular
variable–Bayesian networks have limitations. To address these limitations and introduce
causal effects, it becomes imperative to define structural models. As an extension of Bayesian
networks, structural models consist of structured functions that explicitly relate child vari-
ables to their parents, capturing the causal relationships between them. These functions,
representing causal effects, play a crucial role in providing a foundation for exploring and
answering counterfactual queries. A counterfactual distribution is defined as the probability
distribution of a random variable in a hypothetical scenario different from the observed data.
The modification only operates on the parents of this variable on the graph. This is where
SCMs [32], also known as graphical causal models (GCMs), come into play.

We start first by pointing out the difference between probabilistic graphical models
(PGMs) and GCMs. A PGM [21] is a model that combines graph theory with probability
theory to develop new algorithms and present models in an intuitive framework. A proba-
bilistic graphical model is a DAG over variables, representing how the joint distribution over
these variables can be factorized. Notably, any missing edge in the graph implies a condi-
tional independence relation in the joint distribution. Multiple valid probabilistic graphical
model representations exist for a given joint distribution. For instance, any joint distribution
over two variables (X,Y ) can be represented as both X → Y and X ← Y . A CGM is a
probabilistic graphical model with the additional assumption that a link X → Y indicates
that X causes Y . This additional assumption implies naturally a topological ordering of
variables in the Bayesian Network. CGMs are a natural extension of Bayesian networks,
designed explicitly to address causal questions and provide insights into the mechanisms
driving observed data. They consist of a collection of structural equations, each defining
how a variable is causally influenced by its direct predecessors within the model. SCMs en-
compass various types of models, including structural functional models, where the functions
denoted by f can be nonlinear, capturing complex causal relationships, and linear models,
where f is linear, simplifying the representation while retaining interpretability. Here is a
formal definition of a structural causal model :

Definition 2. Causal Model
A causal model over a set of variables V is a tuple M = ⟨V,U, F, Pa, P (U)⟩, where:

• V = {V1, V2, . . . , Vn} is a set of n variables that are determined by the model (endoge-
nous or observed variables).

• U is a set of random variables that are determined outside the model (exogenous or
unobserved variables) but that can influence the rest of the model.

• F is a set of n functions such that Vi = fi(Pa(Vi), Ui).

• Pa(Vi) is a subset of V \ {Vi} (observed parents of Vi).

• Ui is a subset of U (unobserved parents of Vi).

• P (U) is a joint probability distribution over the variables in U .

A causal model has an associated graph in which each observed variable Vi corresponds to a
vertex. There is one edge pointing to Vi from each of its observed parents Pa(Vi), and there is
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a doubly-pointed edge between pairs of vertices influenced by a common unobserved parent
in U . In other words, in a causal model, the probability distribution of each variable Vi is
assigned by a function fi determined by a subset of V \ {Vi} called the observed parents of
Vi (Pa(Vi)) and a subset of U (Ui) called the unobserved parents of Vi. The joint probability
distribution of the observed variables in a causal model M is given by [7]:

P(V ) = P(V1, V2, . . . , Vn) =
∏
U

∏
i

P(Vi | Pa(Vi), Ui)
∏
i

P(Ui) (4)

The graphical representation of a causal model is also called the induced graph of the causal
model or causal graph. It contains vertices Vi, edges from Pa(Vi) to Vi, and bidirected edges
between pairs of vertices influenced by a common unobserved variable, that is, between Vi
and Vj if Ui ∩ Uj ̸= ∅. We refer to the unobserved variables U as hidden confounders.

Figure 9: Causal graph with vertices representing variables X, Y , W , Z, edges representing
functions X = f1(W ), Z = f2(X), W = f3(U), Y = f3(W,Z,U). The hidden confounder
that has an effect on W and Y is represented by the double dashed edge.

X

Z

YW

A SCM is therefore associated with a directed graph G where there is an edge W → V if
and only ifW is in the set of observed and unobserved parents of V , denoted as Pa∗(V ). We
will focus on recursive SCMs, where the set F defines a topological order for the variables
V ∪ U . This order ensures that Pa∗(Z) < Z for all Z ∈ V ∪ U . The graph associated
with a recursive SCM is a DAG. Notation τ(V ) refers to the variables that precede V in
the topological order, indicating variables W ∈ V ∪ U such that W < V . Therefore, each
variable Vi can be expressed as :

Vi = fi(τ(Vi)).

We assume that variables in set U precede those in set V in the topological order. Notation
Pa(V ) is a concise representation for Pa∗(V )∩ V , denoting the observed parents of V . This
topological ordering is crucial for understanding causal relationships. In fact, as shown in
Figure 10, both causal graphs represent the same joint probability distribution. However,
altering the order of the variables leads to different interpretations of causal relationships.

Causal graphs encode causal relations between variables in a model. The primary purpose
of causal graphs is to help estimate the joint probability of some of the variables in the model
upon controlling some other variables by forcing them to specific values; this is called an
action, experiment, or intervention. For every probabilistic model M , every set of variables
X ⊂ V and every set of values X = x we define the modelMdo(X = x) to be the same asM
except that every function fi for variable Xi ∈ X assigns a probability distribution of 1 to
the value xi and 0 to the rest of values. Graphically, this is represented by removing all the
incoming edges (which represent the causes) of the variables in the graph that we control
in the intervention. In this scenario, these variables are considered exogenously determined,
no longer influenced by their previous causes. In this way, a CGM encodes more than just
the factorization or conditional independence structure of the joint distribution among its
variables; it also defines how the system responds to atomic interventions. Mathematically,
the do() operator represents this intervention on the variables, by transforming M into
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Figure 10: Topological ordering of variables changed

Mdo(X = x). For a causal graph with sets of variables X and Y , the expression P(Y |
do(X = x)) represents the joint probability of Y under an intervention on the controlled
set X. This rigorously corresponds to applying equation 4 to Mdo(X = x) instead of M .
As elucidated by Pearl, the do() operator acts like conditioning on a mutilated graph and
performs calculus on this truncated graph. A causal relation represented by the expression
P(Y | do(X = x)) is said to be identifiable if it can be uniquely determined from the graph
G induced by causal model M , and from the joint distribution P of its observed variables.
We will provide more details about the do-calculus in the subsequent section.

We can extend the defintion of a structural causal model by adding noise components :

Definition 3. Causal model with driving noise
More common than the above approach is the assumption that the randomness enters in-
side the structural equations. Formally, a stochastic structural causal model over n random
variables V1, . . . , Vn is a set of n functions such that

Vi = fi(Pa(Vi), Ui, εi), i = 1, . . . , n, (5)

together with a distribution over the noise variables ε1, . . . , εn.

We obtain a corresponding graphical representation of the causal structure over the vertices
(1, . . . , n) by drawing directed edges from Pa(Vi) to Vi for all i ∈ {1, . . . , n}. We further
assume that the joint noise distribution is absolutely continuous with respect to a product
measure and that it factorizes, i.e., the noise components are assumed to be jointly inde-
pendent. As before, we require the system (5) to be uniquely solvable, which is always
satisfied if the graph is acyclic. LinGAM is a particular case of a causal model with driving
noise where the function fi are linear (leading to structural coefficients) and the noises have
non-Gaussian distributions.

We can also extend the causal models defined above by considering time as a factor. This
leads us to dynamic causal models, consisting of a set of stochastic differential equations:

Definition 4. Dynamic causal model
Formally, a dynamic stochastic structural causal model over n random variables V1, . . . , Vn
is a set of n functions such that [33]:

dV i
t = f i(Pa(V

i
t ), V

i
t , U

i
t )dt+ σ(Pa(V

i
t ), V

i
t , U

i
t )dϵit , i = 1, . . . , n

where ϵi is a Wiener (white noise) process. In the case where time evolution is assumed to
be deterministic, we get structural equations of the form:
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dV t
t

dt
= fi(Pa(V

i
t ), V

i
t , U

i
t ), i = 1, . . . , n

The functions {fi} can be referred to collectively as the evolution function of the system.

Figure 11: Structural causal model with driving noise

Y PY |X Functional Causal Model

Y = f (X,N)
N = Noise

X PX Stochastic Model

Causal graph

For the subsequent part of this article, we will explore situations where these functions
take on a linear form. The rationale behind this focus lies in the fact that the presence of
non-linearity in the structural equations can introduce complexities into their estimation.
When faced with such scenarios, it becomes essential to employ neural networks for the
estimation of causal effects. To keep matters simple, we will confine ourselves to linear
functions. These linear functions yield structural coefficients that provide a quantification of
the causal impact one variable has on another. We will introduce structural coefficients with
an example. Let’s consider a scenario where we aim to understand the factors contributing
to a student’s final grade. It is evident that analyzing study hours alone won’t provide a
comprehensive understanding of the determinants of success. This is because other factors,
such as prior knowledge, also play a significant role. To represent this relationship, we can
utilize structural equations. These equations capture how the variables directly influence
one another:

X1 = ϵ1

X2 = θ ·X1 + ϵ2

X3 = ϕ ·X2 + ψ ·X1 + ϵ3

X4 = α ·X2 + β ·X3 + ϵ4,

In this model,X1 represents prior knowledge,X2 represents study hours,X3 represents study
habits, and X4 represents the student’s final grade. The terms ϵ1, ϵ2, ϵ3, and ϵ4 represent
the error terms of the variables X1, X2, X3, and X4 respectively. The coefficients θ, ψ, α, ϕ,
and β are referred to as structural coefficients. These coefficients are derived from the linear
functions fi in a way thatXi = fi((Pa(Xi), ϵi). These structural equations offer insights into
how changes in one variable can propagate through the system, influencing other variables
in a direct and interconnected manner. For example, if we increase the value of X2 by one
unit, the value of X4 will change by α units. Assuming α = 2, this implies that if a student
increases their study hours by 10%, their grade will also increase by 20%. The structural
model defined above has a graphical representation. It takes the form of a causal graph, as
depicted in Figure 12. Each variable in the model has a corresponding node or vertex in the
graph. Additionally, for each equation, arrows are drawn from the independent variables to
the dependent variables, indicating the causal relationships.
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Figure 12: Causal graph representing the SEM specification Model 1.

X1 X2 X3 X4
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On each arrow, we notice the presence of the structural coefficients: θ represents the direct
causal effect of X1 on X2, ϕ represents the direct causal effect of X2 on X3, β represents
the direct causal effect of X3 on X4. Same thing applies to α and ψ.

Now, let’s explore the concepts of direct and total causal effects using this example:

• Direct causal effect: α represents the direct impact of study hours X2 on the
student’s final grade X4.

• Total causal effect: The coefficient ρ represents the total impact of study hours
X2 on the student’s final grade X4. This includes both the direct effect of X2 on X4

and any indirect effects through study habits X3. To formalize this concept, the total
causal effect of a variable i on a variable j can be expressed as the product of the
structural coefficients along the active paths.

If we want to visualize the equivalent graph representing the causal effect between the
observed variables X2 and X4, assuming that the variables X1 and X3 are not observed, we
obtain Figure 13. The effect of study hours on grade is now summarized by the coefficient
ρ. Similarly, the bi-directed arc between X2 and X4 (representing the correlation of the
error terms ϵ2 and ϵ4) summarizes the correlation between X2 and X4 due to the path
X2 ← X1 → X3 → X4 and therefore depends on the parameters θ, ψ, and β .

Figure 13: Graph representing the causal effect of S on G, assuming K and H to be latent
variables.

X2 X4
ρ = α+ ϕ · β

CSG = θ · ψ · β

In order to estimate ρ, the total causal effect of the number of study hours on a student’s
final grade, the coefficients must have a unique solution in terms of the covariance matrix
or probability distribution over the observed variables, X2 and X4. The task of finding
this solution is known as identification and is discussed later. In some cases, one or more
coefficients may not be identifiable, meaning that no matter the size of the dataset, it is
impossible to obtain point estimates for their values.

3.4 Do-calculus

The do-calculus [32] is a fundamental concept in the domain of causal inference and prob-
abilistic modeling. It enables us to explore the consequences of interventions on variables
within a probabilistic model. These interventions are the key to answering what-if questions,
allowing us to understand hypothetical/counterfactual scenarios. As we will explore in the
following section, the do-calculus also provides a set of rules and techniques for estimating
causal effects from observational and interventional data, helping us quantify the causal
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relationships between variables in a system. The following notes are inspired from [25], [51],
[32] and [28].

Consider a scenario where a patient’s health is in question, and a medical practitioner
is tasked with prescribing a dosage of a particular medication. What if the physician had
chosen to prescribe a 75 mg dosage of Zocor rather than the usual 40 mg? What impact
would this intervention have for example on the patient’s cholesterol levels? This is precisely
where the power of interventions comes into play. When we intervene on a variable in a
causal model, such as the medication dosage, we make it deterministic and the chosen
dosage becomes a fixed value. As a result, all arrows or causal pathways that point to this
variable are severed in the causal graph. This abrupt change in the variable’s value triggers
a ripple effect throughout the probabilistic model. The joint probability distribution of
the model undergoes a transformation, reflecting the consequences of this intervention, and
we obtain a post-intervention distribution derived from the original joint distribution. In
essence, the intervention acts as a perturbation within the causal network, creating a shift
in the causal relationships that define the system. This concept is akin to modifying the
course of events in a complex web of causation. It allows us to discern how changing
one variable can lead to a cascade of effects throughout the model, providing answers to
”what-if” questions. It is this power to explore and quantify causal effects that makes do-
calculus an invaluable tool in fields such as healthcare, economics, and social sciences, where
interventions can lead to meaningful insights and informed decision-making. In this section,
we will delve into the mathematical foundations of do-calculus, elucidating how it allows us
to rigorously study causal relationships and quantify the impact of interventions on complex
probabilistic models. First, we need to introduce the do-operator. The do-operator, denoted
as do(X = x), is used to represent interventions or changes applied to a variable in a causal
graph. It signifies that we are setting the value of variable X to x, regardless of its actual
value in the observed data. Consider a causal graph with variables X, Y , and Z, where
arrows indicate causal relationships. Let’s express the effect of an intervention using the
do-operator:

Causal graph: X → Y → Z

Effect of intervention: do(X = x) : Y (x), Z(x)

In this graph, the arrow from X to Y implies a direct causal effect of X on Y . Similarly,
the arrow from Y to Z implies a direct causal effect of Y on Z. To express the effect of
intervening on X and setting it to a specific value x, we use the do-operator. Consider a
study investigating the effect of a new drug X on blood pressure Y and heart rate Z. The
causal graph is as follows:

Causal graph: X → Y → Z

We want to know the effect of administering the new drug (X = 1) on blood pressure and
heart rate. We express this using the do-operator:

Effect of intervention: do(X = 1) : Y (1), Z(1)

By applying the do-operator, we are simulating an intervention where the drug is admin-
istered, regardless of the individual’s actual drug exposure in the observed data. The do-
operator helps us distinguish between natural associations (based on observed data) and
causal effects (based on interventions) in causal graphs.

Intervening on a variable X corresponds to removing the incoming edge to X in the
causal graph, effectively disconnecting X from its parent. Let’s illustrate this concept with
the help of causal graphs:
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Figure 14: Original causal graph

Z

X Y

In the original causal graph, we see that X is causally connected to Z and, in turn, influences
Y . However, if we were to intervene and set X to a specific value, say do(X = x), the causal
graph changes significantly:

Figure 15: Causal graph after intervention do(X = x)

Z

X Y

The intervention, represented by do(X = x), severs the causal link between Z and X,
rendering X as an exogenous variable with a fixed value. Consequently, the influence of
X on Y becomes direct and deterministic, untethered from its previous causal pathway
through Z. This exemplifies the transformative power of the do-operator in reshaping causal
relationships, allowing us to explore the consequences of specific interventions in a causal
system. When intervening on a variable X, it is assumed that everything else in the system
remains unchanged, in particular the functions or conditional distributions that determine
the value of a variable given its parents in the graph. Answering causal queries such as : what
would the distribution of the patient’s cholesterol level look like if we were able to prescribe
75 mg dosage of Zocor ? requires inference about the distributions of variables in the post-
interventional system. The do-notation is a short-hand for describing the distribution of
variables post-intervention, and the do-calculus is a set of three rules for identifying which
(conditional) distributions are equivalent pre and post-intervention. If it is possible to derive
an expression for the desired post-interventional distribution purely in terms of the joint
distribution over the original system via the do-calculus, then the causal query is said to be
identifiable, meaning assuming positive density and infinite data we obtain a point estimate
for it. The do-calculus is complete : a query is identifiable if and only if it can be solved
via the do-calculus. The reduction rules identifying equivalence between the conditional
distributions pre and post-intervention are as follows :

Let G be a CGM. Let do(x) represent intervening to set a single variable X to x.

• Rule 1: P(Y | do(x), z, w) = P(Y | do(x), w) if Y ⊥ Z | (X,W ) in GX .

• Rule 2: P(Y | do(x), do(z), w) = P(Y | do(x), z, w) if Y ⊥ Z | (X,W ) in GX,Z .

• Rule 3: P(Y | do(x), do(z), w) = P(Y | do(x), w) if Y ⊥ Z | (X,W ) in G
X,Z(W )

.

The reduction rules are based on the structure of the DAG and d-separation. Given a set
of variables X, Y , Z, W , and a graph G, the rules allow the values of some of the parent
variables to be ignored for some configurations of G. GX . represents the graph G with the
incoming links of Z removed. Rule 1 states that if, under such a graph (corresponding to
the do intervention on X), Y and Z are independent given evidence X and W , it means
that Z has no impact on Y and can be ignored. GX,Z represents the graph G with the
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incoming links of X and the outgoing links of Z removed. The do(Z) operation forces the
value of Z to ignore the confounders that can affect Z. If, after removing the direct path
from Z to Y , Y and Z are independent, we can deduce that there are no such confounders.
Therefore, rule 2 states that an intervention on Z has no effect and can be considered an
observation. G

X,Z(W )
is the graph G where the incoming links of X are removed and the

incoming links of Z are removed if Z is not an ancestor of W . If under such a graph, Y
and Z are independent, all paths between Z and Y pass through W or X. Therefore, rule
3 states that the value of Z has no effect on Y and can be ignored. These rules allow us to
estimate the values of some variables under interventional settings using observations only.
Whether or not the query can be answered depends on the local identifiability of the graph.
A graph is identifiable if and only if it can be reduced to observations using the three rules
of do-calculus. Various identifiability criteria will be explored later, with the most well-
known being the single-door and back-door criteria. In broad terms, identification allows
us to determine whether we can nonparametrically discern the causal effect on the outcome
variable, given a set of variables X and specific conditions.

As discussed earlier, the concept of intervention induces changes in the properties of
DAGs, as intervening on a variable severs all incoming edges to that variable. Consequently,
it becomes necessary to redefine causal Bayesian networks (CBNs), as interventions alter the
conditional independence structure: In the context of Bayesian Networks, the conditional
independence structure encapsulates the relationships between variables in the absence of
any interventions. However, when interventions are introduced, the conditional indepen-
dence relations may be modified, necessitating a reevaluation of the network. We provide
the following notations :

• V : Set of nodes (variables) in the DAG

• X: Set of nodes in V (i.e., X ⊂ V ), with the condition that X ̸= V .

• P(V ): Joint probability distribution over the variables of V

• P(Vi) = P(Vi|do(X = x)): Set of all interventional distributions, including no inter-
vention P(Vi).

The technical definition of a CBN for a DAG G compatible with P requires the following
three conditions to hold for every P(Vi | do(X = x)) ∈ P:

• P(Vi | do(X = x)) is compatible with G. This implies that even after intervention,
G can represent P(V | do(X = x)). Removing incoming edges into X creates new
independencies in the graph, but these do not affect Markov compatibility.

• P(Vi | do(X = x)) = 1,∀Vi ∈ X whenever Vi = vi is consistent with X = x. Interven-
ing on the same variable as on the left of the conditioning bar collapses it to a point
mass : 0 or 1.

• P(Vi | do(X = x, Pa(Vi)) = P(Vi | Pa(Vi),∀Vi /∈ X whenever PA(Vi) is consistent with
X = x. Interventions have no effect on the conditional probability distribution when
Vi is conditioned on its parents Pa(Vi).

The consequences of the CBN definition include a simplified factorization of P(V | do(X =
x)), which drops factors related to nodes intervened on (Vi ∈ X) and we obtain the following
expression :

P(V | do(X = x)) =
∏

i:Vi /∈X

P(Vi | Pa(Vi)). (6)
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When we perform an intervention do(X = x) on a variable X within a probabilistic model,
as illustrated in Figure 15, we alter the probability distribution of the system. The new
distribution, denoted as P(Y | do(X = x)), reflects the outcomes for other variables, such
as Y, under the specified intervention. If the causal model is identifiable, which is the case
for the model depicted in Figure 14, it becomes possible to express the post-intervention
distribution mathematically:

P(Y | do(X = x)) =
∑
z

P(Y | X = x, Z = z)P(Z = z). (7)

Here, Z represents the set of variables that satisfy the back-door criterion (we will see this
criterion in the subsequent section in Theorem 2). That is, no member of Z is a descendant
of X, and Z d-separates X from Y in the sub-graph formed by deleting all arrows emanating
from X. This set of variables allows the model to be identifiable, and thus, it is possible to
derive the post-intervention distribution in terms of the pre-intervention conditional distri-
butions. In Figure 14, the variable Z satisfies the back-door criterion, enabling us to derive
an expression for the conditional distribution of Y in the model Mdo(X = x). Equation 7
arises from the fact that variable X becomes deterministic. Therefore, the joint distribution
P(Y,Z,X = x) factorizes into the conditional distribution of each variable given its parents,
which is P(Y | Z,X = x) · P(Z) since the edge from Z to X is removed. To derive the
distribution of Y , we need to sum the joint distribution over Z only since X has a fixed
value, resulting in the corresponding equation. The expected value of the outcome variable
Y under the intervention do(X = x) is then:

E[Y | do(X = x)] =
∑
y

y P(Y | do(X = x))

=
∑
y

y
∑
z

P(Y | X = x, Z = z)P(Z = z)

More generally, the classical way to compute the conditional distribution P(Xk | do(xi)),
even if the model is not identifiable, is as follows :

• Step 1: Calculate the joint probability P(X1, X2, . . . , Xn) under the intervention
do(xi) using the formula obtained in equation 7:

P(X1, X2, . . . , Xn) =
∏
j ̸=i

P(Xj |Paj(xi))δxi

Where:

– Paj(xi) represents the parents of Xj when Xi is intervened with xi.

• Step 2: Marginalize P(X1, X2, . . . , Xn) to obtain P(Xk | do(xi)) by summing over
all other variables except Xk:

P(Xk | do(xi)) =
∑
X1

∑
X2

. . .
∑
Xk−1

∑
Xk+1

. . .
∑
Xn

P(X1, X2, . . . , Xn)

Of course, we can adapt these definitions in the context of continuous variables : We simply
replace sums by integrals.

Causality, or the idea of cause and effect, has a complicated history and has sparked
debates in the field of statistics and mathematics. One fundamental question is whether we
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can effectively use probability theory to address causal problems or if we need an entirely
new mathematical framework, such as the do-calculus, to handle these issues. This debate
has been ongoing for some time. As long as we are clear about the assumptions we make
regarding the impact of intervening in a system, we can estimate causal effects using the
standard Bayesian approach. In other words, it may not be necessary to introduce entirely
new mathematical tools like the do-calculus to tackle causal problems [37] [24]. As said
in [25], while it is critical to explicitly model our assumptions on the impact of intervening
in a system, provided we do so, estimating causal effects can be done entirely within the
standard Bayesian paradigm. The assumptions that underlie causal graphical models can
be effectively represented using a type of mathematical model known as PGMs. By using
PGMs, Bayesian practitioners, who are familiar with this framework, can better represent
and reason about the assumptions required for causal inference. However, one potential
downside to explicitly modeling causal questions as a single PGM is that it can be more
complex and computationally intensive compared to using the do-calculus for appropriate
re-parameterizations. The do-calculus is a mathematical tool specifically designed for causal
inference in the post-intervention world, making it more efficient in some cases.

3.5 Identification

In this section, we will define mathematically the causal effects using the do-operator and
we’ll provide some criteria for identification. Causal effects quantify the change in one
variable that results from a change in another variable. In the context of causal graphs and
SEMs, there are different types of causal effects, including direct causal effects and total
causal effects. It’s worth noting that this section is comprehensive and challenging, and it
may be opportune to avoid delving too deeply into it. Therefore, readers who are looking
for a more concise overview or are seeking to focus on other aspects of the material may
consider skipping this section. The content of this section is inspired from [15], [51], [32], [5]
[27] and [34].

3.5.1 Causal effects

Definition 5. Total causal effect [32]

Let Π = {π1, π2, . . . , πk} be the set of directed paths from X to Y , and pi be the product of
the structural coefficients along path πi. The total effect or average causal effect (ACE) of
X on Y is defined as

∑
i pi.

The reason for this additive formula and its extension to non-linear systems can best be seen
if we define the total causal effect of X on Y as the expected change in Y when X is assigned
to different values by intervention, as in a randomized experiment. The act of assigning a
variable X to the value x is represented by removing the structural equation for X and
replacing it with the equality X = x. This replacement dislodges X from its prior causes
and ensures that causality between X and Y reflects causal paths from X to Y only. The
expected value of a variable, Y , after X is assigned the value x by intervention is denoted
E[Y | do(X = x)], and the ACE of X on Y is defined as

ACE = E[Y | do(X = x+ 1)]− E[Y | do(X = x)], where x is some reference point.

In nonlinear systems, the effect will depend on the reference point, but in the linear case, x
will play no role, and we can replace the equation above with the derivative,

ACE =
∂

∂x
E[Y | do(X = x)].
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Let’s consider the causal graph presented in Figure 16. A represents the strength of a
student’s application, C is the variable indicating whether the student attends an elite college
or not, I represents the variable indicating the quality of an internship, and S represents the
salary of the student when he graduates from college. The total effect of C on S is c+ d · f ,
and that of A on S is b · (c+ d · f).

Figure 16: Causal relationships for the student case
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The structural equation associated with this graph is given by:

A = ϵA

C = b ·A+ ϵC

I = d · C + ϵI

S = c · C + f · I + ϵS

(8)

Let’s compute the total effect of C on S by means of the expectation and see if we get
back to the corresponding result : Suppose C is a binary variable taking value 1 for elite
colleges and 0 for non-elite colleges. To estimate the total effect of attending an elite college
on salary, we would hypothetically assign each member of the population to an elite college
and observe the average salary, E[S | do(C = 1)]. Then we would rewind time and assign
each member to a non-elite college, observing the new average salary, E[S | do(C = 0)].
Intuitively, the causal effect of attending an elite college is the difference in average salary,

E[S | do(C = 1)]− E[S | do(C = 0)].

The above operation provides a mathematical procedure that mimics this hypothetical (and
impossible) experiment using a structural equation model. The intervention do(C = c0)
modifies the equations in the following way:

A = ϵA

C = c0

I = d · C + ϵI

S = c · C + f · I + ϵS
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The corresponding causal graph is displayed in Figure 17. Notice that back-door paths, due
to common causes, between C and S have been cut, and as a result, all unblocked paths
between C and S now reflect the causal effect of C on S only.

Figure 17: Causal relationships for student case after intervention C = c0
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We assume model variables have been standardized to mean 0 and variance 1, implying that
E[ϵi] = 0 for all i. We see that setting C to c0 gives the following expectation for S:

E[S | do(C = c0)] = E[c · C + f · I + ϵS ]

= c · E[C] + f · E[I] + E[ϵS ]
= c · c0 + f · E[d · C + ϵI ]

= c · c0 + f · d · c0 + f · E[ϵI ]
= c · c0 + f · d · c0.

As a result,

E[S | do(C = c0 + 1)]− E[S | do(C = c0)] = c+ f · d

which coincides with the initial result.

Definition 6. Direct causal effect [32]

We saw that the total causal effect of one variable on another encompasses all causal path-
ways, including both direct and indirect links, that lead to changes in the dependent variable.
It considers the effect caused only by altering the independent variable. Conversely, the direct
causal effect of one variable on another is the change that occurs in the dependent variable
when the independent variable is altered, while keeping all other variables constant. This
means that we’re isolating the impact of the independent variable to observe how it directly
affects the dependent variable.

We thus define the direct causal effect of X on Y is as

DCE = E[Y | do(X = x+ 1, Z = z)]− E[Y | do(X = x, Z = z)],

where Z is a set containing all variables other than X and Y , x is some reference point, and
z is a set of reference values. In nonlinear systems, the effect will depend on the reference

39



Causality Approach Applied to Clean-Tech Equities

point, but in the linear case, x will play no role, and we can replace the equation above with
the derivative,

DCE =
∂

∂x
E[Y | do(X = x, Z = z)].

Let’s consider again the causal graph given by figure 16. We want to compute, by the
means of the expectation, the direct causal effect of C on S, which is obviously equal to c.
”keeping all other variables constant” can be simulated by intervening on all variables other
than C and S and assigning them an arbitrary set of reference values. Doing so removes
all causal links in the model other than those leading into S. As a result, all links from C
to S other than the direct link will be removed. Figure 18 shows the path diagram after
intervention on all variables other than C and S.

Figure 18: Causal relationships for student case after intervention C = c0, A = a, I = i
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Now, the direct effect of C on S can be defined as E[S | do(C = c0 + 1, Z = z)] − E[S |
do(C = c0, Z = z)], where Z is a set containing all model variables other than C and S, and
{c0 ∪ z} a set of reference values. We have then :

E[S | do(C = c0, I = i, A = a)] = E[c · C + f · I + ϵS ]

= c · E[C] + f · E[I] + E[ϵS ]
= c · c0 + f · i

As a result,

E[S | do(C = c0 + 1, I = i, A = a)]− E[S | do(C = c0, I = i, A = a)] = c

In earlier sections, we highlighted the necessity for the existence of a singular solution
concerning the causal coefficients. This solution should be expressible in relation to either
the covariance matrix or the probability distribution encompassing the observed variables.
To attain the crucial aspect of identification – that is, the process of estimating structural
coefficients through observed data points – it becomes imperative to introduce the concepts
of partial covariance and partial regression coefficients.
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Definition 7. Wright’s rule

Let Π = {π1, π2, ..., πk} denote the paths between X and Y that do not trace a collider. Recall
that a collider is a node that has incoming arrows from two or more other nodes. Let pi be
the product of structural coefficients along path πi. Then the covariance between variables
X and Y , denoted as σY X , is equal to

∑
i pi.

Consider the causal graph given in Figure 16. We can compute the covariance between
A and S as follows: First, we note that there are two paths between A and S and neither
trace a collider, π1 = A → C → S and π2 = C ← A → C → I → S. The product of
the coefficients along these paths are p1 = b · c and p2 = b · d · f . Summing these products
together we obtain the covariance between A and S, σAS = b · (df + c).

Consider now another causal graph given by figure 19.

Figure 19: Causal graph illustrating Wright’s rule

A

B C

D E

F

a b

h c

e

i

f

g
d

The paths between A and E that do not trace a collider are : A→ C → E and A→ B →
D → E, since F is a collider. Summing the products of coefficients along these paths gives
σAE = a · h · i+ b · c.

Now that we have explored how to calculate the covariance between two variables within
a causal graph using Wright’s rule, let’s proceed to define three key concepts: partial covari-
ance, partial correlation, and partial regression. These definitions are crucial as they will
contribute to our understanding of the identification criteria.
Let X and Y be two random variables in a causal graph, Z a set of random variables. We
denote σXY as the covariance between X and Y , ρXY as the correlation between X and Y
and βY X as the regression coefficient of Y on X. To express the partial covariance, σY X|Z ,
partial correlation, ρY X|Z , or regression coefficient, βY X|Z , of Y on X given Z in terms of
structural coefficients, we can first apply the following reductions before using Wright’s rule.
When Z is a singleton, these reductions are:

ρY X|Z =
ρY X − ρY ZρXZ√
(1− ρ2Y Z)(1− ρ2XZ)

σY X|Z = σY X −
σY ZσZX

σ2
Z

βY X|Z =
σY
σX

ρY X − ρY ZρZX

1− ρ2XZ

When Z is a singleton and S a set, we can reduce ρY X|ZS , σY X|ZS , or βY X|ZS as follows:
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ρY X|ZS =
ρY X|S − ρY Z|SρXZ|S√
(1− ρ2Y Z|S)(1− ρ

2
XZ|S)

σY X|ZS = σY X|S −
σY Z|SσZX|S

σ2
Z|S

βY X|ZS =
σY |S
σX|S

ρY X|S − ρY Z|SρZX|S
1− ρ2XZ|S

Let’s consider the causal graph given in Figure 16. Then , we can compute the regression
coefficient of S on C given A as follows :

βSC|A =
σS
σC

ρSC − ρSAρCA

1− ρ2CA

=
1

1

(c+ d · f)− b2 · (df + c)

1− b2

=

(
1− b2

)
(c+ df)

1− b2
= c+ df

= σCS

= ACE (C → S)

Now, let’s consider the causal graph given in Figure 19 and let’s compute the regression
coefficient of E on C given D :

βEC|D =
σE
σC

ρEC − ρEDρCD

1− ρ2CD

=
1

1

c+ bahi− hab · (i+ cbah)

1− (hab)
2

=
c ·

[
1− (hab)

2
]

1− (hab)
2

= c

= DCE (C → E)

We note that if X and Y are d-separated given a set Z, then σXY |Z = ρXY |Z = βXY |Z =
βY X|Z = 0.

3.5.2 Identification with admissible sets : Backdoor and Single-door criteria

Identification refers to the capacity of a model to uniquely estimate the causal effects or
parameters of interest from observed data. A model parameter is considered identified if
it can be uniquely determined based on the probability distribution of the variables within
the model. When a parameter is identified, it can be estimated accurately from data. On
the other hand, if a parameter is not identified, there are multiple potential values for that
parameter that could match the given dataset, making it impossible to estimate it reliably.
For example, consider the model given in Figure 16. We showed, using Wright’s rule, that
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the causal effect of C on S, ACE (C → S), is identified and equal to βSC|A = σS

σC

ρSC−ρSAρCA

1−ρ2
CA

.

Consider now the model given by Figure 13. The parameter ρ is not identified since, using
Wright’s rule, we have σSG = ρ ·CSG, which will provide infinite solutions for ρ. When every
parameter in a model can be clearly determined, the whole model is considered identified.
But if just one parameter can’t be clearly figured out, then the whole model is unidentified.

Their are several algorithms to check if structural models are identified. These algorithms
try to find the best values for the parameters based on the data by minimizing a cost function.
However, if a model is unidentified, the program can’t give good estimates and warns about
it. Relying only on those algorithms has some problems. For example, if the initial values
for parameters are not good, the program might wrongly say the model is unidentified. Also,
it doesn’t tell us exactly which parameters are causing the issue. Instead of relying solely
on software, we can provide criterion to see if parameters are identified. This method will
help us express identified parameters in terms of partial regression coefficients and therefore
in terms of the population covariance matrix. As a result, we will be able to estimate their
values from the sample covariance matrix with a small set of data, and these estimates stay
consistent as long as the model reflects the data generation process. This approach helps
avoid problems related to bad initial parameter values, lets us identify parameters even if
the whole model is not identified, and helps us determine parameter identifiability before
collecting data.

Proposition 2. The coefficients of a structural equation, Y = α1X1+α2X2+ . . .+αkXk+
UY , are identified and can be estimated using regression if the error term, UY , is independent
of X = {X1, X2, . . . , Xk}.

One needs to distinguish between structural equations, in which the parameters α1, . . . , αk

represent causal effects, and regression equations, in which the coefficients β1, . . . , βk rep-
resent regression slopes. The equation Y = β1X1 + β2X2 + ϵY is a regression equation,
where β1 = ∂

∂X1
E[Y | X1, X2], β2 = ∂

∂X2
E[Y | X1, X2], and ϵY = Y − β1X1 − β2X2 is the

residual term. The equation is not necessarily structural since β2 is not necessarily equal to
the direct effect of X2 on Y , ∂

∂X2
E[Y | do(X1, X2)]. Recall that the total effect of X2 on Y

is ∂
∂X2

E[Y | do(X2)]. In Figure 16, we can have S = β1C + β2A with β2 ̸= 0 but the direct
causal effect of A on S is equal to 0.

In the context of regression analysis, the incorporation of a set of variables, denoted
as Z, is commonly referred to as adjustment for Z. This practice raises a fundamental
point: we can systematically determine whether a specific set of variables is suitable for this
adjustment. This consideration becomes particularly relevant when our aim is to identify
a structural coefficient (or direct causal effect). In other words, it is crucial to establish
whether introducing a variable set Z would lead to the regression coefficient of Y on X being
identical to the desired structural coefficient DE (X → Y ). This matter can be addressed
using a specific criterion outlined below, which facilitates a visual evaluation through causal
graphs.

Theorem 1. Single-door criterion : Admissible set for direct causal effect

Let G be DAG in which α is the structural coefficient associated with arrow X → Y , and
let Gα denote the graph that results when X → Y is deleted from G. The coefficient α is
identifiable if there exists a set of variables Z such that :

• Z contains no descendant of Y , and

• Z d-separates X from Y in Gα.

43



Causality Approach Applied to Clean-Tech Equities

If Z satisfies these two conditions, then α is equal to the regression coefficient βY X|Z . Con-
versely, if Z does not satisfy these conditions, then βY X|Z is not a consistent estimator of
α.

Moving forward, we shall introduce a similar criterion for identifying the total causal
effect ACE (X → Y ) :

Theorem 2. Back-door criterion : Admissible set for total causal effect
For any two variables X and Y in a DAG G, the total effect of X on Y is identifiable if
there exists a set of variables Z such that :

• No member of Z is a descendant of X; and

• Z d-separates X from Y in the subgraph GX formed by deleting from G all arrows
emanating from X.

Moreover, if these two conditions are satisfied, then the total effect of X on Y is given by
βY X|Z .

Figure 20: Causal graphs illustrating the identifiability criteria
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Let’s consider the causal graphs given by Figure 20. We want to check if the causal
effect of C on D, that is d is identifiable. In Figure 20a, we see that B blocks the path
C ← A → B → D and C is d-separated from D by B in Figure 20b. Therefore, d is
identified and equal to βDC|B . This is to be expected since C is independent of ϵD in the
structural equation, D = d ·C+ b ·B+ ϵD. The theorem above tells us, however, that A can
also be used for adjustment since A also d-separates C from D in Figure 20b, and we obtain
d = βDC|A. We will see in a subsequent section, however, that the choice of B is superior
to that of A in terms of estimation power. Consider, however, Figure 20c. A satisfies the
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criterion but B does not. Being a collider, B unblocks the path, C ← A→ B ← E → D, in
violation of the theorem, leading to bias if adjusted for. In conclusion, d is equal to βDC|A in
Figures 20a and 20c. However, d is equal to βDC|B in Figure 20a only. Returning to Figure
19, let’s verify whether the direct causal effect ACE (C → E) is identifiable. We observe
that E is d-separated from C given D when we eliminate the edge from C to E. In fact,
all the paths between C and E are blocked, either because they pass through the collider
F or they pass through D, which is included in the conditioning set. This confirms that
βEC|D = c = DCE (C → E).

It is not uncommon to encounter causal models where there are no admissible sets satis-
fying the single-door criterion or back-door criterion. In such cases, it becomes challenging
to identify direct and total causal effects. However, instrumental variables, a specific type
of variable, can be employed to help us identify the direct causal effects, as we will explore
in the following subsection.

3.5.3 Identification with instrumental variables

Instrumental variables (IV) play a crucial role in identifying causal effects when dealing with
endogeneity and omitted variable bias. An instrumental variable is a variable that is corre-
lated with the treatment variable of interest, but it is not directly related to the outcome
variable except through its influence on the treatment. IVs are particularly useful in situa-
tions where randomization is not feasible, and the presence of unobserved confounders makes
causal inference challenging. It addresses potential issues of endogeneity and confounding in
observational studies when estimating causal relationships between variables. Endogeneity
refers to situations where the relationship between a treatment variable and an outcome
variable is confounded by unobserved factors or reverse causation. A treatment variable
represents a variable that is manipulated or controlled in an experiment or study. It is the
independent variable that researchers or analysts are interested in studying to understand
its effect on other variables. In a causal graph, a directed arrow points from the treat-
ment variable to the outcome variable to indicate the causal relationship being investigated.
The treatment variable is the cause or the input that influences the outcome variable. An
outcome variable represents a variable that is affected by the treatment variable. It is the
dependent variable whose changes are being observed or measured based on variations in
the treatment variable. In a causal graph, the outcome variable is depicted with a directed
arrow pointing towards it, indicating that it is influenced by the treatment variable.

Figure 21 illustrates the various types of variables used when modeling a situation. This
visual representation provides a clear overview of the different types of variables involved in
the model.
The instrumental variable is used to indirectly estimate the causal effect of a treatment
variable on an outcome variable when a direct causal relationship cannot be easily established
due to confounding.

Example 2. Scenario: Education and Income
Treatment Variable (Endogenous Variable): Education level (years of schooling com-
pleted by an individual) is the treatment variable in this scenario. We want to understand
how changes in education level impact an individual’s income.

Outcome Variable (Endogenous Variable): Income is the outcome variable. We want
to determine how education influences an individual’s income.

Instrumental Variable (Exogenous Variable): Let’s say we use ”Proximity to a Col-
lege” as the instrumental variable. The idea is that proximity to a college affects education
(people living closer to a college are more likely to attend), but it does not have a direct effect
on income except through its influence on education.
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Figure 21: Z is an instrumental variable, C is a confounder, T is the treatment and Y is
the outcome variable

T

Z

C Y

1. Causal path (direct effect):

Education→ Income

A higher level of education is expected to lead to higher income due to increased skills
and qualifications.

2. Confounding path (indirect effect):

Proximity to college→ Education→ Income

Proximity to a college might influence education levels, but it might also indirectly
influence income through factors like access to resources, job opportunities, and other
confounding variables.

The direct causal relationship between education and income can be confounded by factors
like natural ability, family background, and individual motivation. These confounders can
lead to biased estimates of the education-income relationship.

Using the intrumental variable:

1. We use Proximity to college as the instrumental variable because it is correlated with
education but is not directly related to income, except through its impact on education.

2. In the first stage of the analysis, we regress education on proximity to college. This
estimates the effect of proximity to college on education.

3. In the second stage, we regress income on proximity to college. This gives us an
estimate of the causal effect of education on income while controlling for the potential
confounding effects.

By using an instrumental variable like Proximity to College, we aim to mitigate the endo-
geneity and confounding issues that could affect the estimation of the causal relationship
between education and income. This approach helps us separate the true causal effect of
education on income from the potential biases introduced by unobserved confounders.

In Figure 22a , no admissible set exists for α and it cannot be estimated using regression.
However, using Wright’s equations we see that σY Z = θα and σXZ = θ. As a result,
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Figure 22: Instrumental variable examples
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isfying identifiability criterion
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(c) Graph 3: Conditional IV not
satisfying identifiability criterion

α = σY Z

σXZ
. In this case, we were able to identify α using the instrumental variable Z. We will

provide a graphical method that allows us to quickly determine whether a given variable is
an instrumental variable by inspecting the path diagram. Additionally, we will introduce
conditional instrumental variables and instrumental sets, which will significantly increase
the identification power of the instrumental variable method. The following is a formal
definition of an instrumental variable :

Definition 8. Instrumental variable For a structural equation, Y = α1X1+. . .+αkXk+
UY , Z is an instrumental variable if :

• Relevance : Z is correlated with X = {X1, . . . , Xk}

• Exogeneity: Z is uncorrelated with UY .

The following graphical characterization rectifies such ambiguities and allows us to determine
through quick inspection of the path diagram whether a given variable is an instrument for
a given parameter. Moreover, it provides a necessary and sufficient condition for when αi

in the equation Y = α1X1 + . . .+ αkXk + UY is identified by βY Z

βXiZ
.

Proposition 3. A variable Z qualifies as an instrumental variable for coefficient α from X
to Y if:

1. Z is d-separated from Y in the subgraph Gα obtained by removing edge X → Y from
G, and

2. Z is not d-separated from X in Gα.

Moreover, if these two conditions are satisfied, then α = βY Z

βXZ
.

In Figure 22a, Z is d-separated from Y when we remove the edge associated with α, but it is
d-connected with X. As a result, Z is an instrumental variable for α, and we have α = βY Z

βXZ
.
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Consider Figure 22b. In this graph, Z is not an instrument for α because it is d-connected
to Y through the path Z → C → Y , even when we remove the edge associated with α.
However, if we condition on C, this path is blocked, i.e. C d-separates Z from Y but it does
not d-separate Z from X. Thus, we see that some variables may become instruments by
conditioning on covariates.

Definition 9. A variable Z is a conditional instrumental variable given a set W for coeffi-
cient α (from X → Y ) if:

1. W contains only non-descendants of Y ,

2. W d-separates Z from Y in the subgraph Gα obtained by removing edge X → Y from
G, and

3. W does not d-separate Z from X in Gα.

Moreover, if these conditions are satisfied, then α =
βY Z|W
βXZ|W

.

In Figure 22b, we saw that Z is a conditional instrument for α given C. This means that

α =
βY Z|C
βXZ|C

. However, in Figure 22c, Z is not an instrument given C because conditioning

on C opens the path Z → X → C ←W → Y (since C is a collider for this path).

Finally, it may be possible to use several variables in order to identify a set of parameters
when, individually, none of the variables qualifies as an instrument. In Figure 23, there are
no admissible sets in order to identify α1 and α2. In fact, C1 and C2 are descendants of
Y . X1 is not d-separated from Y in the Gα1

(graph with arrow X1 → Y removed) given
neither Z1 nor Z2, since the path X1 ← C1 ← Y is active. Similarly, X2 is not d-separated
from Y in Gα2 (graph with arrow X2 → Y removed), given neither Z1 nor Z2, since the
path X2 ↔ X1 → Y is active. Thus, there exist no admissible sets for identification due to
a violation of Theorem 1. Moreover, neither Z1 nor Z2 are instruments since they are not d-
separated from Y in Gα1

and Gα2
respectively (consider the paths Z1 → Z2 → X2 → Y and

Z2 ← Z1 → X1 → Y , which are both active). Furthermore, Z1 and Z2 are not conditional
instrumental variables given C1 and C2 respectively, since C1 and C2 are descendants of Y .
However, if we use Wright’s equations, we have:

σZ1Y = σZ1Z2 · σZ2X2 · α2 + σZ1X1 · α1

σZ2Y = σZ2Z1 · σZ1X1 · α1 + σZ2X2 · α2

which is equivalent to:

σZ1Y = σZ1X1 · α1 + σZ1X2 · α2

σZ2Y = σZ2X1 · α1 + σZ2X2 · α2

Solving these two linearly independent equations for α1 and α2 identifies the two parameters.
We call a set of variables that enables a solution in this manner an instrumental set.

Definition 10. Instrumental set For a path πh that passes through nodes Vi and Vj,
let πh[Vi . . . Vj ] denote the sub-path that begins with Vi, ends with Vj, and follows the same
sequence of edges and nodes as πh does from Vi to Vj. Then {Z1, Z2, . . . , Zk} is an instru-
mental set for the coefficients α1, . . . , αk associated with edges X1 → Y, . . . ,Xk → Y if the
following conditions are satisfied:

1. Let G be the graph obtained from G by deleting edges X1 → Y, . . . ,Xk → Y . Then, Zi

is d-separated from Y in G for all i /∈ {1, 2, . . . , k}.
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2. There exist paths π1, π2, . . . , πk such that πi is a path from Zi to Y that includes edge
Xi → Y , and if paths πi and πj have a common variable V , then either:

(a) both πi[Zi . . . V ] and πj [V . . . Y ] point to V , or

(b) both πj [Zj . . . V ] and πi[V...Y ] point to V ,

for all i, j ∈ {1, 2, . . . , k} and i ̸= j.

The following theorem explains how instrumental sets can be used to obtain closed form
solutions for the relevant coefficients.

Theorem 3. Let {Z1, Z2, . . . , Zn} be an instrumental set for the coefficients α1, . . . , αn

associated with edges X1 → Y, . . . ,Xn → Y . Then the linear equations,

σZ1Y = σZ1X1α1 + σZ1X2α2 + . . .+ σZ1Xnαn

σZ2Y = σZ2X1α1 + σZ2X2α2 + . . .+ σZ2Xnαn

...

σZnY = σZnX1α1 + σZnX2α2 + . . .+ σZnXnαn,

are linearly independent for almost all parameterizations of the model and can be solved to
obtain expressions for α1, . . . , αn in terms of the covariance matrix.

Figure 23: Using instrumental set to identify causal effect
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X1 X2
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Returning to Figure 23, we can see graphically that the set {Z1, Z2} is an instrumental
set for the coefficients α1 and α2. In fact, both conditions are satisfied:

• Both Z1 and Z2 are d-separated from Y when we remove the paths X1 → Y and
X2 → Y .

• If we consider the paths π1 : Z1 → Z2 → X2 ↔ X1 → Y and π2 : Z2 ← Z1 →
X1 ↔ X2 → Y , one common variable between these paths is X1, and we have that
π1[Z1, . . . , X1] and π2[X1, . . . , Y ] both point to X1.

Furthermore, due to Theorem 3, we obtain the following linear independent equations :

σZ1Y = σZ1X1 · α1 + σZ1X2 · α2

σZ2Y = σZ2X1 · α1 + σZ2X2 · α2
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Solving the equations identifies α1 and α2 giving :

α1 =
σZ2X2

· σZ1Y − σZ1X2
· σZ2Y

σZ2X2
· σZ1X1

− σZ1X2
· σZ2X1

α2 =
σZ1Y − σZ1X1

· α1

σZ1X2

Till now, we have learned about the process of determining structural coefficients using
admissible sets and instrumental variables. To establish the overall identifiability of the
model, it becomes imperative to validate the identifiability of each individual causal effect.
This task could become time-consuming and resource-intensive when dealing with intricate
models. In this regard, we will introduce a criterion that offers a graphical and direct method
for assessing whether an entire model is identifiable, thus bypassing the need to verify the
identifiability of each parameter.

Theorem 4. Model identification

If a causal model contains a set of variables and associated causal relationships that do not
form a bow-arc, then the model is identifiable as a whole. In other words, the absence of bow-
arcs within the model indicates its overall identifiability. A bow-arc is a specific configuration
within a causal model where a variable, known as the tail, has multiple arrows, or causal
pathways, pointing towards it. These arrows, or arcs, collectively resemble the shape of a
bow. Such a configuration complicates the identifiability of the model, as the influence on
the tail variable is not uniquely attributable to any single causal pathway.

Figure 24: Example of a bow-arc
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Y

3.6 Coherent Scenarios and treatment effects

In this subsection, we delve into various metrics that enable us to quantitatively evaluate
the impact of interventions, allowing us to measure the causal strength of a variable T ,
which we refer to as the treatment variable on the target variable Y . To illustrate this
concept, consider an example: suppose we aim to assess the effect of a medication T on a
patient’s heart rate Y , while keeping environmental conditions X constant (such as libido
levels and lifestyle). In such scenarios, conducting an intervention is necessary. We begin by
setting the value of T to t0 while conditioning X on x, and we observe the value of Y , and
then perturbing the variable T to t1, we record the new value of Y . This process is repeated
multiple times, and we calculate the average of the differences between post-intervention and
pre-intervention values of Y . This calculation yields a metric that quantifies the causal effect
of T on Y in the form of an expectation, known as the Heterogeneous Treatment Effect. We
will provide explanations of several metrics that will assist us in creating coherent scenarios
and addressing what-if questions. It is essential to note that when we discuss interventions,
we are referring to the do() operator introduced earlier. We follow [41] and [5].
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3.6.1 Heterogeneous treatment effect (HTE)

The HTE [41] represents the variation in treatment effects across different levels of covariates.
It measures how the treatment effect differs based on the values of a set of covariates X.

HTE(x) = E
[
Y (t1)− Y (t0) | X = x

]
(9)

= E
[
Y | do(T = t1), X = x

]
− E

[
Y | do(T = t0), X = x

]
(10)

Where:

• HTE(x) is the heterogeneous treatment effect for a specific value of covariates x.

• E denotes the expectation.

• Y (t1) represents the potential outcome when the treatment has the fixed value t1.

• Y (t0) represents the potential outcome when the treatment has fixed value t0.

3.6.2 Heterogeneous marginal effect

If treatments are continuous, then one might also be interested in a local effect around a
treatment point. This means estimating a local gradient around a treatment vector condi-
tional on observables :

HME(x) = E
[
∇tY (t) | X = x

]
(11)

3.6.3 Average treatment effect (ATE)

The ATE represents the average difference between potential outcomes for the entire popu-
lation, regardless of covariate values. It quantifies the overall impact of the treatment.

ATE = E
[
Y (t1)− Y (t0)

]
(12)

≈ ∂

∂t
E
[
Y | do(T = t)

]
(13)

The ATE is an approximation (via Taylor) of the total causal effect. More details about the
Average Treatment Effect (ATE) can be found in the following part of the paper.

3.6.4 Conditional average causal effect (CATE)

The CATE focuses on the average treatment effect for a specific value or set of values of the
covariates X. It provides a more nuanced understanding of treatment effects.

CATE =
∂

∂t
E
[
Y | do(T = t), X = x

]
(14)
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4 Case study and results

In this section, we investigate the practical application of our methodology to generate co-
herent scenarios and extract valuable insights. Our focus is on a case study involving seven
different clean-tech indices: hydrogen-sector based leading clean-techs, chemicals, agribusi-
ness, energy, gas, environment, and solar. We will examine their performance within the
context of macroeconomic variables.

4.1 Methodology and approach

For the hydrogen-sector based leading clean-techs index, we have predominantly chosen
american clean-tech companies with a purity rate exceeding 50%. These companies are
known for their commitment to clean energy solutions within the hydrogen sector. Their
operations include the development of cutting-edge technologies such as advanced electrol-
ysis systems, hydrogen refueling infrastructure, and energy storage solutions. The selected
companies boast a substantial market capitalization, ensuring that their historical valuation
trends can be observed over an extended period. Importantly, these clean-techs align with
the criteria outlined in the IRA, making them eligible for tax credits under the IRA project.

In the chemicals index, we have focused on american clean-tech companies with a purity
rate exceeding 50%. These companies specialize in developing clean and sustainable solutions
within the chemical industry. Their innovations include eco-friendly production methods,
environmentally conscious chemicals, and reduced environmental impact throughout the
entire chemical manufacturing process. The chosen clean-techs have a significant market
capitalization, allowing for a comprehensive analysis of their historical valuation trends.
Moreover, they meet the criteria of the IRA, making them potential beneficiaries of tax
credits provided by the IRA project.

Within the agribusiness index, our selection comprises american clean-tech companies
with a purity rate surpassing 50%. These companies contribute to sustainable agriculture
and food production through advancements in precision farming, eco-friendly fertilizers,
and technologies promoting environmental conservation in agriculture. The chosen clean-
techs possess substantial market capitalization, enabling the observation of their historical
valuation trends. Additionally, they meet the criteria of the IRA, making them eligible for
tax credits within the framework of the IRA project.

The energy index includes american clean-tech companies with a purity rate exceeding
50%. These companies are dedicated to clean energy production and distribution, employing
technologies such as renewable energy sources, energy storage solutions, and grid optimiza-
tion. With a significant market capitalization, the selected clean-techs allow for the analysis
of their historical valuation trends. Furthermore, they qualify for tax credits under the IRA,
aligning with the criteria for potential benefits from the IRA project.

In the gas index, we have chosen american clean-tech companies with a purity rate above
50%. These companies specialize in clean gas production and utilization, with advancements
in extraction, storage, and applications across various industries. The selected clean-techs
exhibit a substantial market capitalization, facilitating the examination of their historical
valuation trends. Additionally, they meet the criteria of the IRA, making them eligible for
tax credits provided by the IRA project.

For the environment index, our selection features american clean-tech companies with
a purity rate surpassing 50%. These companies focus on a broad spectrum of environmen-
tal clean-tech solutions, including waste management, pollution control, and initiatives for
preserving and restoring natural ecosystems. The chosen clean-techs possess a significant
market capitalization, enabling the analysis of their historical valuation trends. Moreover,
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they meet the criteria of the IRA, making them eligible for tax credits within the framework
of the IRA project.

The solar index comprises american clean-tech companies specializing in solar energy
solutions, with a purity rate exceeding 50%. These companies are involved in the devel-
opment of solar panels, solar energy storage systems, and technologies for harnessing solar
power across various applications. With a substantial market capitalization, the selected
clean-techs facilitate the examination of their historical valuation trends. Additionally, they
qualify for tax credits under the IRA, aligning with the criteria for potential benefits from
the IRA project.

Our methodology hinges on a systematic approach to understanding the impact of
macroeconomic factors on these clean-tech indices. Here’s a breakdown of our method-
ological framework:

1. Data collection: We begin by gathering data from various sources, compiling the
macroeconomic factors susceptible to driving the clean-tech indices’ valuation, and
collecting, for each sector, various clean-tech stock performance data from 2007 to
2023. This data is recorded on a weekly basis. The macroeconomic factors include: oil
price, US interest rate, EU interest rate, nickel price, carbon price, index of technology
company stocks, index of semiconductor and electronic company stocks, inflation, and
gas price.

2. Data discretization: After meticulously preparing and standardizing the data, the
next crucial step involves discretizing values into three distinct levels. Level 0 cor-
responds to the first quartile, level 1 to the second quartile, and level 2 to the third
quartile. This discretization aligns with our approach of working with discrete-time
Bayesian networks, where values are confined to a discrete space. The significance of
this process lies in its role in facilitating the visualization of intervention effects. For
example, if the price of oil shifts from level 1 to level 2, we aim to understand the
ensuing repercussions on the value of the Hydrogen Equity index. While continuous-
time Bayesian networks may seem ideal, they inherently introduce significant practical
complexity. For those interested in a comprehensive introduction to continuous-time
Bayesian networks, additional details are available in the annex. However, delving
further into continuous-time networks within a continuous state space would deviate
substantially from our primary focus and potentially introduce unwarranted intricacy.
It’s essential to emphasize that our primary focus centers around static scenarios.
We don’t engage in predicting future outcomes at specific time horizons. Instead,
we specialize in generating scenarios tailored to address causal queries, i.e., ”what-
if” questions. By revisiting historical data, we assess the impact of perturbations on
each equity sector-based index’s present-day value. This approach holds particular
relevance in clustering, where we aim to identify the three (or two) factors with the
most substantial influence on our variable of interest. Subsequently, we quantify the
sensitivity of our variable to these factors, ultimately enabling the categorization of
American clean-tech companies into clusters based on their responsiveness to specific
factors.

3. Causal graph construction: Following careful data preparation and visualiza-
tion, we progress to constructing causal graphs using various algorithms such as
Hill-climbing, Chow-Liu, Regression-based, NTE, PCMCI, Granger Causality, Di-
rectLinGAM, GES, and an ensemble model combining PCMCI+, Granger, and NTE
simultaneously. Each algorithm reveals a unique dependency structure among macroe-
conomic factors, resulting in the creation of nine distinct causal graphs. Our focus will
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be on three types of results from three algorithms: ensemble, regression-based, and
DirectLinGAM. Additionally, we’ll provide a concise overview of a dynamic causal
structure obtained through hill-climbing. Here, ”dynamic” refers to a series of causal
graphs, each corresponding to a specific time period. For instance, when analyzing the
hydrogen equity index, we observe distinct causal relationships in 2020-2021 compared
to 2008-2009. This reflects the evolving interdependencies during significant periods
such as the financial crisis of 2008 and the COVID-19 pandemic in 2020. Causality
algorithms may inherently produce causal relationships that initially appear counterin-
tuitive or illogical due to their reliance on data, which may exhibit suboptimal quality.
Consequently, expert oversight is necessary to ensure that the resulting causal models
align with domain knowledge. In our specific case, we enforce a critical constraint:
each sector-based clean-tech equity index, as a target outcome variable, exclusively
serves as a child node within these causal structures, indicating that it has no off-
spring. Furthermore, specific constraints are imposed to reinforce the integrity of the
causal relationships:

• US rate and EU rate, representative of american and european interest rates, are
explicitly prevented from being child nodes of Techno stocks and Semi conduct,
corresponding to technological and semiconductor stock indices, respectively.

• The variable Inflation is only permitted as a child node if its sole parent is
Oil price.

4. Structural equation modeling (SEM): After establishing the causal graphs, the
subsequent critical phase involves estimating direct causal effects through SEM. This
pivotal step is executed using the Semopy library, enabling the construction of struc-
tural equations following the topological order of the variables and subsequent estima-
tion of the structural coefficients. These estimations are conducted for each distinct
causal graph. As we examine the graphs, we identify variables serving as confounders
and instrumental variables. These variable types, as discussed in the theoretical sec-
tion of this paper, play a crucial role in the identifiability criteria. We recall that
identification refers to the ability to estimate causal effects (structural coefficients,
given that we are working with linear functions) using data.

5. Scenario generation and analysis: Finally, we can embark on the critical phase
of generating coherent scenarios. These scenarios play a pivotal role in addressing
causal queries, shedding light on questions such as : how would the taste of my cake
have been affected if I had increased the flour rate by 100g? In a causal model, these
scenarios arise from interventions on variables, enabling us to observe the ripple effects
of perturbations on the other variables throughout the graph. We recall that an in-
tervention involves making a random variable deterministic by assigning it a specified
value. Subsequently, the causal model itself undergoes modification (remember that
intervening on a variable in a graph leads to cutting all the arrows pointing towards
it), and as each causal model corresponds to a joint probability distribution, we can
derive a post-intervention distribution known as the counterfactual (hypothetical) dis-
tribution [20], [47]. This distribution, distinct from the pre-intervention distribution,
is obtained using the three do-calculus rules introduced in the theoretical section of
our paper. We have seen so far that the do() operator serves as the central tool of
the do-calculus, akin to a new calculus algebra on the space of random variables, fa-
cilitating interventions. Once the post-intervention distribution is obtained, we are
able to compute order moments such as post-intervention expectations and standard
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deviations. Furthermore, we can perform various operations typical of probability dis-
tributions, such as simulation and estimation. As a result, metrics based on these
post-intervention order moments can be derived, aiding in the assessment of counter-
factual questions. Similar to how expectation provides insight into the average of a
random variable, post-intervention expectations offer an interpretation of the average
of a target variable after we have perturbed the graph. Our focus lies on three key
metrics for answering causal queries: Average treatment effect, Greatest causal influ-
ence (GCI), and average causal effect. While our framework encompasses several other
metrics, these three are pivotal for our study. Here’s a brief overview of each:

1. Average treatment effect: ATE, introduced in the previous section, quanti-
fies the average difference in the outcome variable between the post-intervention and
pre-intervention states, providing a general measure of the intervention’s impact. For
example, let’s consider the impact on our hydrogen equity index when we modify the
price of oil in the causal model. If we intervene by increasing the price of oil from level
1 to level 2, we generate a new post-intervention distribution. From this distribution,
we can simulate the counterfactual variable ”hydrogen equity index” multiple times
and calculate a post-interventional expectation. The ATE is then determined by the
difference between this post-intervention expectation and the pre-intervention expec-
tation. To illustrate, if the ATE is -0.26, it implies that, on average, the hydrogen
equity index would decrease by 26% after we have perturbed the model by intervening
on oil price.

2. Greatest causal influence: GCI identifies the variable with the most significant
influence on the outcome variable following an intervention, helping pinpoint the pri-
mary driver of observed changes. The GCI is not necessarily the variable that has the
strongest causal effect on our target since the GCI is obtained by multiple interven-
tions and therefore acts as a ”local” influence. On the opposite, the causal effect, as we
have seen it in the theoretical section of our paper, is identified with partial regression
coefficients which provide an ”overall” causal effect over the entire data.

3. Average causal effect : ACE represents the average change in the outcome
variable resulting from the intervention, offering a comprehensive understanding of
the overall causal impact.

While our framework incorporates numerous other metrics, these three metrics form
the core of our analytical approach, allowing us to gain meaningful insights into the
causal relationships within the clean-tech sector-based equity indices.

Our algorithm, coded in Python, is designed to automate this comprehensive process
systematically. The results of our analysis will be presented in the context of clean-tech
sector-based indexes. This versatile algorithm is not limited to clean-tech alone and can be
applied to a wide range of causal analyses across various domains.

4.2 Causal discovery and structural coefficients

In the following sections, we will present and analyze the various causal graphs obtained
for the hydrogen-based clean-techs equity index. Of course, similar causal graphs can be
obtained for the other sector-based clean-techs equity indices. Given the comprehensive
nature of the algorithms employed, we will not delve into every algorithm used, as such an
exposition would be exhaustive and potentially unengaging.

We will focus on the causal graphs derived from the Regression-based approach, the en-
semble model integrating NTE, Granger, and PCMCI+, as well as DirectLiNGAM. More-
over, we have devised a method for constructing a dynamic Bayesian network, effectively a
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causal graph that evolves discretely over time (with one-year intervals). Consequently, we
will unveil two causal graphs, each established during a distinct period. For example, we will
explore the graph covering the year 2008-2009 and the graph covering the year 2019-2020.
This approach allows us to decipher the intricate interdependencies between factors, taking
into account the unique characteristics of each period, such as the global financial crisis
of 2008 and the COVID-19 pandemic crisis in 2020. Each edge within the causal graph is
associated with a weight, representing structural coefficients or direct causal effects. These
coefficients are estimated by the Semopy library using the single-door criterion, defined in
Theorem 1. We recall that the direct causal effect of a variable X on a variable Y is given,
using the do() operator, by:

DCE =
∂

∂x
E[Y | do(X = x, Z = z)],

where Z is the set of variables in the causal model containing all the variables other than
X and Y . Intuitively, we can justify this relation with a simple logic: For instance, if we
want to know how the oil price affects the hydrogen equity index, we fix a value x for the
oil price while keeping all other variables unchanged (i.e., we intervene on the oil price using
do()). This results in a counterfactual distribution (post-intervention distribution) where
we can compute the value of our target variable, the hydrogen equity index. Then, we fix
another value x′ for the oil price (i.e., we intervene a second time) and compute the new
value of our target variable. This process is repeated many times, and the average of the
differences between the new value of the hydrogen equity and its initial value quantifies the
impact (or causal effect) of the oil price on the hydrogen equity. It is called direct since we
only intervene on the treatment variable, which is the oil price. Given the causal effects,
we can derive the structural equations built with respect to the topological ordering of the
variables in the graph.

Figure 25 illustrates the causal graph generated using a regression-based algorithm. This
approach involves conducting a regression analysis of each variable against all the others.
A causal link is established between two variables if the regression coefficient exceeds a
predefined threshold. Notably, we observe that EquityHydrogen serves as the target variable,
while the key treatment variable in this model is associated with the technology companies
index Techno. The direct causal effect of this variable on the target variable is quantified at
0.13. In practical terms, this implies that a 1% perturbation in the technology stocks index is
expected, on average, to result in a 13% increase in the hydrogen equity index. The variable
Semiconduct, corresponding to the semiconductor companies index, acts as a confounder: it
simultaneously influences both the target variable and the treatment variable. On the other
hand, the variable Carbon, representing the carbon price, serves as an instrumental variable
for the causal effect Techno → EquityHydrogen, as per the definition in 8.

The structural equations derived from this causal graph are outlined below:

Carbon ∼ Semiconduct
EquityHydrogen ∼ Techno+ Semiconduct

Nickel ∼ Techno+ Semiconduct

Techno ∼ Carbon+ Semiconduct

US ∼ Techno+ Semiconduct

Oil ∼ Gas+ Techno+ Carbon+ Semiconduct+ US
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Figure 25: Causal graph obtained by regression

From this causal graph, we can derive Conditional probability tables (CPTs), which are
tables providing estimates of the probability of a child variable being in one of three states
(Level 0, Level 1, or Level 2) given the states of its parents. For example, Table 1 illustrates
the CPT for the hydrogen-based clean-tech equity index. We observe that the probability
of the hydrogen equity index being at Level 0, given that the semiconductor stocks index is
at Level 2 and the technology stocks index is at Level 1, is 0.27. This table also highlights
that probabilities are higher when the hydrogen index is at the same level as its parents,
indicating a positive causal influence of the semiconductor index and technology index on
the hydrogen index.

Figure 26 showcases the causal graph obtained through the DirectLiNGAM algorithm,
representing a linear structural causal model with non-Gaussian additive noise. Once again,
the technology stock index is designated as the treatment variable. Remarkably, there are
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Table 1: Extract CPT for the hydrogen-based equity index

Semiconduct Semiconduct(0.0) ... Semiconduct(2.0) Semiconduct(2.0)
Techno Techno(0.0) ... Techno(1.0) Techno(2.0)

EQHydro(0.0) 0.4521 ... 0.2747 0.2713
EQHydro(1.0) 0.3129 ... 0.3067 0.3133
EQHydro(2.0) 0.2349 ... 0.4186 0.4154

no confounders present in this graph. The isolation of the variable EU rate, which represents
the European interest rate, is evident. This isolation is attributed to the construction of
the hydrogen equity index, which is based on a portfolio of American hydrogen sector-based
clean-tech companies.

The structural equations derived from this graph are provided below:

EquityHydrogen ∼ Techno
Semiconduct ∼ US

Gas ∼ Oil
Oil ∼ US + Techno

Techno ∼ Semiconduct+ US +Nickel

Carbon ∼ Inflation+ Semiconduct+Oil

Carbon ∼ Semiconduct
EquityHydrogen ∼ Techno+ Semiconduct

In Figure 27, we’ve merged three causality discovery methods–PCMCI+, Granger, and
NTE—to form a cohesive causal graph. For each algorithm, we built a causal matrix, where
rows represent explanatory variables and columns represent dependent variables. The values
in the matrix indicate causality coefficients, ranging from 0 to 1. For example, in the Granger
algorithm, a coefficient reflects the correlation between the estimated series from the past
of the causing variable and the past of the variable of interest, compared to the series
estimated solely from the past of the variable of interest. In NTE, coefficients come from
standardized mutual information scores based on Shannon entropy. Once we have causality
coefficients (and matrices) from each algorithm, we combine them into a single matrix. Then,
we keep only the edges corresponding to coefficients surpassing a specified threshold. The
graph visually represents the strength of these edges: darker colors indicate higher causality
coefficients, signaling a more significant causal effect.

Figure 28 depicts the dynamic Bayesian networks constructed using a one-year time step
spanning from 2008 to 2022, employing the Hill-climbing algorithm. Our analysis focuses
on two key periods:

1. In the 2008-2009 phase (Figure 28a), corresponding to the financial crisis, we observe
a negative effect (-0.02) of the carbon price on the hydrogen-based clean-techs index.
Similarly, american interest rates also exhibit a negative effect (-0.04), driven by the
fact that during the financial crisis of 2008-2009, higher interest rates negatively im-
pacted borrowing and investment, leading to a downturn in economic activities and,
consequently, a decrease in the hydrogen-based clean-techs index.

2. During 2019-2020 (Figure 28b), aligning with the onset of the COVID-19 crisis, semi-
conductor stocks emerge as the most influential causal factor on the Hydrogen-based

58



Causality Approach Applied to Clean-Tech Equities

Figure 26: Causal graph obtained by DirectLingam

clean-techs index. This phenomenon is attributed to the heightened interdependence
between the electronics and clean-tech industries during the climate transition pe-
riod. Additionally, the COVID-19 crisis propelled hydrogen-related companies, closely
linked to the surge in electronic-related companies. Furthermore, we observe the im-
pact of inflation (-0.02) and gas prices (0.09) because, during the 2019-2020 period
marked by the onset of the COVID-19 crisis, inflationary pressures influenced the
overall economic landscape, affecting production costs and consumer spending. The
increase in gas prices is indicative of shifts in energy markets and heightened de-
mand for clean technologies amid the crisis, contributing positively to the valuation of
hydrogen-based clean-techs.

4.3 Counterfactual queries

In this section, our objective is to address causal queries, exploring hypothetical scenarios
and uncovering the potential impact of interventions. Some key questions we aim to answer
include:

• What would have occurred in each sector-based clean-tech index if the oil price had
increased from level 0 to level 2?

• How would each sector-based clean-tech index be affected if the oil price had risen from
level 1 to level 2 while the technology stocks index simultaneously decreased from level
2 to level 0?
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Figure 27: Causal graph obtained by Ensemble

• What constitutes the most significant causal influence on the hydrogen-based index?
And on the agribusiness-based index?

The scope of possible scenarios is vast, with each what-if question leading to a unique hy-
pothetical situation. However, we have established theoretical foundations to both generate
and evaluate these scenarios. Our approach involves intervention, allowing us to derive a
counterfactual probability distribution across the causal graph. From this distribution, we
can extract various metrics, expressed as ordered moments (expectation, conditional ex-
pectation, etc.) of the counterfactual (post-intervention) variables. We will focus on three
metrics : average causal effect, average treatment effect and greatest causal influence. It’s
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Figure 28: Dynamic Bayesian network obtained by Hill-climbing

(a) Causal graph obtained by Hill-climbing for 2008-2009

(b) Causal graph obtained by hill-climbing for 2018-2019

essential to emphasize that the application of intervention necessitates the use of do-calculus.
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This underscores the profound significance of Judea Pearl’s contributions, as do-calculus can
be regarded as a powerful inference tool for counterfactual models. Furthermore, it’s worth
highlighting once more that do-calculus unveils a fascinating connection to Bayesian cal-
culus, particularly within the intriguing realm of counterfactual. In this unique conceptual
space, do-calculus doesn’t just perform mathematical operations; it orchestrates a symphony
of probabilities and causal intricacies, akin to the principles underlying Bayesian reasoning.
Pearl’s work facilitates the transition from the normal world to a hypothetical one, where we
conduct interventions and assessments before returning to the normal world armed with an-
swers to our queries. This interplay between reality and hypothetical scenarios makes Pearl’s
do-calculus a truly remarkable analogy to complex numbers: just as we turn to imaginary
numbers to solve equations that elude real numbers, we delve into counterfactual models to
address questions that transcend the limits of observational data. Do-calculus is not merely
a tool; it’s a storyteller decoding the intricate language of causation. It navigates the un-
certainties of the what might have been with the precision of Bayesian reasoning, bringing
forth a deeper understanding of the causal tapestry that underlies our observations.

In what follows, all the results are obtained with the causal graph derived by the Di-
rectLiNGAM algorithm. But of course, we can retrieve similar results for the other algo-
rithms.

4.3.1 Average causal effect and greatest causal influence

Table 2 provides an overview of the average causal effects of explanatory variables on each
sector-based clean-tech equity index. The largest ACE is highlighted in bold. Positive effects
are observed for almost all explanatory variables, with the exception of Inflation. Notably,
interest rates exhibit minimal impact on the hydrogen-based index. A detailed analysis of
the annual reports for hydrogen-based clean-techs reveals their limited sensitivity to interest
rates due to the nature of their business model. Hydrogen-based clean-tech companies often
operate within a niche market that is primarily influenced by factors such as technological
advancements, government policies, and global demand for clean energy solutions. Unlike
industries more directly impacted by interest rate fluctuations, such as finance or real estate,
the hydrogen-based clean-tech sector tends to prioritize innovation and sustainable practices.
In green, we highlight the greatest causal influence. It’s important to note that the GCI
may not necessarily align with the variable with the largest ACE, as it specifically quantifies
the causal impact on a local aspect. As depicted, both gas price and Oil price consistently
emerge as the most common GCIs, except for the Solar-based clean-tech equity index, where
the Semiconductor companies stocks index takes precedence. This can be attributed to the
intricate relationship between these sectors. Semiconductor companies play a pivotal role
in the development and advancement of solar technologies, providing crucial components
for solar panels and related applications. Consequently, fluctuations in the Semiconductor
companies stocks index can exert a significant cascading effect on the Solar-based clean-tech
equity index.

4.3.2 Impact of interventions

We will focus our study on the hydrogen-based clean-tech equity index but again, similar
results can be obtained for the other sector-bases groups. Having explored the average
causal effects and the most significant causal influences of explanatory variables on each
sector-based clean-tech equity group, we will now study the impact of intervention of ex-
planatory variables on the hydrogen equity index. We create two hypothetical scenarios for
the Hydrogen-based clean-tech equity index and address counterfactual queries. The ATE
will be employed to evaluate the impact of interventions.
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Table 2: Average causal effects and greatest causal influence for each sector-based clean-tech
equity index (In green : GCI ; In bold : ACE)

Techno Semi EU rate US rate Oil Carbon Gaz Nickel Inflation
Hydro EQ 0.13 0.10 0.00 0.02 0.25 0.13 0.14 0.01 0.00
Env. EQ 0.37 0.27 0.01 0.08 0.18 0.14 0.13 0.17 -0.05
Energy EQ 0.38 0.41 0.01 0.28 0.33 0.09 0.20 0.13 -0.01
Agri EQ 0.18 0.37 0.00 0.15 0.16 0.02 0.01 0.09 -0.05
Chemical EQ 0.56 0.59 0.03 0.33 0.19 0.03 0.02 0.16 -0.11
Gaz EQ 0.12 0.38 0.01 0.21 0.31 0.04 0.11 0.16 -0.02
Solar EQ 0.13 0.25 0.00 0.08 0.03 0.14 0.03 0.01 -0.08

Figure 29 presents the hypothetical scenario achieved by altering a single variable: the
semiconductor stocks index. This scenario aims to answer the question:

• What would have happened to the Hydrogen Equity index if the Semiconductor stocks
index had decreased from level 2 to level 0 between 2007 and 2023?

The computed ATE is -25%. This signifies that, on average, if the semiconductor stocks
index decreases from level 2 to level 0, the hydrogen clean-tech equity index would also
decrease by 25%.

Continuing, Figure 30 depicts a hypothetical scenario achieved by simultaneously altering
two variables: the semiconductor stocks index and the nickel price. This scenario aims to
address the following question:

• What would have happened to the hydrogen Equity index if the Semiconductor stocks
index had increased from level 0 to level 1, and the nickel price had decreased from
level 2 to level 0 between 2007 and 2023?

The calculated ATE is +7%. This implies that, on average, if the semiconductor stocks
index increases from level 0 to level 1, and the nickel price decreases from level 2 to level 0,
the Hydrogen clean-tech equity index would increase by 7%. This observation suggests that
the semiconductor stocks index exerts a greater influence on the target variable than the
nickel price. This intuition aligns with the higher average causal effect for the semiconductor
index (0.10) compared to the nickel price (0.01).

Finally, to gain deeper insights, let’s explore a straightforward scenario: intervening on
the oil price by setting it to level 1. We then compare the hydrogen-based clean-tech equity
index samples before and after the intervention.
In Figure 31, we illustrate the impact of intervening on oil prices on the hydrogen-based
clean-tech equity index samples, both before and after the intervention. We clearly see that
the post-intervention curves mitigate oscillations. This effect stems from setting the oil
price at a fixed value, which eliminates the inherent randomness associated with its market
fluctuations. Consequently, the post-intervention sample of the hydrogen-based clean-tech
equity index exhibits reduced oscillations. This is a logical outcome, as the deterministic oil
price creates a more controlled and predictable market scenario. With the removal of the
stochastic nature of oil prices, the hydrogen equity index responds with greater stability.
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Figure 29: Impact of one intervention on the DirectLinGAM causal graph for the target
variable hydrogen Equity index
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5 Discussion

In summary, our research has utilized a comprehensive methodology to explore the causal
intricacies of the clean-tech industry. The process incorporated foundational concepts such
as Bayesian networks, causality algorithms, and Judea Pearl’s do-calculus, which mathemat-
ically encapsulates the fundamental distinction between causation and correlation. Applying
these methods resulted in insightful analyses and discoveries.

We applied our methodology to scrutinize the causal effects and the impacts of interven-
tions by explanatory variables on identified clean-tech groups categorized by sectors. The
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Figure 30: Impact of two simultaneous interventions on the DirectLinGAM causal graph for
the target variable hydrogen Equity index
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findings revealed that our approach can be extended to portfolios, allowing the assessment
of macro variable perturbations on these investment collections. However, it’s crucial to ac-
knowledge that the identification of causal structures between variables is not infallible, em-
phasizing the need for expert oversight to ensure model accuracy. Importantly, our approach
does not aim to predict future values but centers around the generation of counterfactual sce-
narios. This aligns with the concept of regret and underscores the potency of Judea Pearl’s
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Figure 31: Comparison between the hydrogen-based clean-Tech equity index before and
after intervention on oil price

do-calculus in transitioning to a post-intervention world to answer pre-intervention queries.
Nevertheless, we must recognize the limitations of our current framework, which primar-
ily deals with static Bayesian networks in discrete spaces. Future extensions may explore
continuous-time Bayesian networks, although the theoretical complexity poses challenges.

In the expansive field of causality research, cutting-edge methodologies are emerging,
including causal Shapley values [17]. This approach generalizes our work by applying Pearl’s
do-calculus to derive asymmetric values for general causal graphs that explain the total effect
of features on the prediction, offering a more direct and robust way to incorporate causal
knowledge. Another approach [54] involves leveraging the power of Partial Dependence
Plots (PDP) to extract causal insights from black-box models generated by machine learning
algorithms. This method is rooted in the observation that Friedman’s partial dependence
plot aligns with Pearl’s back-door adjustment. It establishes the viability of extracting
causal information and demonstrates that Bayesian calculus can be viewed equivalently as a
straightforward statistical inference task. Another interesting study would be to follow the
approach of [53]. Their methods allow users to identify and specify the subset of parameters
associated with causal models and randomize the remaining parameters to generate a range
of data generation processes consistent with this method.

In closing, our research contributes valuable insights to the evolving understanding of
causation within the clean-tech sector. The combination of advanced methodologies and
domain expertise enhances our comprehension of the intricate relationships governing the
industry. While the do-calculus proves to be a powerful tool, ongoing research continues to
explore novel approaches, underscoring the necessity for a holistic understanding of causation
in the complex systems that characterize the clean-tech landscape. In future work, the Pearl
approach will be used to construct equity baskets based on causal queries and counterfactuals
type intervention on the explanatory variables.
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A Markov random fields

In this appendix, we delve into the concept of Markov random fields, which constitute the
second classical type of graphical models after Bayesian networks [3]. A Markov network, also
known as a Markov random field, is a graphical model that represents the joint probability
distribution of a set of random variables, where the variables are represented as nodes in
an undirected graph. Mathematically, a Markov network is defined by an undirected graph
G = (V,E), where V represents the set of nodes (random variables) and E represents the set
of edges (pairwise dependencies). Let X = (X1, X2, ..., Xn) be the set of random variables
associated with the nodes of the graph.

In the context of Markov networks, a clique C is a fully connected subgraph within the
graphical structure. It consists of a set of nodes in which each pair of nodes is connected
by an edge. This is equivalent to the condition that the subgraph of G induced by C is a
complete graph. A potential function is associated with each clique in the graph. A potential
function, denoted as ψC(XC), represents a non-negative real-valued function defined on the
variables XC corresponding to the nodes in the clique C. It encodes the local interactions
or dependencies between the variables in the clique. The joint probability distribution over
X in a Markov network is given by:

P(X) =
1

Z

∏
C∈C

ψC(XC)

where:

• XC denotes the set of variables associated with the clique C in the graph.

• ψC(XC) is a non-negative potential function defined on the clique C.

• C represents the set of all cliques in the graph.

• Z is a normalization constant called the partition function, defined as

Z =
∑
X

∏
C∈C

ψC(XC),

where the summation is taken over all possible assignments of values to the variables
X.

The partition function Z in a Markov network plays a crucial role, similar to its coun-
terpart in statistical physics, as it ensures that the joint probability distribution satisfies
the properties of a probability measure. It allows for computations of various quantities of
interest and probabilistic inferences about the variables in the network. In the graph below,
X1 −X2 −X3 form a clique. If X2 and X5 were linked, then X2 −X4 −X5 would form a
clique.

Proposition 4. Conditional dependencies in a Markov network
Following example in Figure 32, we present some rules on conditional dependencies in a
Markov network:

• The joint distribution is given by :

P(X1, X2, X3, X4, X5) =
1

Z
ψX1X2X3

(X1, X2, X3)

· ψX2X4
(X2, X4)

· ψX4X5
(X4, X5)

· ψX3X5
(X3, X5).
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Figure 32: Example of Markov network

X1 X2

X3

X4

X5

• Marginalising over X3 makes X2 and X5 graphically dependent, i.e. P(X2, X5) ̸=
P(X2) · P(X5).

• X2 and X5 are conditionally independent given X3, i.e. P(X2, X5 | X3) = P(X2 |
X3) · P(X5 | X3).

• A set of variables A is considered independent of a set of variables B, given a set Z,
if there exists no path connecting any variable in set A to any variable in set B that
goes through the variables in set Z. To put this into practice, we remove all links that
directly connect variables in Z with their neighboring variables. If, after removing these
connections, there are no remaining paths from any member of set A to any member
of set B, then we denote this relationship as A ⊥ B | Z.

LetX be a variable in the Markov network, and let N(X) represent the set of neighboring
variables of X. The Markov property with neighbors can be expressed as:

X ⊥ (V − {X} −N(X)) | N(X),

where V represents all the variables in the Markov network. This property implies that
a variable is only influenced by its immediate neighbors and is independent of all other
variables in the network, given these neighbors.

Theorem 5 (Hammersley-Clifford). Let X = {X1, X2, . . . , Xn} be a set of random
variables, and let G = (V,E) represent the corresponding Markov network, where V denotes
the set of nodes and E represents the set of edges between the nodes.

• The local Markov property states that each variable Xi is conditionally independent
of all other variables Xj given its neighbors Xne(Xi) in the Markov network:

Xi ⊥ Xj | Xne(Xi), ∀ i, j ∈ {1, 2, . . . , n}

• The global Markov property states that if a set of variables S separates variables A
from variables B in the Markov network G, then variables A are conditionally inde-
pendent of variables B given S. Specifically, S separates A from B if, for every path
between a variable in A and a variable in B in the graph G, there exists at least one
variable in S that blocks the path :

A ⊥ B | S, if S separates A from B in G

The Hammersley-Clifford theorem states that a joint probability distribution P(X1, . . . , Xn)
factorizes according to the Markov network G if and only if it satisfies both the local Markov
property and the global Markov property. Mathematically, this can be expressed as:

P(X1, X2, . . . , Xn) =
1

Z

∏
C∈C(G)

ψC(XC)
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where C(G) represents the set of all maximal cliques in the graph G, XC denotes the variables
in clique C, ψC(XC) represents a potential function associated with clique C, and Z is the
partition function.

Remark 3. Ising Model

The Ising model, widely used in statistical physics and related fields, can be seen as a
special case of Markov networks. In the Ising model, variables represent spins in a lattice,
typically taking values of +1 or -1. The interactions between neighboring spins are captured
by assigning weights, denoted as J, to the edges connecting them. To relate the Ising model
to Markov networks, we can construct a Markov network that corresponds to the Ising model.
Each node in the Markov network represents a spin variable, and the edges between them
encode the interactions between neighboring spins. The joint probability distribution of the
Ising model can be represented as a product of potentials in the Markov network.

For example, consider a 2D lattice with spin variables Xi,j, where i and j denote the
coordinates of the lattice sites. The joint distribution in the Ising model can be represented
in the Markov network as:

P(X1,1, X1,2, X2,1, X2,2) =
1

Z
exp(−E(X1,1, X1,2, X2,1, X2,2))

where Z is the partition function and E(X1,1, X1,2, X2,1, X2,2) represents the energy function
of the Ising model. The Markov network representation allows us to apply graphical models
techniques, such as determining conditional independencies and performing inference, to
analyze the Ising model and understand its properties.

X1,1 ←→ X1,2

↕ ↕
X2,1 ←→ X2,2
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B Bayesian networks: parameters estimation

In this appendix, we delve into the process of learning Bayesian Networks, which involves
various aspects such as parameter estimation, inference techniques, and structure learning.
The content of this appendix is inspired from [3] and [19]. Parameter estimation focuses on
determining the conditional probability tables associated with the variables in the network
based on observed data. By analyzing the available data, we can estimate the parameters
that best fit the given distribution, allowing us to make informed predictions and perform
probabilistic reasoning. Smoothing, filtration, and prediction are essential inference tech-
niques in Bayesian Networks. Smoothing refers to estimating the past states of variables
given observed evidence up to the present. Filtration involves estimating the current state of
variables given the evidence up to a certain point in time. Prediction, on the other hand, is
concerned with estimating the future states of variables given the available evidence. Struc-
ture learning, another crucial aspect of learning Bayesian Networks, focuses on determining
the graphical structure of the network itself. This involves identifying the dependencies and
causal relationships among variables based on the observed data. By uncovering the under-
lying structure, we gain valuable insights into the system and can make accurate predictions
and decisions.

In the following sections of this appendix, we will explore these topics in more detail,
discussing different methods and algorithms for learning Bayesian Networks and providing
practical examples to enhance understanding. Parameter estimation typically involves two
main approaches: maximum likelihood estimation (MLE) and Bayesian estimation.

B.1 Maximum Likelihood Estimation (MLE)

MLE seeks to find the parameter values that maximize the likelihood of observing the given
data. This approach assumes that the data are independent and identically distributed
(i.i.d.), and it aims to find the parameter values that make the observed data most probable.
In the case of Bayesian Networks, MLE involves estimating the probabilities in the CPTs
that best fit the data. Let’s start with a small example :

Example 3. Consider a Bayesian network that models the relationship between the weather
forecast (W), the presence of clouds (C), and the likelihood of rain (R). The network structure
is as follows:

W

C

R

In this network, each variable can take on two states: The weather variable can take the
states sunny (S) or cloudy (C).The variables (C) and (R) can take the values 0 or 1, with
1 indicating the presence of clouds (resp. the presence of rain). The variables are related
as follows: the weather variable (W) influences the presence of clouds (C), and the presence
of clouds affects the likelihood of rain (R). To learn the conditional probabilities for this
Bayesian Network, we can collect a dataset of weather observations. Let’s assume we have
a dataset containing the following information:
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W C R
S 0 0
S 0 0
S 1 0
C 1 1
C 1 1

To estimate the probabilities, we count the occurrences of each combination of states and
normalize them to obtain probabilities. For example, to estimate P(C = 1 | W = S), we
count the number of times clouds are present (C = 1) when the weather is sunny (W = S),
which gives us a count of 1. Dividing this count by the total number of occurrences of W
= S (which is 3 in this case) gives us the probability P(C = 1 | W = S) = 1

3 . Similarly,
we can estimate other conditional probabilities, such as P(R = 1 | C = 1), by counting the
number of times rain occurs (R = 1) when clouds are present (C = 1) and dividing it by
the total number of occurrences of C = 1. The resulting conditional probability tables for the
Bayesian Network can be filled in using these estimated probabilities, allowing us to perform
probabilistic reasoning and make predictions based on observed evidence.

To estimate the CPTs of a Bayesian network using maximum likelihood estimation,
we aim to find the parameter values that maximize the likelihood of observing the given
data. Maximizing the log-likelihood is equivalent to minimizing the Kullback-Leibler (KL)
divergence with the empirical distribution.

Definition 11. Empirical Distribution: The empirical distribution, denoted by P̂ , rep-
resents the observed frequencies of the data. For a given dataset D with N samples, the
empirical distribution is defined as follows:

P̂(X = x) =
#(X = x)

N

where #(X = x) denotes the number of occurrences of the variable X taking the value x in
the dataset D.

For a given Bayesian network B and dataset D, the maximum likelihood estimate of the
CPTs is obtained by maximizing the log-likelihood:

θ̂MLE = argmax
θ

logP(D | θ)

where θ̂MLE represents the MLE estimate of the parameters θ.

Definition 12. Kullback-Leibler divergence
The Kullback-Leibler divergence is a measure of the dissimilarity between two probability

distributions. Let X and Y be two discrete random variables with supports RX and RY and
probability mass functions PX and PY respectively. Then the Kullback-Leibler divergence of
the probability mass function PY from PX is given by

DKL(PX ∥ PY ) =
∑
x∈RX

PX(x) log
PX(x)

PY (x)
.

Now, if X and Y be two continuous random variables with probability density functions
fX(x) and fY (y), defined over their respective supports. Then the Kullback-Leibler (KL)
divergence of the probability density function fY from fX is given by

DKL(fX ∥ fY ) =
∫ ∞

−∞
fX(x) log

fX(x)

fY (x)
dx.
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Proposition 5. Maximizing the log-likelihood is equivalent to minimizing the Kullback-
Leibler (KL) divergence with the empirical distribution.

Proof. To prove the proposition, let’s start from the expression for the maximum likelihood
estimate (MLE) of the parameters, denoted as θ̂MLE:

θ̂MLE = argmax
θ

logP(D | θ)

Assuming that the data points are i.i.d., let’s rewrite the expression for θ̂MLE using the
empirical distribution defined by the training data, denoted as P̂ :

θ̂MLE = argmax
θ

1

m

m∑
i=1

logP(x(i)|θ) = argmax
θ

Ex∼P̂[logP(x | θ)]

Here, we have replaced the sum with an expectation over the empirical distribution P̂ , which
assigns a probability of 1

m to each of the m points x(i) in the training data.

Now, let’s consider the Kullback-Leibler (KL) divergence between the empirical distribution
P̂ and the model distribution P :

DKL(P̂∥P) = Ex∼P̂[log P̂(x)− logP(x; θ)]

Note that the expectation Ex∼P̂ [log P̂] does not depend on θ; it only depends on the data
generating process. Therefore, it can be treated as a constant.

Minimizing the KL divergence DKL(P̂∥P) is equivalent to minimizing the expression inside
the expectation:

argmin
θ
DKL(P̂∥P) = argmin

θ
Ex∼P̂[− logP(x; θ)]

Comparing this expression with the earlier expression for θ̂MLE, we can see that they are
equivalent:

θ̂MLE = argmax
θ

Ex∼P̂[logP(x | θ)] = argmin
θ

Ex∼P̂[− logP(x; θ)]

Therefore, maximizing the log-likelihood is equivalent to minimizing the Kullback-Leibler
divergence with the empirical distribution.

Now, using the non-negativity property of the Kullback-Leibler divergence, we have:

Ex∼P̂[log P̂(x)]− Ex∼P̂[logP(x)] ≥ 0

To minimize the KL divergence, we need to make the second term Ex∼P̂[logP(x)] as small
as possible. In other words, the minimizer of the KL divergence is obtained when P is equal
to the empirical distribution P̂. Hence, we conclude that the MLE estimator of our CPT’s
are their empirical distributions.

Learning with hidden variables
In many real-world scenarios, the available data may not directly provide information about
certain variables of interest. These unobserved variables are referred to as hidden vari-
ables. Learning the parameters of a Bayesian network in the presence of hidden variables
poses additional challenges. The Expectation Maximization (EM) algorithm is an iterative
optimization technique used in statistical inference and machine learning. It is designed
to estimate the parameters of probabilistic models when some variables are unobserved or
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missing. Let’s note by v an observed variable and h a hidden variable. Let N be the number
of data-points. Our interest is to set θ by maximising the marginal likelihood P(v | θ). The
model of the data is P(v, h | θ). The EM algorithm consists of two main steps: the E-step
and the M-step.

E-step: In this step, we compute the posterior distribution over the hidden variables h given
the observed variable v and the current parameter estimate θ(t). This can be expressed as:

P(hi | vi, θ(t)) = P(vi, hi | θ(t))∑
h P(vi, hi | θ(t))

M-step: In this step, we update the parameter estimate by maximizing the expected com-
plete log-likelihood. The expected complete log-likelihood is computed by taking the ex-
pectation over the posterior distribution of the hidden variables obtained in the E-step.
Mathematically, the parameter update can be written as:

θ(t+1) = argmax
θ

N∑
i=1

EP(hi|vi,θ(t))[logP(vi, hi | θ)]

The algorithm starts with an initial parameter estimate θ(0) and iteratively performs the
E-step and M-step until convergence is achieved.

Algorithm 4 Expectation-Maximization Algorithm

Require: Observed variable v, Model parameter θ
Ensure: Maximum likelihood estimates of θ

Initialize θ(0)

repeat
E-step: Compute over all data-points the posterior distribution over hidden variables
p(hi|vi, θ(t))
M-step: Update the parameters by maximizing the expected complete log-likelihood
θ(t+1) = argmaxθ

∑N
i=1 EP(hi|vi,θ(t))[logP(vi, hi | θ)]

until Convergence

Application to Bayesian networks

In a Belief network, we recall that when all the nodes represent visible or observed variables,
the conditional probability distribution P(Xi | Pa(Xi)), where Pa(Xi) denotes the parents
of the node Xi, can be determined by performing a frequency count of each combination of
values for the involved variables based on the observed data. When some variables are hidden
and others observed, the indicators are replaced by the assumed conditional distribution of
the hidden variable found at the E-step. In fact, let’s consider the Bayesian network at
example 3. We suppose that the states of the variable C are never observed while the states
of variableW and R are totally observed. Our goal is to learn the CPTs P(R | C), P(C |W )
and P(W ).

• E-step The E-step defines a set of distributions on the hidden variable C. We have
that P i=1

t (C|W,R) = P (C|W = S,R = 0), Pi=2
t (C | W,R) = P(C | W = S,R = 0),

· · · , Pi=4
t (C |W,R) = P(C |W = C,R = 1), and so on for the 5 training examples.
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• M-step: Our interest is to maximize the following expression:

5∑
i=1

EPi
t(C|W,R)[logP(Ci,W i, Ri)] =

5∑
i=1

{
EPi

t(C|W,R)[logP(Ri | Ci)]

+ EPi
t(C|W,R)[logP(Ci |W i)]

+ EPi
t(C|W,R)[logP(W i)]

}

The main goal in the M-step is to maximize this expression with respect to the param-
eters of the distributions involved (i.e., P(R | C), P(C | W ), and P(W )). Suppose we
want to estimate P(R = 1 | C = 0). The term that interests us in the above expression
is EPi

t(C|W,R)[logP(Ri | Ci)]. We then need to differentiate

logP(R = 1 | C = 0)
∑
i

Pi
t(C = 0 |W,R)1[Ri = 1]

+ logP(R = 0 | C = 0)
∑
i

Pi
t(C = 0 |W,R)1[Ri = 0]

with respect to logP(R = 1 | C = 0). Then setting to zero, we have:

1

P(R = 1 | C = 0)

∑
i

Pi
t(C = 0 |W,R)1[Ri = 1]

− 1

1− P(R = 1 | C = 0)

∑
i

Pi
t(C = 0 |W,R)1[Ri = 0] = 0

(15)

and we obtain the following estimate :

P̂(R = 1 | C = 0) =

∑
i Pi

t(C = 0 |W,R)1[Ri = 1]∑
i Pi

t(C = 0 |W,R)1[Ri = 0] +
∑

i Pi
t(C = 0 |W,R)1[Ri = 1]

In conclusion, when we have unobserved variables, we replace the frequency count with
the expected count of each combination of values for the involved variables.

Remark 4. General case
Consider a Bayesian Network with the following random variables: The observed vari-

ables: X1, X2, . . . , Xn. The hidden variables: H1, H2, . . . ,Hm. The structure of the Bayesian
network is represented by a directed acyclic graph where nodes correspond to random vari-
ables, and edges indicate probabilistic dependencies between these variables. In this network,
hidden variables can influence both observed variables and other hidden variables. To esti-
mate the conditional probabilities, we will use the Expectation-Maximization (EM) algorithm.
Here are the steps:

**E-step** : In this step, we calculate the conditional distribution of hidden variables Hi

given the observed values X1, X2, . . . , Xn based on the current estimates of the network
parameters. For each example in the dataset, we compute the conditional distribution

Pi
t(H1, H2, . . . ,Hm | Xi

1, X
i
2, . . . , X

i
n)
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.

M-step : In this step, we maximize the following expression to estimate the parameters of
the conditional distributions involved in the Bayesian network:

N∑
i=1

EPi
t(H1,H2,...,Hm|Xi

1,X
i
2,...,X

i
n)
[logP(Xi

1, X
i
2, . . . , X

i
n, H1, H2, . . . ,Hm)]

where N is the number of examples in the dataset. In this step, we perform partial maxi-
mizations for each conditional distribution to update the parameters.

Let’s say we want to estimate the conditional probability P(Xj | Hk = hk) for a given
observed variable Xj and a specific value hk of the hidden variable Hk. To estimate this
probability, we need to calculate the normalized sum of expected indicator values (over all
examples in the dataset) :

P̂(Xj = j | Hk = hk) =

∑
i Pi

t(Hk = hk | Xi
1, X

i
2, . . . , X

i
n)I[Xi

j = j]∑
i

∑
j′ Pi

t(Hk = hk | Xi
1, X

i
2, . . . , X

i
n)I[Xi

j = j′]

where j′ is the index running over all the possible values taken by the variable Xj.

B.2 Bayesian Estimation

Bayesian estimation takes a probabilistic approach by incorporating prior beliefs about the
parameters and updating them based on the observed data. It provides a framework for
combining prior knowledge with the data to obtain posterior probability distributions for
the parameters.

Parameter estimation in Bayesian networks involves updating our beliefs about the pa-
rameters based on both prior knowledge and observed data. This is achieved through Bayes’
theorem, which relates the posterior distribution of parameters P (θ|D) to the likelihood of
the data given the parameters P (D|θ) and the prior distribution of the parameters P (θ).

P(θ | D) =
P(D | θ) · P(θ)

P(D)

Where:

• P(θ | D) is the posterior distribution of parameters given data.

• P(D | θ) is the likelihood of the data given parameters.

• P(θ) is the prior distribution of parameters.

• P(D) is the marginal likelihood of the data.

The joint probability of the observed data x[1], . . . , x[M ] and parameters θ can be ex-
pressed using the chain rule and Bayes’ rule:

P(x[1], . . . , x[M ], θ) = P(x[1], . . . , x[M ]|θ) · P(θ)

This expression can be further expanded using the chain rule and the conditional indepen-
dence properties of Bayesian networks:
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= P(θ) ·
M∏

m=1

P(x[m] | θ) ·
∏
BN

P(θi | parents(θi))

where parents(θi) represents the parents of node θi in the Bayesian network.

MLE assumes that θ is an unknown but fixed parameter. It estimates θ∗, the value that
maximizes the likelihood function. The prediction is then made based on this estimation:

P(Dm+1 = H | D) = θ∗

In contrast, Bayesian estimation treats θ as a random variable. It assumes a prior proba-
bility distribution for θ P(θ) and uses the observed data to obtain the posterior probability
distribution of θ P(θ | D).
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