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We develop a joint model for the physical and risk neutral variance implying variance risk 

premia that are reasonably smooth, appropriately reacting to changes in level and variability 

of the variance and naturally satisfying the sign constraint. 

The model, straightforward to estimate using option market data and high frequency returns, 

allows identifying agents’ sentiment indicators. Our results show that excess returns are to a 

large extent explained by fear or optimism towards future extreme variance events and only 

marginally, if at all, by the premium associated with normal price fluctuations. We also find 

evidence of asymmetry in the response of future excess returns to fear and optimism with 

respect to the state of the market at the time expectations are formed. Robustness checks show 

that the documented predictive power is distinct from that contained in several well-known 

economic predictors and that the general findings extend internationally to eight major 

markets. 

Keywords: Variance risk premium; return predictability; Kalman filter; international stock 

market returns. 

JEL classification:  C12, C22, G12, G13. 

 

 

 

Abstract 



1 Introduction

Financial volatility, or financial assets’ price variability, is a crucial ingredient in asset

pricing and portfolio management. Understanding its dynamics and economic drivers is of

great interest to academics and practitioners. The main reason is that volatility is closely

tied to the identification of risk premia. While the evolution and the economic determinants

of the equity risk premium have been extensively investigated, the recent literature focuses

on the variance risk premium (VRP) that investors require for the well known fact that

volatility is stochastic. The VRP is defined as the difference between the risk-neutral and

physical expectations of an asset’s total return variation. While clear conceptually, the

estimation of the VRP requires multiple sources of financial data as well as assumptions

on the latent volatility processes, rendering its dynamic properties difficult to pinpoint.

This paper proposes a new flexible approach for retrieving the VRP which delivers pre-

cise and realistic estimates of the market price of volatility risk. We advocate the inclusion

of interactions and discontinuities, with emphasis on regime shifts, extreme events, uncer-

tainty due to heteroskedasticity, correlations and spillovers, as being essential to replicate

dynamics and interdependencies between the physical variance and its risk neutral expec-

tation. We define a class of time series models that isolates as structural components the

dynamics of the physical variance and, by embedding its expectations into the model, the

price attached by the market to the variance risk. Given the latent nature of the variables

of interest of which only imprecise approximations are observable (i.e., high frequency re-

turn based variance measures and option implied risk neutral variance expectations), we

use signal extraction techniques based on a state-space representation of the model and

the Kalman-Hamilton filter. This approach allow us to obtain measurement error free esti-

mates of the VRP, and thus to disentangle, with a high degree of precision, its underlying

time series properties as well as potential dependencies with the state of the economy.
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Carr and Wu (2009) are among the first to provide evidence on the VRP and show that

for the S&P 500 index it is on average strongly positive and time varying. Their VRP can be

interpreted as the ex-post payoff of a variance swap rather than a premium that investors

require ex-ante. To be in line with the definition of a proper risk premium, the VRP

is typically directly computed as the difference from one period to the next between the

squared VIX index, a measure of implied variance computed from option prices on the S&P

500 index, and expected realized variance computed with high frequency historical returns

and filtered with a particular choice of dynamic model. See Bollerslev, Tauchen, and Zhou

(2009), Drechsler and Yaron (2011) and Bekaert and Hoerova (2014) for examples of models

to construct realized variance expectations. While the above approaches are relatively

simple to implement, their drawback stands in a resulting VRP time series extremely

noisy and violating the positivity constraint too often to be genuine risk premia. Also,

because the VRP is computed only period by period, analyzing its dynamic properties,

its dependence with the level of volatility, the market conditions and, more generally, the

state of the economy, is neglected or possible only ex-post.

The state-space framework used in this paper brings the following advantages. First, it

allows to account for possible errors in the measurement of the realized variance and option

implied risk neutral variance expectations. Second, it allows to embed the expectations

under the physical measure directly into the model. This avoids relying on the typically

used multistep estimation approach which is less efficient because subject to the compound-

ing of estimation errors. In contrast to most standard procedures of estimating the VRP

which focus uniquely on the construction of expectations under the physical measure, our

model also allows to fit and test possible structures for the agents’ expectation formation

mechanism under the risk neutral measure. The model parameters are straightforwardly

estimated by maximum likelihood using the Kalman-Hamilton filter, see for example Kim

(1994). See also Egloff, Leippold, and Wu (2010) for a similar estimation technique to fit
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a VRP term structure model.

We construct a joint dynamic model for the historical variance, its physical and its risk

neutral expectations with direct focus on the VRP. We leave the dynamics of the under-

lying price process unspecified, allowing the direct use of realized and implied variances

computed respectively from 5-minute returns and option data on the underlying index.

See also Bollerslev, Gibson, and Zhou (2011), Wu (2011) and Gruber, Tebaldi, and Tro-

jani (2015) who directly model risk premia without assumptions on the price dynamics.

An alternative to study the dynamic properties of the VRP is the specification of a full

parametric model, as introduced for example in Brodie, Chernov, and Johannes (2007),

Andersen, Fusari, and Todorov (2015b) and Ait-Sahalia, Karaman, and Mancini (2015). In

order to estimate equity and variance risk premia, this particular type of approach requires

a complete specification of the price process, along with assumptions about the stochastic

discount factor. However, in these models, the tight parameterization often constraints, to

different extents, the dynamics of the VRP to mirror that of the variance itself.

Without imposing strong parametric assumptions, our approach allows us to precisely

estimate the VRP associated with normal market activity and generates VRPs with ap-

propriate characteristics in terms of variability, level and persistence. Our simple, though

effective modeling strategy, also allows us to identify the occurrence of unusual and extreme

episodes of market volatility and isolate their contribution to the total VRP. Finally, by

exploiting the temporal causality between realization of shocks on the spot market and for-

mation of expectations in the option market, our methodology allows us to gauge agents’

reaction to extreme market volatility events and to build risk factors representing their

confidence towards future market states.

In our empirical application, we first estimate our model on data from January, 1990, to

September, 2015, for the S&P 500 index. Our results document the importance of allowing

for interactions, discontinuities and occurrence of extreme events. Our model specification
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is strongly supported by the data and all structural parameters are estimated with a high

degree of precision. Moreover, the filtered variance predictions and the risk neutral variance

expectations match adequately the level and the dynamics of their observable counterparts

along the entire sample. Most importantly though, the resulting filtered variance risk pre-

mium satisfies naturally the positivity constraint, shows a reasonable degree of smoothness

and it appropriately reacts to changes in level and variability. For sake of comparison,

we show that existing methods, assuming e.g. random walk or autoregressive dynamics

for realized variances, lead to variance risk premia that are too volatile and systematically

become negative in periods of market distress.

While estimation of the VRP is interesting for its own sake, identification of proper risk

premia have important economic applications. For example, as first shown by Bollerslev,

Tauchen, and Zhou (2009), it turns out that market index returns become more predictable

when including the VRP as a regressor in a future return model. Drechsler and Yaron

(2011) provide a theoretical explanation for this return predictability and show that time

varying economic uncertainty and a preference for early resolution of uncertainty yields

time varying positive VRPs that predict stock market returns. Also, Chabi-Yo (2012)

motivate that changes in VRP can be caused by changes in investors’ skewness preference.

However, as shown by Bekaert and Hoerova (2014), the results from applying the existing

models empirically offers an interesting puzzle as models with more realistic dynamics for

the variance process fall short in terms of offering predictability compared to a simpler yet

unrealistic model that assumes a random walk specification for the physical variance.

The VRP identified by the existing literature in fact contains two distinct components:

one that reflects compensation for continuous price moves and one that is related to com-

pensation for disaster risk, see e.g. Bollerslev and Todorov (2011). For example, Bollerslev,

Todorov, and Xu (2015) provide evidence that these two components explain to a different

extent aggregate return variation. Our approach to estimate the VRP uses a switching
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model with regimes that become active during events of unusually high volatility. This

allows to explicitly account for the occurrence of extreme variance events, agents’ fear,

uncertainty deriving from heteroskedasticity, changes in the dynamics and dependence be-

tween the latent states. Being able to identify the occurrence and measure the intensity

of extreme variance shocks, we exploit the causal effect between their realization and next

period variance expectations to construct two sentiment indicators based on agents’ re-

action to such shocks. Fear is defined as a conservative reaction of variance expectations

to the size of the observed shock. Conversely, optimism reflects a reaction of variance

expectations that is less than proportional with respect to the size of the variance shock.

For the S&P 500 index, our results show that there is essentially no substantial re-

turn predictability from the smooth component of the variance risk premium. In fact, the

predictability attains a maximum value equal to 1.3% at the five month horizon. Includ-

ing our sentiment indicators in the predictive regressions R2s in the regressions increase

dramatically at every horizon and surpasses 10% at the four month horizon. Further-

more, this predictive power is distinct from that contained in several well-known economic

predictors, such as price-earning ratio, dividend yield, term spread, consumption-wealth

ratio and output gap among others. This finding indeed shows that much of the return

predictability previously ascribed in the literature to the variance risk premium is effec-

tively coming from the part of the premium related to how agents gauge extreme variance

events, their prediction and compensation as also advocated by Bollerslev, Todorov, and

Xu (2015). Our results also show that allowing for asymmetric effects of the sentiment

on future aggregate market returns, obtained by interacting the sentiment with the sign

of realized market performance, further increases return predictability especially at those

horizons where the latter is known to be difficult to capture. In particular, fear in conjunc-

tion with negative market performance represents the prevailing risk factor, especially for

long horizons, whereas optimism combined with bearish markets contributes substantially
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to return predictability in the short term and dominates over medium horizons.

To complement the results for the S&P 500 index, we estimate our model on eight

other market indices, finding similar results in terms of parameter estimates and filtered

dynamics. Our international evidence confirms that the smooth part of the variance risk

premia generally has little or no predictive power on future aggregate market returns at

any horizon. However, when our sentiment indicators are added to the regressions the R2s

globally increase in the same fashion as observed for the S&P 500 index. This suggests

that the information contained in the sentiment indicators is needed to effectively explain

international return predictability. However, the heterogeneity of the return predictability

suggests that the attitude of agents towards risk, thus the pricing of different risk factors,

varies largely across markets. Compared to the standard methods for obtaining the variance

risk premium, i.e. the random walk hypothesis for which our results are in line with

Bollerslev, Marrone, Xu, and Zhou (2014), the R2s of the predictive return regressions

including the sentiment indicators and their interaction with the market conditions largely

dominate over all horizons and for all indices.

The rest of the paper is organized as follows. Section 2 states basic definitions, de-

scribes the data used to model the VRP and computes the VRP in various ways proposed

recently by the literature. Section 3 explains our new approach for estimating the VRP

by modelling both physical and riskneutral variances in a joint system and details how

to incorporate features like heteroskedasticity and jumps that, when ignored, drastically

affect the VRP. Section 4 constructs the sentiment indicators and discusses their implica-

tion for return predictability. Section 5 estimates the new model on the S&P 500 index,

illustrates the dynamic properties of the filtered VRP time series and extensively discusses

the implications of using the estimated VRP series and sentiment indicators on predictive

return regressions. Section 6 provides international evidence and shows that the general

conclusions extend to eight other market indices. Section 7 concludes.
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2 Definitions and data

The VRP at time t for a given maturity τ is defined as

Πt,t+τ = EQ
t [QVt,t+τ ]− EP

t [QVt,t+τ ], (1)

where QVt,t+τ is the (latent) quadratic variation of the underlying price process and the

conditional expectations are under the risk neutral (Q) and physical (P) measures, respec-

tively. In fact, the VRP represents the expected profit to the long side of a variance swap

contract, which is entered into at time t and held until maturity t + τ . See Ait-Sahalia,

Karaman, and Mancini (2015) for a brief description of variance swaps. Note that in line

with the general definition of a risk premium, the VRP could be defined as the negative

of Πt,t+τ , see for example Carr and Wu (2009). However, for the ease of interpretation we

follow the notation used in Bollerslev, Tauchen, and Zhou (2009) so that Πt,t+τ as defined

in (1) is expected to be positive.

To compute Πt,t+τ in practice, we thus need to compute conditional expectations of the

variance of an asset both under the risk neutral and physical measure. In the VRP litera-

ture, EQ
t [QVt,t+τ ] is typically directly computed using market quantities or non-parametric

estimators, i.e. using the variance swap strike or the square of an option market implied

volatility index. The expectation under the physical measure, EP
t [QVt,t+τ ], is, on the other

hand, typically obtained as a projection computed from a parametric time-series analysis

of a non-parametric estimator of QVt,t+τ . This approach results in a VRP which is no

longer model free. We now describes the data typically used to model the VRP. We also

compute the VRP in various ways proposed recently by the literature and we assess the

return predictability of these.
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2.1 Data

Our monthly sample on the S&P 500 index runs from January, 1990, to September, 2015.

The choice of monthly frequency is not coincidental. While on the one hand it allows

including a large spectrum of macro-finance variables, as for instance in Bollerslev, Mar-

rone, Xu, and Zhou (2014), on the other hand it solves the usual problem of overlapping

forecast horizons that the predictions of the variance under the risk neutral measure is

subject to. As a proxy for the one month ahead risk neutral expectation of the variance,

we take from Datastream the last day of the month squared value of VIX divided by 12 to

make it monthly. Our sample starts in 1990 when the CBOE began to publish the VIX.

The realized variance series at monthly frequency, updated from Bollerslev, Tauchen, and

Zhou (2009) using Oxford-Man Institute data, is based on 5 minute returns along with the

squared close-to-open overnight return. In Section 6 we expand the analysis to eight other

markets.

Figure 1 plots the squared VIX and the realized variance in panel (a) and (b), respec-

tively, and shows that both series follow a similar pattern. However, the squared VIX,

see Figure 1(a), generally shows smoother and more persistent dynamics than the realized

variance (see also Table 1). This is because, over the one-month observation period, shocks

are incorporated into the medium-term expectations gradually, as they occur and only to

the extent they are perceived to be persistent. As pointed out in Bollerslev, Todorov, and

Xu (2015) the VIX represents an approximation to the risk neutral expectation of the total

quadratic variation and reflects the compensation for both time-varying diffusive volatility

and jump intensity risks, as well as market expectations about future extreme volatility

events and their pricing. The realized variance, see Figure 1(b), shows the usual charac-

teristic discontinuous behavior emphasized by large jumps in periods of market instability,

i.e. the dot-com bubble burst, the global financial crisis, the Flash crash and the Euro-
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(c) Monthly variance swap payoff

Figure 1: Risk-neutral variance expectation, realized variance and variance swap payoff
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Table 1: Sample statistics

V IX2
t,t+1 RVt−1,t Payoff ΠRW

t,t+1 Π
AR(1)
t,t+1 Π

AR(2)
t,t+1 ΠARX1

t,t+1 ΠARX2
t,t+1

Mean 38.796 20.179 17.584 17.584 17.602 17.568 17.568 17.602
Stddev 34.331 35.755 29.918 19.502 19.231 19.651 19.574 13.642
Skewn. 3.456 8.126 -5.873 -2.394 2.345 2.341 2.308 2.441
Kurt. 20.43 94.362 77.303 39.276 10.466 10.480 10.252 10.854
Min 9.048 1.865 -350.28 -180.68 -18.830 -25.428 -22.755 1.652
Max 298.9 479.58 124.45 116.52 125.910 125.07 125.820 91.840
ρ(1) 0.804 0.648 0.274 0.263 0.567 0.554 0.576 0.639

Notes: This table reports sample statistics for variables used to estimated the VRP. Πi
t,t+1, i =

RW,AR(1), AR(2), ARX1 and ARX2, is computed using (1) where the expectation under the
physical measure is obtained using model i and the risk neutral expectation is approximated
by the squared VIX. The first order sample autocorrelation coefficient is denoted by ρ(1).
The sample used is monthly data from January, 1990, to September, 2015, totalling 309
observations.

pean sovereign debt crisis, due to the aggregation of shocks over non-overlapping monthly

intervals. The effect of the large jumps is reflected in the comparatively small sample auto-

correlation coefficient of 0.648. Finally, Figure 1 also shows that the squared VIX generally

lies above the realized variance, indicating a positive VRP. In fact, the difference between

the average squared VIX and the average realized variance, i.e. the unconditional VRP,

amounts to 17.584 as can be seen from Table 1.

Carr andWu (2009) compute the ex-post payoff from an artificial variance swap contract

entered into at time t with maturity τ and strike equal to V IX2
t,t+1 as Πt,t+1 = V IX2

t,t+1 −

RVt,t+1, where RVt,t+1 is the (non-parametric) realized variance estimator of QVt,t+1, see

Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and

Labys (2001), computed at time t+1. Carr and Wu (2009) document that Πt,t+1 is positive

on average and time varying. Although the variance swap payoff does not measure the ex

ante expectation and thus the variance premium, their analysis is based on sample averages,

thus allowing to quantify the VRP level unconditionally. Figure 1 (c), displays the variance
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swap payoff which shows clustering of calm and highly volatility periods. Although the

payoff is generally positive, on several occasions it is negative with strikingly extreme values

(up to −350.28) around the beginning of the global financial crisis.

2.2 Current approaches to estimate the VRP

Several possibilities have been explored already in the literature to estimate the VRP.

Bollerslev, Tauchen, and Zhou (2009) and Bollerslev, Marrone, Xu, and Zhou (2014) pro-

pose a very simple approach to compute the VRP. While maintaining the assumption that

the riskneutral expectation of the quadratic variation, EQ
t [QVt,t+τ ], is approximated by

the square of the VIX index, they assume random walk (RW) dynamics for QVt,t+τ under

the physical measure, such that EP
t [QVt,t+τ ] = QVt−τ,t. When QVt−τ,t is estimated by the

realized variance, RVt−τ,t, this allows to approximate the VRP by

ΠRW
t,t+τ = V IX2

t,t+τ −RVt−τ,t. (2)

This way of computing the VRP does not require any additional parameter estimation

and is therefore directly usable in financial applications. The random walk assumption,

though, is at odds with the recent literature on volatility modelling which advocate instead

the need for autoregressive dynamics.

Figure 2 presents the monthly time series of the VRP for the random walk (ΠRW
t,t+1) and

shows that this time series is very noisy and is highly positive and negative due to the

presence of extreme variance events (jumps). This contrasts with financial theory which

rules out negative VRP, see Drechsler and Yaron (2011). In fact, ΠRW
t,t+1 is negative on

multiple occasions with a minimum of −180 observed on October 2008 and shows large

positive spikes with a maximum of 116 on August 1998. Indeed, it would appear that

in periods of market turmoil, when the premium to bear the risk of variance fluctuations

should be the highest for risk neutral agents, the variance risk premium sharply reduces
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Figure 2: ΠRW
t,t+1 – VRP based on random walk assumption for realized variance

and even becomes highly negative. This latter effect is due to the asynchronicity of the

occurrence and/or relative size of extreme observations in RVt−1,t and V IXt,t+1.

Relaxing the random walk assumption, Drechsler and Yaron (2011) and Bekaert and

Hoerova (2014) compute EP
t [QVt,t+τ ] by projecting realized variance measures on a set

of predictor variables including autoregressive dynamics and implied volatility. Mueller,

Vedolin, and Yen (2015) follow a similar approach when studying bond VRP’s. To illus-

trate this methodology we consider the VRP from autoregressive models of order one and

two (Π
AR(1)
t,t+1 and Π

AR(2)
t,t+1 respectively). Furthermore, to explicitly incorporate revisions in

expectations and error in expectations, respectively, we also consider two AR(1) specifi-

cations that include the ex-ante options implied expectation of the current (V IX2
t,t+1) or

previous (V IX2
t−1,t) period variance level as an additional regressor. The corresponding

VRP time series are called ΠARX1
t,t+1 and ΠARX2

t,t+1 , respectively.

For the autoregressive models, the implied VRP time series in Figure 3 are as expected

smoother than the ΠRW
t,t+1 series and the positivity requirement is less often violated. How-

ever, due to the usual downward bias of the autoregressive parameters observed in presence

of extreme realizations, the resulting dynamics under the physical measure turns out to be
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(a) Π
AR(1)
t,t+1 – VRP based on AR(1) model for realized variance
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(b) Π
AR(2)
t,t+1 – VRP based on AR(2) model for realized variance

Figure 3: VRP based on autoregressive dynamics to forecast realized variance

characterized by a fast rate of mean reversion and upward bias in the unconditional level.

This translates into a VRP that shrinks towards, and sometimes crosses, the zero lower

bound in periods of calm and upward trending markets, e.g. the period spanning Septem-

ber 2003 and July 2007. Yet, the VRP exhibits extreme positive peaks with a maximum of

125 in periods of market stress. The Π
AR(1)
t,t+1 and Π

AR(2)
t,t+1 time series almost coincide which

is not surprising since the AR(2) specification has an insignificant second lag, see Table 2

which contains parameter estimates for the models fitted to realized variance.
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(a) ΠARX1
t,t+1 – VRP based on ARX1 model for realized variance
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(b) ΠARX2
t,t+1 – VRP based on ARX2 model for realized variance

Figure 4: VRP based on autoregressive dynamics with VIX to forecast realized variance

The VRP paths for the models including VIX information are given in Figure 4. The

ΠARX1
t,t+1 model does not show any substantial difference from the AR(1) model. In fact, the

parameter estimates in Table 2 show that the V IX2
t−1,t coefficient is insignificant whereas

the other estimated coefficients are very similar to those from the AR(1) model. However,

the ΠARX2
t,t+1 model allows to produce variance expectations which are smoother and induce

a better behaved VRP. In fact, this is the only model where the VRP is always positive,

though still extremely volatile in periods of market turmoil.
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Table 2: Times series regressions for RVt,t+1

Model name Regressors β0 β1 β2 Adj.R2

AR(1) RVt−1,t - 7.122 0.647 41.9
(4.272) (11.522)

AR(2) RVt−1,t RVt−2,t−1 7.402 0.670 -0.035 42.0
(3.877) (7.440) (-0.505)

ARX1 RVt−1,t V IX2
t−1,t 7.684 0.660 -0.020 42.0

(2.756) (7.114) (-0.284)

ARX2 RVt−1,t V IX2
t,t+1 0.111 0.381 0.328 45.5

(0.092) (4.953) (4.873)

Notes: This table report parameter estimates from time series models for RVt,t+1. Newey-
West t-statistics are in brackets and adjusted R2s are expressed in percentages. The sample
used is monthly data from January, 1990, to September, 2015, totalling 309 observations.

Overall, the VRP time series resulting from the existing methods are all too volatile to

be proper risk premia and all but one (the ΠARX2
t,t+1 ) violates the positivity constraint. In fact,

all the series show switching phases of persistent versus short memory dynamics, level shifts

in the volatility, and characteristics of short lived cluster of spikes. The estimated VRP’s

are all computed at each point in time using equation (1) without any joint modelling of the

risk neutral and physical expectations of the variance. In particular, while dynamics may

be used for predicting the expectations under the physical measure the current approaches

all ignore modelling explicitly the dynamics under the risk neutral measure. Moreover,

because they all estimate Πt,t+τ using a multistep estimation approach the existing methods

potentially suffer from inefficiencies and the compounding of estimation errors. In Section

3, we develop a joint model that puts more structure on the relationship between risk

neutral and physical variances and as a result yields more refined and realistic dynamics

for the VRP.
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2.3 Return predictability implied by existing VRPs

Being closely tied to the time varying volatility of consumption growth, the VRP has

been identified as an important factor in explaining aggregate stock market returns. See

for example Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011) who

demonstrate empirically and theoretically that, in addition to consumption risk, volatility

risk plays an important role in generating returns (see also Bonomo, Garcia, Meddahi, and

Tédongap (2015) for a framework starting from daily rather than a monthly frequency).

The natural question to ask then is whether the different ways of computing the VRP

series deliver differences in return predictability?

Table 3 provides several return predictability regressions using as explanatory variable

each Πi
t,t+1, for i = RW,AR(1), AR(2), ARX1 and ARX2 respectively. Predictability is

measured by the adjusted R2 from regressions of the following type

1

h

h
∑

j=1

rt+j = a0(h) + a1(h)Π
i
t,t+1 + ut+h,t, (3)

where h denotes the forecast horizon, rt denotes the monthly excess return for month t,

and Πi
t,t+1 is one of the variance risk premia estimators described above. Using data from

Datastream, we construct the monthly future aggregated broad market returns in excess

of the three-month T-bill rate over eight horizons from one month up to one year.

In line with Bollerslev, Tauchen, and Zhou (2009) and Bollerslev, Marrone, Xu, and

Zhou (2014), for ΠRW
t,t+1 we find an inverse U-shaped pattern in the R2 over the forecasting

horizons, peaking at 4 months with an adjusted R2 of 12.7%. The table also shows that

refining the physical expectations of QVt,t+1 by an autoregressive model preserves the

inverse U-shaped pattern but uniformly lowers the R2 values, e.g. the maximum value

being 6.8% with the AR assumption instead of 12.7% with the RW assumption. In fact,

while there seems to be no difference in return predictability for the nine and twelve month

horizon, the smoothing implied by the AR(1) model halves the R2s up to the six month
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Table 3: Return predictability with existing VRPs

Horizon (h)
Πi

t,t+1 1 2 3 4 5 6 9 12

ΠRW
t,t+1 a0(h) -0.549 -0.407 -0.413 -0.377 -0.247 -0.124 0.091 0.165

(-2.033) (-1.641) (-1.707) (-1.428) (-1.056) (-0.556) (0.416) (0.775)
a1(h) 0.050 0.042 0.043 0.041 0.034 0.027 0.015 0.012

(4.073) (4.538) (7.901) (7.844) (6.589) (4.645) (2.611) (2.161)
Adj.R2 5.08 6.91 10.7 12.7 10.3 7.46 3.37 2.48

Π
AR(1)
t,t+1 a0(h) -0.240 -0.219 -0.200 -0.192 -0.146 -0.093 0.073 0.148

(-0.820) (-0.805) (-0.770) (-0.735) (-0.541) (-0.311) (0.243) (0.494)
a1(h) 0.033 0.032 0.031 0.031 0.028 0.025 0.016 0.013

(1.941) (2.843) (3.282) (4.001) (4.008) (3.633) (2.378) (1.975)
Adj.R2 1.89 3.65 5.27 6.78 6.83 6.30 3.76 2.83

Π
AR(2)
t,t+1 a0(h) -0.227 -0.190 -0.175 -0.175 -0.133 -0.080 0.082 0.154

(-0.783) (-0.699) (-0.684) (-0.690) (-0.503) (-0.273) (0.277) (0.526)
a1(h) 0.032 0.030 0.030 0.030 0.027 0.024 0.016 0.012

(1.940) (2.642) (3.003) (3.876) (3.993) (3.654) (2.384) (1.994)
Adj.R2 1.90 3.42 5.02 6.66 6.77 6.20 3.70 2.80

ΠARX1
t,t+1 a0(h) -0.331 -0.344 -0.312 -0.312 -0.277 -0.228 -0.027 0.070

(-0.866) (-1.024) (-0.995) (-0.991) (-0.875) (-0.668) (-0.079) (0.200)
a1(h) 0.038 0.039 0.037 0.038 0.036 0.033 0.022 0.017

(1.545) (2.128) (2.384) (2.927) (3.229) (3.155) (2.174) (1.795)
Adj.R2 1.17 2.68 3.78 5.02 5.43 5.36 3.41 2.56

ΠARX2
t,t+1 a0(h) -0.238 -0.210 -0.193 -0.186 -0.141 -0.087 0.077 0.151

(-0.825) (-0.770) (-0.744) (-0.720) (-0.523) (-0.291) (0.259) (0.506)
a1(h) 0.033 0.031 0.031 0.031 0.028 0.025 0.016 0.013

(1.984) (2.834) (3.272) (4.037) (4.048) (3.638) (2.370) (1.980)
Adj.R2 1.97 3.68 5.34 6.92 6.96 6.37 3.78 2.87

Notes: This table reports parameter estimates from the model in (3) using various VRPs.
Newey-West t-statistics are in brackets and adjusted R2s are in percentages. The sample
used is monthly data from January, 1990, to September, 2015, totalling 309 observations.

horizon. Enriching further the model for predicting EP
t [QVt,t+1] by including the VIX index

in the autoregressive model, the R2 values are similar to the AR models for all forecasting

horizons of the predictive return regressions. The only model that yields higher predictive

power than the AR(1) model is the ARX2 model but this model still falls short of the RW

model except for the very long horizons.

The large predictability obtained when using ΠRW
t,t+1 seems somewhat puzzling. In fact,

although based on an uninformative model for the physical variance, which is possibly
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misspecified and contaminated by noise, the VRP has the highest explanatory power com-

pared to the more sophisticated models. On the one hand, this result could simply be due

to a spurious relationship. On the other hand, the expectation of the physical variance

computed under the random walk assumption embeds the full extent of extreme shocks on

the market. The implied VRP from the RW model thus ends up containing information on

both normal and extreme market conditions, the contribution of each not being directly

measurable. This result is also pointed out by Bollerslev, Todorov, and Xu (2015) who

advocate the inclusion of discontinuities in the variance dynamics to separate the normal

component of the VRP from jump tail risk, arguing that the two components explain to a

different extent aggregate return variation. The model we propose in the next section allow

separating normal dynamics from the impact of extreme variance events and consequently

the reaction of the agents when forming expectations in a very simple way.

3 A dynamic model for variance risk premia

This section provides a flexible model for the dynamics of the VRP. Before introducing

the model, we first define more precisely the variables involved in the computation of the

VRP in (1) and the properties of the associated estimators. We next set the theoretical

framework for the mechanism of formation of expectations and the linkages between the

risk-neutral and physical measures based on pricing variance swap contracts under smooth

volatility dynamics. Finally, we account for data heterogeneity and extreme volatility

events, two features that are empirically present in the data and that bias the estimation

of the VRP if not accounted for explicitly. To do this, we generalize the framework by

including regimes specifically designed to capture heteroskedasticity and isolate jumps.
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3.1 Nonparametric measures of quadratic variation

Assuming the asset price process evolves as d lnSt = Σ
1/2
t dWt +

∫

R
xµ(dt, dx), where Σt is

the instantaneous variance and µ(dt, dx) is a counting measure for the jump in the price,

its quadratic variation is defined as

QVt−τ,t =

∫ t

t−τ

d(lnSt)
2 =

∫ t

t−τ

Σsds+

∫ t

t−τ

∫

R

x2µ(dt, dx)

= Σt−τ,t + JP
t−1,t. (4)

A model free estimator of QVt−τ,t, or in the absence of jumps the integrated variance Σt−τ,t,

is given by the realized variance, or RVt−τ,t, see Andersen, Bollerslev, Diebold, and Ebens

(2001) and Andersen, Bollerslev, Diebold, and Labys (2001), defined as

RVt−τ,t =
I
∑

i=1

(

ln(St+i/St+i−1)
)2
, (5)

where St is the price level at time t, and I is the number of observations between t− τ and

t. Thus, RVt−τ,t is a nonparametric estimator of the sum of Σt−τ,t and the squared jumps.

The expectation under the physical measure, EP
t [QVt,t+τ ], is obtained by projecting RVt−τ,t

using a parametric model.

As shown by Bakshi and Madan (2000), Britten-Jones and Neuberger (2000) and Jiang

and Tian (2005), the term EQ
t [QVt,t+τ ] in (1) represents the strike of a variance swap entered

into at time t with maturity τ . As a variance swap may be replicated using a portfolio of

(infinitely many) European call and put options with weights inversely proportional to the

square of their strike price, the fair variance swap strike can be written as

EQ
t [QVt,t+τ ] =

2

Bt,τ

(
∫ Ft

0

Pt,τ (K)

K2
dK +

∫ ∞

Ft

Ct,τ (K)

K2
dK

)

+O

(

(

dFt

Ft−

)3
)

, (6)

where Bt,τ is the price of a time t zero-coupon bond maturing at time t+τ , Ft is the forward

price of the underlying asset, and Pt,τ (K) and Ct,τ (K) are, respectively, the European put

and call option prices with strike price K. The first term in (6) represents a model free
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estimator of the fair price of a variance swap in the absence of jumps, i.e. EQ(Σt,t+τ ). The

second term is the compensator for the discontinuous component (i.e. the jumps), see Carr

and Wu (2009) for details. In reality we do not have access to infinitely many options and

instead an approximation to (6) is given by

SWt,t+τ =
2

Bt,τ

[

∑

Ki≤K0

∆Ki

K2
i

Pt,τ (Ki) +
∑

Ki≥K0

∆Ki

K2
i

Ct,τ (Ki)

]

−

[

Ft

K0
− 1

]2

, (7)

where K0 is the strike price immediately below the forward price. Since option contracts

are available only at fixed maturities not necessarily coinciding with τ , SWt,t+τ can be

estimated as a linear interpolation of (7) computed using near and next maturity options.

Its square root is the well known VIX trademarked by the CBOE in 1993, see CBOE

(2015).

Following Bollerslev, Todorov, and Xu (2015), we decompose the VRP in (1) as

Πt,t+1 = EQ
t [QVt,t+τ ]− EP

t [QVt,t+τ ]

=
(

EQ
t [Σt,t+1]− EP

t [Σt,t+1]
)

+
(

EQ
t [J

Q
t,t+1]− EP

t [J
P
t,t+1]

)

= ΠC
t,t+1 +

(

EQ
t [J

Q
t,t+1]−EP

t [J
P
t,t+1]

)

. (8)

The variable ΠC
t,t+1 represents the smooth component of the VRP, i.e. the part of the

variance risk premium attributable to normal sized price fluctuations. The upperscript C,

which stands for continuous, stresses the absence of discontinuities in the variance process.

The term in brackets in (8) refers to the jump risk premium, see for instance Ait-Sahalia,

Karaman, and Mancini (2015). The decomposition in (8) finds justification in the fact

that, while the no arbitrage condition restricts the smooth component of the volatility

process Σt−1,t to be the same under the physical and the risk neutral measures, it puts no

restrictions on jump dynamics.
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3.2 Smooth dynamics

In this section, we focus on the smooth component of the VRP defined as

ΠC
t,t+1 = EQ

t [Σt,t+1]− EP
t [Σt,t+1]. (9)

Discontinuities in the price and volatility process will be explicitly introduced in the next

section. In the absence of market microstructure effects RVt−1,t consistently estimates

QVt−1,t and in the absence of jumps Σt−1,t and we assume that the realized variance can

be written as

RVt−1,t = Σt−1,t + εRV
t , (10)

where εRV
t is a homoskedastic measurement error, independently and identically distributed

(i.i.d.) with zero mean and with Var(εRV
t ) = σ2

RV . See for instance Barndorff-Nielsen and

Shephard (2002). We also assume that SWt,t+1 is an unbiased estimator of EQ
t [Σt,t+1] such

that SWt,t+1 = EQ
t [Σt,t+1] + εSWt . The estimation error εSWt is also an i.i.d. zero mean

noise with Var(εSWt ) = σ2
SW originating from e.g. discretisation of (6). Then by using (9)

we have that

SWt,t+1 = ΠC
t,t+1 + EP

t [Σt,t+1] + εSWt , (11)

where the stochastic component ΠC
t,t+1 acts as a wedge between the physical and risk neutral

expectations of the variance. The model can be naturally interpreted as a structural model

for risk neutral expectations. Given current and past information on the physical market,

agents construct expectations about the risk and they price it. The decomposition of

SWt,t+1 in a stochastic latent factor and measurement error can be also justified using the

arguments of Andersen, Bondarenko, and Gonzalez-Perez (2015).

We now specify suitable dynamics for the latent states. First, without loss of generality,

we assume that Σt−1,t is a stationary AR(1) process, i.e., Σt−1,t = b+φΣ(Σt−2,t−1−b)+σΣv
Σ
t
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with vΣt ∼ i.i.d. N(0, 1), although this can be easily relaxed to allow for more flexible

dynamics. As can be cleary seen in the state space formulation below, the autoregressive

dynamics of Σt−1,t allow us to structurally embed the variance expectation under the

physical measure into the system by substituting EP
t [Σt,t+1] = b+ φΣ(Σt−1,t − b) into (11).

Second, we specify the latent state ΠC
t,t+1 as

ΠC
t,t+1 = Ft,t+1 + d(Σt−1,t − b), (12)

i.e., the sum of a dynamic factor Ft,t+1, idiosyncratic to E
Q
t [Σt,t+1], and a term that captures

the contemporaneous relationship between ΠC
t,t+1 and Σt−1,t.

Note that the common latent factor Σt−1,t enters the dynamics of the risk neutral

expectation of the variance in two ways: i) directly through the expectation under the

physical measure and ii) indirectly through the VRP allowing, as advocated by Bollerslev,

Gibson, and Zhou (2011), for correlation between the variance premium and the variance

itself. In our empirical application, we assume the idiosyncratic factor Ft,t+1 to be a

stationary AR(1) process, i.e. Ft,t+1 = a + φF (Ft−1,t − a) + σF v
F
t with vFt ∼ i.i.d. N(0, 1).

As EQ
t [Σt,t+1] results from the contemporaneous aggregation of two AR(1) processes, it

inherits a longer persistence then Σt−1,t, mimicking the behaviour documented in Andersen,

Bollerslev, and Diebold (2007) and Andersen, Fusari, and Todorov (2015a).

Concentrating the parameters in the measurement system (10)-(11) and expressing the

transition equations system in terms of the latent states Σt−1,t and Ft,t+1, we can write the

model in the following state-space formulation






RVt−1,t

SWt,t+1






=







1 0

h(12) 1













Σt−1,t

F ∗
t,t+1






+







εRV
t

εSWt






, (13)

with






Σt−1,t

F ∗
t,t+1






=







k(1)

k(2)






+







φΣ 0

0 φF



















Σt−2,t−1

F ∗
t−1,t






−







k(1)

k(2)












+







σΣ 0

0 σF













vΣt

vFt






, (14)
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where F ∗
t,t+1 = Ft,t+1 + b(1 − φΣ − d) = Ft,t+1 + k(2) − a, h(12) = φΣ + d, k(1) = b,

k(2) = a + b(1 − φΣ − d). In general terms, this state-space formulation represents a

latent common factor model with Σt−1,t being the factor linking the physical variance

dynamics and its risk-neutral expectation. Central to the estimation of the VRP, the

latent factor Ft,t+1 represents the idiosyncratic component of its smooth dynamics. Note

that the substitution of EP
t [Σt,t+1] into (11) is justified by the fact that for a linear state-

space system the Kalman filter delivers the best linear predictions of the state vector,

conditionally on the observations, for a correctly specified model. Furthermore, in the

particular case of Gaussian innovations in both the state and measurement equations, the

one-step-ahead prediction of the state vector coincide with the conditional expectations.

3.3 Heteroskedasticity and extreme variance events

When confronted with real data, the simple model above should be enriched by accounting

for discontinuities, or jumps, in the variance dynamics and heteroskedasticity. In this paper

we propose to introduce heteroskedasticity and jumps by means of a regime switching setup

making the model parameters regime dependent. As we want to accommodate separately

for regime dependence both in the level and in the variance of the variance (both historical

and its risk neutral expectation) as well as jumps, we work with a three-regime model with

the following characteristics:

-Regime 1 : Calm markets (low variance level/low variance of variance/high measurement

accuracy). The error vector (εRV
t , εSWt ) represents a pure measurement error.

-Regime 2 : Volatile markets (high variance level/high variance of variance/low measure-

ment accuracy). The error vector (εRV
t , εSWt ) can be interpreted as in regime 1. We

advocate that market turmoil hampers the measurement accuracy of both the physical

variance and its risk neutral expectation, i.e., the measurement error variance increases.

We also postulate that higher levels of Σt−1,t and ΠC
t,t+1 correspond to higher variance of

23



the latent state errors. The change in the variance of the latent state errors of Σt−1,t and

ΠC
t,t+1 accounts for the heteroskedastic behaviour of the variance.

-Regime 3 : Jumps (extreme variance events/extreme variance of variance/rare and short

lasting episodes). The error vector (εRV
t , εSWt ) is a combination of measurement error and

variance of the discontinuous component. The average size of the jump is reflected in the

marginal increase in the variance level from regime 2. As the measurement error variance

of the observables and the jump variance cannot be individually identified, we assume that

the jump component dominates and impose the restriction that the measurement error

variance of the observables remains the same between regime 2 and regime 3.

We define a regime indicator St = {0, 1, 2} and assume that it is a first order Markov

Chain with probability transition matrix P given by

P =













p00 p01 0

p10 p11 p12

0 p21 p22













.

The zero’s indicating the fact that we only allow departures from regime 1 to regime 2

and back and from regime 2 to regime 3 and back. This assumption allows us to clearly

identify the particular features of the regimes stressed above. In particular, allowing only

departures from regime 2 to regime 3 and back guarantees that the extreme variance regime

constitutes systematically a departure from regime 2. In a similar sense, by allowing only

departures from regime 1 to regime 2 and back we are able to accommodate heteroskedastic

behaviour of the variance. Note that this assumption is in fact supported by the data in

our empirical application.

We now generalize the model to account for jumps by including the second term in

(8) which quantifies the jump risk premium. Modelling explicitly the jump risk premium

requires the expectation of the jump process under the physical measure, which can be

attained only by imposing tightly parameterized jump dynamics, see for example Bardgett,
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Gourier, and Leippold (2015). However, as stressed by Andersen, Fusari, and Todorov

(2016), jumps are rare and heterogenous in size leading to imprecise inference. To avoid this

problem, we instead model discontinuities in the variance process by considering separately

the jump in the historical variance and in the risk-neutral expectation. The measurement

system (10)-(11) can be written as

RVt−1,t = Σt−1,t + JP
t−1,t + εRV

t , and (15)

SWt,t+1 = ΠC
t,t+1 + EP

t [Σt,t+1] + EQ
t [J

Q
t,t+1] + εSWt . (16)

The system (15)-(16) allows us to exploit the temporal causality that links the occurrence

of extreme shocks in the spot market to the agents’ reactions in the option market and thus

infer agents’ attitude towards risk and their sentiment about future market conditions. We

elaborate more on this in Section 4.

The dynamics of the smooth component of the variance takes the form

Σt−1,t = bSt
+ φΣ(Σt−2,t−1 − bSt−1

) + σΣ,St
vΣt , (17)

with vΣt ∼ i.i.d. N(0, 1). To model the heteroskedasticity in Σt−1,t, captured by movements

between the base regime (St = 0) and the high level-high variance regime (St = 1), we

impose the identifying restrictions b0 ≤ b1 = b2 and σΣ,0 < σΣ,1 = σΣ,2. Similarly, the

smooth component of the variance risk premium ΠC
t,t+1 is defined as

ΠC
t,t+1 = Ft,t+1 + dSt

(Σt−1,t − bSt
), (18)

with

Ft,t+1 = aSt
+ φF (Ft−1,t − aSt−1

) + σF,St
vFt , (19)

where vFt ∼ i.i.d. N(0, 1). Since the smooth component moves between regimes 0 and 1,

we impose the identifying restrictions a0 ≤ a1 = a2 and σF,0 < σF,1 = σF,2. Note that the
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extension of (10)-(11) to a regime dependent model defined in (15)-(16) naturally assumes

that physical and risk neutral expectations are driven by the same regime indicator St and

that agents make expectations given the current regime. This allows direct computation

of the physical expectation of Σt−1,t in (16).

The jumps in RVt−1,t and SWt,t+1 are captured by the third regime (St = 2). For the

jump process under the physical dynamics, we assume basic dynamics characterized as a

random additive shock, i.e., a constant equaling the average jump size, plus noise,

JP
t−1,t = jPSt

+ σJP ,St
uPt =











0 St = 0, 1

jP + σJPuPt St = 2,
(20)

with uPt ∼ i.i.d. N(0, 1). The advantage of (20) is that it can adequately fit in a realistic

and parsimonious manner rare and short lasting extreme variance episodes. Similarly, for

the expectation of the jump process under the risk neutral measure, we assume

EQ
t [J

Q
t,t+1] = jQSt

+ σJQ,St
uQt =











0 St = 0, 1

jQ + σJQuQt St = 2,
(21)

with uQ ∼ i.i.d. N(0, 1). Note that this setup assumes that discontinuities occur simul-

taneously in the physical and risk neutral variances. That is, if a shock occurs in the

physical market at a point in time (of size JP
t−1,t), this generates a reaction in the risk

neutral market, and prices in the latter will adjust accordingly (by an amount EQ
t [J

Q
t,t+1]).

Finally, the regime dependent error terms εRV
t and εSWt are expressed as

εRV
t = σRV,St

eRV
t , and (22)

εSWt = σSW,St
eSWt , (23)

with eRV
t ∼ i.i.d. N(0, 1) and eSWt ∼ i.i.d. N(0, 1). As discussed above, in order to identify

the variance of the jump processes, we impose the restriction σi,0 < σi,1 = σi,2, i = RV, SW .

The restriction implies that in periods of instability the accuracy of the estimated proxies,
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RVt−1,t and SWt,t+1, for their latent counterparts deteriorates. However, the restriction

impose the same variance of the measurement error in the high level-high variance regime

(St = 1) and the jump regime (St = 2), implying that the quality of the measurements

remains invariant to the occurrence of extreme shocks.

In summary, by accounting explicitly for the occurrence of extreme variance events and

filtering out measurement error noise for the variables of interest, our approach allows for

a more precise estimation of the VRP. Also, being relatively simple and flexible, the model

can easily account for features advocated by many authors and typically evinced from the

data such as uncertainty deriving from heteroskedasticity, dynamic characteristics such

as level shifts, persistence as well as time varying correlation structure and dependence

between the VRP, the risk neutral and the physical variance. In the Appendix, we explain

how the model can be written in state-space form and how it can be estimated with

maximum likelihood using filtering techniques.

4 Return predictability and investors’ sentiment

As discussed in Section 2, the existing VRPs have been shown to be important predictors

of future aggregate stock market returns. However, the results from applying these existing

models empirically offer an interesting puzzle as models with more realistic dynamics for

the variance process fall short in terms of offering additional predictability compared to

a simpler yet unrealistic model that assumes a random walk specification for the physical

variance. In the literature it has been argued that this finding is caused by the fact that

VRP identified by the existing methods in fact contains two distinct components: one that

reflects compensation for continuous price moves and one that is related to compensation

for disaster risk (see e.g. Bollerslev and Todorov (2011)). For example, Bollerslev, Todorov,

and Xu (2015) provide evidence that these two components explain to a different extent
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aggregate return variation.

Besides estimating the smooth component associated with the price of risk during

normal market activity, ΠC
t,t+1 representing the premium associated with normal market

activity, the model described in Section 3 allows to identify two other fundamental quanti-

ties essential to explicitly account for the occurrence of extreme variance events. The first

of these is the occurrence and the size of the extreme variance events under the physical

dynamics, JP
t−1,t and the second is the risk neutral expectation of future extreme variance

events which represents the reaction of agents to shocks on the market, EQ
t [J

Q
t,t+1]. We now

explain how these variables can be combined to construct attitude and sentiment indicators

based on agents’ expectations response to extreme shocks in the market.

While our model yields the path of the smooth component of the variance risk premium

ΠC
t,t+1, it also allows to extract the jump indicator ISt=2. Using the notation in Kim and

Nelson (1999), the indicator function equals one if max
(

P (St = j|ψt)
)

= P (St = 2|ψt),

where P (St = j|ψt) is the posterior probability of state j = 0, 1, 2 and ψt the information

set up to and including t. Using the filtered states Σt−1,t and Πt,t+1 together with the

indicator ISt=2, we can estimate, up to some measurement error, the size of the jump

components JP
t−1,t and its risk neutral expectation EQ

t [J
Q
t,t+1]. To measure the type and

size of agents’ reaction to the occurrence of extreme variance events, we define the quantity

∆Jt = EQ
t [J

Q
t,t+1]− JP

t−1,t. (24)

The interpretation of ∆Jt relates to the jump risk premium, i.e. EQ
t [J

Q
t,t+1]−EP

t [J
P
t,t+1]. In

fact, ∆Jt can be written as the sum of the expected jump differential, i.e. EP
t [J

P
t,t+1−J

P
t−1,t],

and the jump risk premium. Since the latter represents the price that agents attach to

extreme events, ∆Jt contains direct information about the response of agents to the current

market environment.

The sign of ∆Jt indicates if a shock in the market is incorporated into the risk neutral
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expectations more or less than proportionally. We use this quantity to assess agents’

different attitude toward risk and thus their sentiment towards future market states. Agents

which react more than proportionally to an extreme shock on the market (∆Jt > 0),

i.e. agents which become more conservative when forming variance expectations, signal

an increase in risk aversion as the observed shock is expected to produce a long lasting

aftermath. We define this as fear and denote it by ∆J+
t . Conversely, a reaction that

is less than proportional to the observed shock (∆Jt < 0), signals a reduction in risk

aversion. More liberal variance expectations, after an abnormally large variance shock

occurs, indicate that the impact of the extreme event is expected to die out fast. We define

this as optimism and denote it by ∆J−
t .

Turning to the predictability of future returns on the broad market portfolio, in a related

framework Bollerslev, Todorov, and Xu (2015) attribute to a large extent such return

predictability to the left jump tail variation that they use as a proxy for the market fear.

We argue that not only the direction and the size of the agents’ reaction to extreme shock to

the market has a relevant effect on future market performances but also that the effect may

be asymmetric and likely to be systematically related to the current market performance

at the moment the shock occurs. This hypothesis relates to the concept of good vs. bad

volatility developed in Patton and Sheppard (2015). To assess whether agents price the

fear and optimism risk factors asymmetrically with respect to the state of the market, we

combine the two sentiment indicators with the sign of the aggregate market performance

realized at the time expectations are formed. A fear episode in conjunction with a bad

market performance, i.e. a situation in which the excess market return is negative (rt < 0),

is denoted by ∆J+

t,r−t
, while the mirroring case of fear for future extreme variance events

associated to bullish markets (rt > 0) is denoted ∆J+

t,r+t
. Similarly, optimism in a state of

bearish markets is denoted ∆J−

t,r−t
, while optimism in conjunction with rallying markets is

denoted ∆J−

t,r+t
. Table 4 summarizes the sentiment indicators and their interaction with
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Table 4: Attitude and sentiment indicators associated with extreme market events

Indicator SIj Market Response of Size of the Construction
performance Expect. to Jump reaction of SIi

Fear ∆J+
t ∆Jt > 0

|∆Jt|
|∆Jt|I∆Jt>0

Optimism ∆J−
t ∆Jt < 0 |∆Jt|I∆Jt<0

Fear&Bear ∆J+

t,r−t rt < 0
∆Jt > 0

|∆Jt|
|∆Jt|I∆Jt>0Irt<0

Optim.&Bear ∆J−

t,r−t
∆Jt < 0 |∆Jt|I∆Jt<0Irt<0

Fear&Bull ∆J+

t,r+t rt > 0
∆Jt > 0

|∆Jt|
|∆Jt|I∆Jt>0Irt>0

Optim.&Bull ∆J−

t,r+t
∆Jt < 0 |∆Jt|I∆Jt<0Irt>0

the state of the market.

Bollerslev, Todorov, and Xu (2015) find evidence that volatility is strongly related to

the direction of market performance. Thus, in terms of impact of the sentiment indicators

in the predictive regression model, we expect the overreaction of expectations to shocks

to strongly correlate with future returns at all horizons, especially in conjunction with

negative returns. In contrast, we expect the impact to be less pronounced when the shock

is perceived as transitory or it is associated to a positive market performance.

5 VRP and the S&P500 index

In our first empirical application we estimate our model on data for the S&P 500 index,

the standard index used in the literature and the data for which we reported descriptive

statistics and results using previous models in the literature in Section 2. We first provide

parameter estimates for our new model and illustrate the filtered states with a comparison

to what has been done in the literature as explained in Section 2. We next examine the

implied sentiment indicators and their implications for return predictability. Finally, we
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demonstrate that these indicators are not simply proxying for omitted economic variables.

5.1 Parameter estimates and smooth component dynamics

Table 5 reports parameter estimates for our model showing that most parameters are

estimated statistically significant and the estimates support our specification. In particular,

the change in the level and variance of the latent factors between the base regime and the

high level/high variance of the variance regime is large. For example, the variance of the

signals increase by a factor of about six for Ft,t+1 and five for Σt−1,t, respectively, and

this accounts for the uncertainty deriving from heteroskedasticity. Moreover, the large

marginal increase in the measurement error variance between the second and third regime,

which identifies the jump processes variances (σ2
JP and σ2

JQ respectively), suggests that the

filter adequately identifies the extreme variance events. Finally, the transition probability

matrix reveals a highly persistent base regime, while the other two are relatively short lived,

with expected durations equal 7.24, 2.44 and 2.40 months, respectively. The steady state

probabilities for the regimes are equal to 60.8%, 29.8% and 9.2%, respectively, showing

that jumps, while rare, occur around 10% of the time. We also estimate the model with

an unrestricted transition probability matrix but a standard likelihood ratio test supports

the restriction we impose on our model in Section 3.

Table 5 also shows that with respect to the dynamics of the latent states, the stationary

idiosyncratic component of ΠC
t,t+1, i.e., Ft,t+1, exhibits a strong persistence, with an autore-

gressive coefficient of 0.945, as well as the common factor, Σt−1,t, with an autoregressive

coefficient of 0.875. For the latter, the effect of filtering out the extreme observations,

which allows extracting the smooth component of the process and correctly estimating the

mean reversion of the physical variance, is particularly striking as the equivalent coefficient

of an AR(1) estimated directly on RVt−1,t equals 0.653, see Table 2. The reason for this

is that in our model the extreme variance events in the jump regime gets substantially
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Table 5: Parameter estimates for our model

State Var. Parameter Estimate Standard error t-statistic

Σt−1,t

b0 8.184 1.165 7.023
b1, b2 15.575 1.778 8.758
φΣ 0.875 0.027 31.814
σ2
Σ,0 3.034 0.861 3.521
σ2
Σ,1, σ

2
Σ,2 14.029 4.850 2.892

ΠC
t,t+1

a0 12.164 1.785 6.813
a1, a2 15.426 3.084 5.001
φC 0.945 0.026 35.358
d0 0.785 0.190 4.133
d1 1.255 0.279 4.488
d2 1.131 0.283 3.990
σ2
C,0 0.770 0.719 1.071
σ2
C,1, σ

2
C,2 4.135 3.632 1.138

JP
t−1,1

jP 43.392 5.126 8.464
σ2
JP 502.954 163.625 3.073

EQ
t [J

Q
t,t+1]

jQ 43.541 6.417 6.784
σ2
JQ 750.955 233.115 3.221

εRV
t

σ2
RV,0 1.901 0.627 3.027
σ2
RV,1, σ

2
RV,2 60.448 13.244 4.564

εSWt
σ2
SW,0 10.968 1.983 5.529
σ2
SW,1, σ

2
SW,2 48.197 16.859 2.858

P

p00 0.862 0.031 26.999
p11 0.590 0.076 7.761
p12 0.128 0.039 3.234
p22 0.584 0.101 5.744

Log-likelihood 1506.321

Notes: This table provides maximum likelihood estimates for our model. The sample used is
monthly data from January, 1990, to September, 2015, totalling 309 observations.
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down-weighted in the updating step of the estimation of the latent states ΠC
t,t+1 and Σt−1,t.

The usual negative bias on the autoregressive coefficient typically due to the presence of

extreme realizations appears clearly, and as discussed below, has serious implications on

the estimation of the VRP. Also, the link between Σt−1,t and ΠC
t,t+1 shows evidence of time

variation especially when shifting between regime 1 and 2, as indicated by the difference

d1 − d0 = 0.470.

Figure 5 plots the filtered latent states, Σt−1,t and ΠC
t,t+1, from our model as well as

their combination into the latent risk neutral variance expectation. For comparison, we

also consider two alternative models for producing the variance expectations under the

physical measure, the random walk and the AR(1), see also Section 2. The first thing to

note from the figure is that the implied latent state representing the risk neutral variance

expectations, see Figure 5(a) and the variance predictions, see Figure 5(b) (red line), match

adequately the level and the dynamics of the variance and its risk neutral expectation

along the entire sample. In fact, the variance predictions correctly identify the occurrence

of extreme variance episodes and separate the jump from the smooth component. Figure

5(b) also shows that, though providing reasonable predictions in periods of calm markets,

when extreme variance realizations occur (indicated by the dark grey shaded areas in the

figure), the random walk model (black line) suffers the problem of entirely projecting these

extreme realizations into the prediction. The AR(1) model (blue line) on the other hand

overestimates the model implied long term variance in calm periods like the periods from

February 1991 to December 1996 or from October 2003 to February 2007 and yet still

spikes up when extreme variance episodes occur because of the recursive nature of the

model.

Finally, Figure 5(c) (red line) shows that refining the estimation of the variance expec-

tations under the physical dynamics and that of its risk neutral expectations, by explicitly

accounting for heterogeneity and jumps, the smooth component of the variance risk pre-
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(a) Squared VIX (black) vs. filtered risk neutral expectations (red)
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(b) RV predictions (red) vs. AR(1) (blue) and RW (black)
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(c) Smooth component of the VRP, ΠC
t,t+1, (red) vs. Π

AR(1)
t,t+1 (blue), ΠRW

t,t+1 (black) and variance swap payoff
(green)

Figure 5: Risk-neutral variance expectations, realized variances and variance risk premia
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mium always satisfies the positivity constraint as it ranges from 5.43 to 65.68 with a per-

sistence of 0.95. Furthermore, the variance risk premium increases sensibly, systematically

and promptly in periods of market instability, see for instance July and September 2002

(Stock market downturn of 2002), September 2008 (subprime crisis peak), May 2010 (Flash

crash) or August 2011 (European sovereign debt crisis peak and US downgrading) among

other episodes. Thus, the filtered variance risk premium from our model shows a reason-

able degree of smoothness, appropriately reacts to changes in level and variability and, as

quantified in Table 5, reflects realistic dynamics and the expected degree of persistence.

The RW and AR(1) models on the other hand both deliver variance risk premia estimates

which are too imprecise, volatile and in some instances counterintuitive. In particular,

the RW model implies a VRP which is sharply reduced and may even become negative in

periods of market turmoil when the premium for bearing risk should be the highest and

the AR(1) model implies a VRP which shrinks towards zero, eventually crossing the zero

lower bound, in periods of calm markets.

5.2 Return predictability

The previous section estimates the smooth component of the VRP, i.e. ΠC
t,t+1, the occur-

rence and the size of the extreme variance events under the physical dynamics, i.e. JP
t−1,t,

and the risk neutral expectation of future extreme variance events which represents the

reaction of agents to shocks on the market, i.e. EQ
t [J

Q
t,t+1]. In this section we use the latter

two variables to build the set of attitude and sentiment indicators described in Section 4

and we empirically assess their predictive ability for the equity premium. In particular, we

argue that the predictability previously attributed to Πi
t,t+1 stems to a large extent from

the effect of rare and extreme events as well as the reaction of agents to those events. To
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Table 6: Descriptive statistics for sentiment indicators and their interaction with the mar-
ket performance

SIj Indicator Mean Std. deviation Minimum Maximum N. obs.
∆J+

t Fear 36.025 21.947 2.071 86.785 12

∆J−
t Optimism 34.747 48.452 2.791 229.810 20

∆J+

t,r−t
Fear&Bear 39.643 22.429 11.849 86.785 9

∆J−

t,r−t
Optim.&Bear 41.128 56.292 8.526 229.810 14

∆J+

t,r+t
Fear&Bull 25.172 20.036 2.071 37.809 3

∆J−

t,r+t
Optim.&Bull 19.860 17.378 2.791 50.709 6

Notes: This table reports descriptive statistics for the attitude and sentiment indicators. The
statistics are computed considering only the non-zero values for a given indicator. The sample
used is monthly data from January, 1990, to September, 2015, totalling 309 observations.

test this hypothesis, we augment the predictive regression model as

1

h

h
∑

j=1

rt+j = a0(h) + a1(h)Π
C
t,t+1 +

m
∑

j=1

bj(h)SIj,t + ut+h,t (25)

where SIj is a set of sentiment indicators related to extreme market events. In order to

isolate the contribution of the variance premium and the investors’ sentiment indexes, we

do not consider other explanatory variables xi, i = 1, .., k here. The inclusion of other

economic predictors is instead discussed in Section 5.3.

Table 6 reports descriptive statistics for the indicators associated with extreme market

events, while Figure 6 shows the occurrence and the size of the sentiment indicators. Out

of 32 jump events, we observe 12 fear reactions against 20 optimism episodes, with average

sizes of 36.025 and 34.747, respectively. When we associate the size of the reaction to the

sign of the market performance, we observe that when returns are negative the average

reaction is about twice as large and more than double in occurrence when compared to

positive returns. Note that the number of occurrences of the fear indicator when associated

to bear markets counts for less than 3% of the total sample size, while the episodes classified

as Optimism&Bear represent about 5%. As expected, fear and optimism reactions in
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Figure 6: Sentiment indicators

conjunction with positive shocks in the market, turn out to be much more rare (3 and 6

occurrences, respectively, out of 309 observations).

Tables 7 and 8 report the adjusted R2s and the estimates for the predictive return

regression in equation (25) over the same set of horizons used in Section 2. They include

combinations of ΠC
t,t+1 and the sentiment indicators as individual regressors as well as

their interaction with the state of the market. We test for statistical significance of the

parameters using individual t tests. To account for serial dependence in the residuals

induced by the overlap in the multi-period return, the t statistics are based on Newey-West

heteroskedasticity and autocorrelation consistent standard errors. To compare different

combinations of regressors, the overall fit of the regression is measured by the adjusted R2.
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Table 7: Adjusted R2s from predictive return regressions

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 -0.30 -0.17 0.16 0.84 1.32 1.28 0.65 1.01

ΠC
t,t+1 ∆Jt 6.23 6.25 8.31 9.98 8.16 5.43 2.39 1.91

ΠC
t,t+1 ∆J

+
t ∆J−

t 7.08 7.68 8.97 10.33 8.87 6.49 3.57 2.44
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
7.37 8.93 9.27 10.38 8.89 6.54 4.23 3.26

ΠC
t,t+1 ∆J

+
t 4.41 5.53 5.19 5.47 5.90 5.19 3.32 2.29

ΠC
t,t+1 ∆J−

t 2.98 2.60 4.70 6.52 4.95 2.99 1.07 1.25

ΠC
t,t+1 ∆J

+

t,r−t
3.01 4.07 3.92 4.50 5.22 4.84 3.56 2.75

ΠC
t,t+1 ∆J−

t,r−t
2.68 1.62 3.95 6.10 4.76 2.93 1.23 1.37

ΠC
t,t+1 ∆J+

t,r+t
1.27 1.35 1.48 1.79 1.92 1.60 0.66 1.09

ΠC
t,t+1 ∆J−

t,r+t
-0.11 1.80 0.89 1.08 1.42 1.31 0.85 1.17

ΠRW
t,t+1 5.08 6.91 10.7 12.7 10.3 7.46 3.37 2.48

Π
AR(1)
t,t+1 1.89 3.65 5.27 6.78 6.83 6.30 3.76 2.83

Π
AR(2)
t,t+1 1.90 3.42 5.02 6.66 6.77 6.20 3.70 2.80

ΠARX1
t,t+1 1.97 3.68 5.34 6.92 6.96 6.37 3.78 2.87

ΠARX2
t,t+1 1.17 2.68 3.78 5.02 5.43 5.36 3.41 2.56

Notes: This table reports the adjusted R2s in percentage from the predictive return regres-
sions in (25) with VRP, sentiment indicators and their interaction with the state of the
market as regressors. The sample used is monthly data from January, 1990, to September,
2015, totalling 309 observations.

As a reference, we also add the adjusted R2s of the predictive return regressions where the

VRP is computed using the variance expectations under the physical measure based on

the models described in Section 2.

When we regress the future aggregate market excess return on ΠC
t,t+1, we find no sub-

stantial return predictability at any horizon. In fact, the predictability attains a maximum

value equal to 1.3% at the five-month horizon. This size of R2 is in line with Huang,

Jiang, Tu, and Zhou (2015), when using the investor sentiment index results of Baker

and Wurgler (2006), who size the predictability of the monthly aggregate market excess

return in the order of 1.5%. Thus the results of Table 7 suggest that ΠC
t,t+1 adequately
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measures the economic uncertainty under normal market conditions. More importantly, as

also advocated by Bollerslev, Todorov, and Xu (2015), this finding suggests that much of

the return predictability previously ascribed in the literature to the variance risk premium

is effectively coming from the part of the premium related to how agents gauge extreme

variance events, their prediction and compensation. In our framework, the latter effects

are measured by the variable ∆Jt and when including the size of the reaction of agents

to unusual variance events, the R2 of the regression sharply increases at every horizon,

reaching 10% at the 4 month horizon.

Separating ∆Jt in its two components ∆J+
t and ∆J−

t , Table 7 shows that the extra

degree of freedom allowing for an asymmetric effect on future returns of conservative (fear)

versus liberal (optimism) expectations improves the predictability at the short and long

horizons. Moreover, Table 8 shows that the marginal impact of ∆J+
t is systematically

at least double that of ∆J−
t and the two consistently carry opposite signs. The null

hypothesis of no asymmetry is always rejected at standard significance levels. Therefore,

agents effectively price the fear for market instability only when shocks are perceived as

long lasting. Although, the parameter estimates of ∆J+
t and ∆J−

t tend to decrease in

absolute value as the horizon increases, Table 8 shows that agents’ conservative reactions

to large shocks affect returns over longer horizons compared to liberal ones (with the latter

insignificant for the 12-month horizon at standard confidence levels).

Interacting the variables ∆J+
t and ∆J−

t with the market performance indicator further

increases the R2s and this especially so at horizons at which return predictability is known

to be difficult to capture, i.e. one to three month horizon. This shows that the asymmetry,

with respect to the state of the market, in the way each sentiment indicator explains future

aggregate market returns cannot be rejected. The inverse U-shaped relationship between

horizon and R2 is preserved but the curve that we obtain is somewhat flatter, i.e. starting

and ending with higher R2s. For example, the one month horizon R2 is 7.37 against 6.23
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Table 8: Parameter estimates from return predictive regressions

One-month horizon Three-month horizon

ΠC
t,t+1 0.006 0.024 0.011 0.011 0.017 0.029 0.022 0.024

(0.187) (0.854) (0.038) (0.402) (0.829) (1.719) (1.215) (1.276)

∆Jt 0.064 0.043
(4.384) (7.248)

∆J+
t 0.107 0.065

(4.854) (5.707)

∆J−
t -0.049 -0.035

(-4.312) (-5.245)

∆J+

t,r
−

t

0.097 0.060
(3.738) (5.526)

∆J−

t,r
−

t

-0.049 -0.034
(-4.006) (-5.845)

∆J+

t,r
+

t

0.177 0.095
(11.224) (2.822)

∆J−

t,r
+

t

-0.053 -0.063
(-0.503) (-1.610)

Adj.R2 -0.30 6.23 7.09 7.37 0.16 8.31 8.97 9.27

Six-month horizon Twelve-month horizon

ΠC
t,t+1 0.023 0.029 0.023 0.022 0.015 0.017 0.014 0.013

(1.432) (1.709) (1.335) (1.282) (1.061) (1.128) (0.950) (0.884)

∆Jt 0.023 0.008
(5.717) (2.474)

∆J+
t 0.044 0.019

(4.665) (2.721)

∆J−
t -0.015 -0.004

(-3.745) (-1.413)

∆J+

t,r
−

t

0.045 0.024
(4.489) (3.868)

∆J−

t,r
−

t

-0.016 -0.005
(-4.155) (-1.719)

∆J+

t,r
+

t

0.036 -0.012
(1.258) (-0.437)

∆J−

t,r
+

t

-0.007 0.017
(-0.370) (1.272)

Adj.R2 1.28 5.43 6.49 6.53 1.01 1.91 2.45 3.26

Notes: This table reports parameter estimates from the predictive return regressions in (25)
with VRP, sentiment indicators and their interaction with the state of the market as regres-
sors. Newey-West t-statistics are in brackets and adjusted R2s are expressed in percentages.
The sample used is monthly data from January, 1990, to September, 2015, totalling 309
observations.
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of the regression including only ΠC
t,t+1 and ∆Jt. Similarly, the one year horizon R2s are

respectively 3.26 and 1.91. Thus it turns out that predictability indeed comes mostly from

the way agents adapt their expectations when exposed to extreme variance realizations as

detected by the third regime in our model.

With respect to the state of the market, as expected, we find that fear in conjunction

with negative market performances impacts the future market performance over longer

horizons. In fact, the coefficients associated with ∆J+

t,r−t
(Fear&Bear) are significant at

all horizons exhibiting the slowly decaying behavior discussed above. Contrary, the effect

of fear associated to bullish markets dies out much faster as shown by the insignificant

coefficients starting from the six month horizon. Similar conclusion can be drawn for the

case of optimistic variance expectations where ∆J−

t,r−t
(Optimism&Bear) contributes to a

large extent to explain future aggregate market returns at all horizons, while optimism in

conjunction with bullish markets contributes only marginally.

This result supports the hypothesis of an asymmetric response of the excess aggregate

market returns to the sign of the shock in the aggregate price. It is worth noting that both

∆J+

t,r−t
and ∆J+

t,r+t
correlate positively with the future aggregate market excess return,

meaning that agents price any source of market instability when perceived to be long

lasting. The marginal impact of the Fear&Bull indicator is larger in the short term while

that of the Fear&Bear indicator dominates on longer horizons.

The natural question to ask is what justifies the sharp difference in return predictabil-

ity discussed in Section 2 of the different models typically used to compute the variance

expectation needed to estimate the VRP. Using our sentiment indicators, we can pin down

exactly which component in the VRP based on the random walk and on autoregressive

type models effectively explains future return variation. To be precise, since the random

walk implied VRP is completely exposed to jumps, both in the realized variance and its

risk-neutral expectations, our results suggest that the degree of predictability of ΠRW
t,t+1 has
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to be dominated by that of ∆J+
t and ∆J−

t . To test this hypothesis, we regress the future

excess returns on the difference between ΠRW
t,t+1 and the sum of the fear and optimism in-

dicators. We find that the resulting R2s drop at all horizons, e.g. from 12.7 to 3.2 at the

four-month horizon. Similarly, we argue that return predictability associated with Π
AR(1)
t,t+1 ,

which is instead based on smoother variance expectations, is rather exposed to jumps in

the risk-neutral expectations, thus being dominated by ∆J+
t . Subtracting the fear indica-

tor (∆J+
t ) from AR(1) implied Π

AR(1)
t,t+1 , the return predictability in fact aligns to the same

levels observed for the smooth component ΠC
t,t+1.

5.3 Predictability with other economic predictors

We now compare the forecasting power of our four sentiment indicators with several macro-

economic variables that have been shown to have predictive power when it comes to return

forecasting. This allows us to examine whether our sentiment indicators’ forecasting power

is driven by omitted economic variables related to business cycle fundamentals or changes

in investor risk aversion. To test this we augment the predictive regression to take the

following form

1

h

h
∑

j=1

rt+j = a0(h) +
m
∑

j=1

aj(h)SIj,t +
k
∑

i=1

bi(h)Xi,t + ut+h,t. (26)

The set of regressors, Xi,t, we consider are:

• Basic financial variables : Dividend-payout ratio (DPO): difference between the log

of dividends and log of earnings on the S&P 500 index; Price-earnings ratio (PE):

difference between the log of earnings and log of prices on the S&P 500 index, where

earnings are measured using a one-year moving sum; Dividend yield (DY): difference

between the log of dividends and log of lagged prices on the S&P 500 index. All

variables are downloaded from Robert Shiller’s website.

42



• Yield related variables : Term spread (TMS): difference between the long-term yield

and Treasury bill rate (10-Year Treasury Constant Maturity Minus 3-Month Trea-

sury Constant Maturity); Default yield spread (DFY): difference between Moody’s

Seasoned BAA- and AAA-rated corporate bond yields; Default return spread (DFR):

difference between long-term corporate bond and long-term government bond returns

(Moody’s Seasoned AAA Corporate Bond Yield Relative to Yield on 10-Year Trea-

sury Constant Maturity). All variables are downloaded from the St. Louis Federal

Reserve website.

• Traditional risk factors : Small minus big (SMB) and high minus low (HML) are

constructed using value-weighted portfolios of NYSE, AMEX and NASDAQ stocks

formed on size and book-to-market. SMB is the average return on the small port-

folios minus the average return on the big portfolios, HML is the average return on

the value portfolios minus the average return on the growth portfolios. MOM is the

Carhart (1997) momentum factor. All variables are downloaded from Kenneth R.

French’s website.

• Macro-economic variables : Consumption-wealth ratio (CAY): residual of regressing

consumption on asset wealth and labor income from Lettau and Ludvigson (2001)

and downloaded from Lettau’s website. Re-spanned on monthly frequency as in

Bollerslev, Tauchen, and Zhou (2009); Inflation (CPI): calculated from the consumer

price index for all urban consumers as used in Giglio, Kelly, and Pruitt (2016); Out-

put gap (OG): deviation of the logarithm of total industrial production from a trend

that includes both a linear component and a quadratic component, see Cooper and

Priestley (2009). We also include a cubic trend to capture better the recent economic

downturn. The variables CPI and total industrial production are downloaded from

the St. Louis Federal Reserve website.
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• Implied volatility : The squared CBOE implied volatility index (VIX) downloaded

from Datastream.

The left panels of Tables 9 and 10 considers the predictive regressions with each single

economic variable, for respectively the one/three month and six/twelve month horizons.

We report the slope coefficients of the regressions along with the adjusted R2s. A coefficient

with a star indicates that the coefficient is significant at the 10% level. As a reference,

we also include the regression results using the smooth component of the VRP (i.e. ΠC)

extracted from Table 7. Out of the 14 economic predictors, only DY exhibit significant

predictive power for the market aggregate future return at the 10% or better significance

levels for all the considered horizons. The R2s increase from 0.49% to 12.26% when the

horizon increases from one to twelve months. The variable OG has significant predictive

power from the three month horizon onwards with R2s from 3.06% to 17.17% and finally

MOM is significant from the sixth month horizon with largest R2 of 1.33% at the twelve

month horizon.

The right panels of Tables 9 and 10 reports multivariate regressions to test for incre-

mental predictive power of the sentiment indicators and their interaction with the state of

the market, SIj,t. This allows investigating whether the forecasting power of SIj,t docu-

mented in the previous section remains significant after controlling for economic predictors.

The results show that the estimates of the slope coefficients associated with the sentiment

indicators are indeed in line, in terms of sign and size, with those reported in Table 8. More

precisely, the coefficient a1 associated with Fear&Bear remains statistically significant at

all horizons when the regression is augmented by the economic predictors. The coefficients

of the indicators Optimism&Bear and Fear&Bull, i.e. a2 and a3, are significant at the one

and three month horizons but less so at the six and twelve month horizons. The coefficient

a4 associated with Optimism&Bull is significant several times at the twelve month horizon.

With respect to the magnitude of the adjusted R2s of these augmented regressions, they
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are substantially larger than those based on the economic predictors alone. For instance,

at the one month horizon, the R2s increase from about zero percent on average to at

least 7%. Regressions combining the sentiment indicators with economic predictors found

individually significant seems to increase predictability in an additive way. For example at

the six month horizon, DY alone has an R2 of 4.83% compared to an R2 of 11.26% when

the sentiment indicators are included in the model. This confirms that the latter indicators

bring in genuinely different explanatory power. In sum, these results demonstrate that the

sentiment indicators contain considerable complementary forecasting information beyond

what is contained in the usual economic predictors.

6 International evidence

To study the properties of the VRP and its return predictability beyond the S&P 500

index, we now estimate our model on eight other market indices. Apart from the Dow

Jones industrial average (DJIA), we consider the following foreign market indices: the

STOXX Europe 50 index covering 18 European countries, the CAC 40 from France, the

DAX index from Germany, the AEX index from the Netherlands, the FTSE 100 from the

United Kingdom, the SMI from Switzerland and the NIKKEI 225 from Japan. We first

describe the data and discuss the parameter estimates and the resulting VRP and sentiment

indicators obtained with our model. We next report results for the predictive regressions

with the smooth component of the VRP and the sentiment indicators and compare this to

the existing evidence.

6.1 Data and parameter estimates

The monthly data for the panel of international indices spans the period from January,

2000, to September, 2015, totaling 189 observations. Implied variance time series are
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Table 9: Predictive return regressions with economic predictors

One-month horizon

r̂
(h)
t =â0+b̂1X1,t r̂

(h)
t =â0+

∑4
j=1 âjSIj,t+b̂1X1,t

X1,t b̂1 Adj.R2 â1 â2 â3 â4 b̂1 Adj.R2

ΠC 6e-3 -0.30 0.10∗ -0.05∗ 0.18∗ -0.05 0.01 7.37
DPO -3e-3 -0.33 0.10∗ -0.05∗ 0.18∗ -0.05 0.06 7.30
PE -0.73 0.09 0.10∗ -0.05∗ 0.19∗ -0.03 -0.93 7.96
DY 1.31∗ 0.49 0.10∗ -0.05∗ 0.19∗ -0.05 1.69∗ 8.64
TMS -0.08 -0.27 0.10∗ -0.05∗ 0.18∗ -0.05 0.02 7.30
DFR -0.42 -0.10 0.10∗ -0.04∗ 0.19∗ -0.03 -0.44 7.52
DFY 0.69 0.12 0.10∗ -0.04∗ 0.18∗ -0.03 0.31 7.37
SMB 0.06 -0.12 0.10∗ -0.05∗ 0.18∗ -0.05 0.05 7.48
HML -0.09 0.15 0.10∗ -0.05∗ 0.17∗ -0.05 -0.09 7.76
MOM -0.05 -0.05 0.10∗ -0.05∗ 0.18∗ -0.05 -0.04 7.48
LTR -0.10 0.01 0.10∗ -0.05∗ 0.18∗ -0.05 -0.07 7.49
CAY -10.65 -0.12 0.10∗ -0.05∗ 0.18∗ -0.04 -12.95 7.60
CPI 33.90 -0.25 0.10∗ -0.05∗ 0.18∗ -0.05 -8.49 7.30
OG -8.99 0.55 0.10∗ -0.05∗ 0.18∗ -0.05 -8.77∗ 8.13
VIX 0.00 -0.32 0.11∗ -0.04∗ 0.19∗ -0.04 -0.01 7.37

Three-month horizon

r̂
(h)
t =â0+b̂1X1,t r̂

(h)
t =â0+

∑4
j=1 âjSIj,t+b̂1X1,t

X1,t b̂1 Adj.R2 â1 â2 â3 â4 b̂1 Adj.R2

ΠC 0.02 0.16 0.06∗ -0.03∗ 0.10∗ -0.06 0.02 9.27
DPO 0.23 -0.18 0.07∗ -0.03∗ 0.10∗ -0.05 0.30 8.67
PE -0.47 0.16 0.07∗ -0.03∗ 0.11∗ -0.04 -0.57 9.12
DY 1.39∗ 2.26 0.07∗ -0.03∗ 0.11∗ -0.05 1.64∗ 12.00
TMS -0.04 -0.29 0.07∗ -0.03∗ 0.10∗ -0.05 0.02 8.43
DFR -0.35 0.11 0.07∗ -0.03∗ 0.11∗ -0.04 -0.35 8.81
DFY 0.40 0.10 0.07∗ -0.03∗ 0.10∗ -0.04 0.11 8.44
SMB -0.06 0.24 0.06∗ -0.03∗ 0.11∗ -0.05 -0.06 9.03
HML -0.06 0.29 0.07∗ -0.03∗ 0.09∗ -0.05∗ -0.07 9.10
MOM -0.03∗ 0.96 0.07∗ -0.03∗ 0.09∗ -0.06∗ -0.06 9.58
LTR -0.15∗ 1.90 0.06∗ -0.03∗ 0.10∗ -0.05 -0.14∗ 10.28
CAY -0.39 -0.22 0.07∗ -0.03∗ 0.10∗ -0.05 -1.46 8.43
CPI 45.80 0.05 0.07∗ -0.03∗ 0.10∗ -0.04 17.62 8.47
OG -11.37∗ 3.06 0.06∗ -0.03∗ 0.10∗ -0.05 -11.32∗ 12.29
VIX 0.00 -0.24 0.06∗ -0.03∗ 0.09∗ -0.05 0.00 8.50

Notes: This table reports parameter estimates from the predictive return regressions in (26)
with economic predictors and sentiment indicators as regressors. Newey-West t-statistics are
in brackets and adjusted R2 are expressed in percentages. The sample used is monthly data
from January, 1990, to September, 2015, totalling 309 observations.
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Table 10: Predictive return regressions with economic predictors

Six-month horizon

r̂
(h)
t =â0+b̂1X1,t r̂

(h)
t =â0+

∑4
j=1 âjSIj,t+b̂1X1,t

X1,t b̂1 Adj.R2 â1 â2 â3 â4 b̂1 Adj.R2

ΠC 0.02 1.28 0.05∗ -0.02∗ 0.04 -0.01 0.02 6.53
DPO 0.37 0.38 0.05∗ -0.01∗ 0.04 -0.00 0.35 5.80
PE -0.36 0.19 0.05∗ -0.01∗ 0.05∗ 0.02 -0.49 6.11
DY 1.46∗ 4.83 0.05∗ -0.01∗ 0.05∗ -0.00 1.60∗ 11.26
TMS 0.03 -0.30 0.05∗ -0.01∗ 0.04 0.01 0.07 5.35
DFR -0.22 -0.03 0.05∗ -0.01∗ 0.05∗ 0.02 -0.33 5.79
DFY -0.02 -0.33 0.05∗ -0.01 0.04 0.01 -0.03 5.19
SMB -0.05 0.61 0.05∗ -0.01∗ 0.05 0.01 -0.05 5.97
HML -0.08∗ 1.27 0.05∗ -0.01∗ 0.03 -0.00 -0.08∗ 6.79
MOM -0.04∗ 0.92 0.05∗ -0.01∗ 0.04 -0.00 -0.04∗ 6.32
LTR -0.09 1.02 0.05∗ -0.01∗ 0.04 0.01 -0.08 6.23
CAY 7.18 1.15 0.05∗ -0.01∗ 0.04 0.01 5.81 5.47
CPI -45.38 0.34 0.05∗ -0.01∗ 0.04 -0.00 -56.58 6.12
OG -12.96∗ 8.80 0.05∗ -0.01∗ 0.04 -0.00 -12.70∗ 13.93
VIX 0.00 1.06 0.04∗ -0.02∗ 0.03 -0.01 0.01 5.93

Twelve-month horizon

r̂
(h)
t =â0+b̂1X1,t r̂

(h)
t =â0+

∑4
j=1 âjSIj,t+b̂1X1,t

X1,t b̂1 Adj.R2 â1 â2 â3 â4 b̂1 Adj.R2

ΠC 0.01 1.01 0.02∗ -0.01∗ 0.01 -0.02 0.01 3.26
DPO 0.35 0.91 0.03∗ -0.00 -0.01 0.02 0.32 3.38
PE -0.51 1.58 0.03∗ -0.00 0.00 0.03 -0.60 5.00
DY 1.66∗ 12.26 0.03∗ -0.00 0.01 0.02 1.70∗ 15.47
TMS 0.17 1.75 0.03∗ -0.00 -0.01 0.03∗ 0.18 4.82
DFR -0.21 0.19 0.03∗ -0.00 0.00 0.03∗ -0.31 3.46
DFY -0.24 0.17 0.03∗ -0.00 -0.01 0.02 -0.17 2.63
SMB -0.04 0.36 0.03∗ -0.00 -0.01 0.03∗ -0.03 2.90
HML -0.05 0.71 0.03∗ -0.00 -0.02 0.02∗ -0.05 3.52
MOM -0.04∗ 1.33 0.03∗ -0.00 -0.01 0.02∗ -0.04∗ 4.05
LTR -0.05 0.38 0.03∗ -0.00 -0.01 0.02∗ -0.04 2.98
CAY 16.23 3.44 0.02∗ -0.00 -0.01 0.02∗ 15.60 5.86
CPI -61.15 1.82 0.03∗ -0.01 -0.01 0.01 -64.68 4.57
OG -13.19∗ 17.17 0.02∗ -0.00 -0.01 0.02∗ -12.97∗ 19.28
VIX 0.00 0.82 0.02∗ -0.01 -0.02 0.02 0.00 2.89

Notes: This table reports parameter estimates from the predictive return regressions in (26)
with economic predictors and sentiment indicators as regressors. Newey-West t-statistics are
in brackets and adjusted R2 are expressed in percentages. The sample used is monthly data
from January, 1990, to September, 2015, totalling 309 observations.
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estimated by the CBOE volatility index applied to each index options dataset. Implied

variances and interest rates used to compute excess returns are extracted from Datastream.

Realized variance data, available from Oxford-Man Institute, are based on 5 minute returns

along with the squared close-to-open overnight return.

Table 11 provides descriptive statistics. In terms of persistence, as observed before,

the implied variance (IVt,t+1) is consistently more persistent than the realized variance

for all indices. The unconditional VRP ranges between 7.153 for CAC and 27.209 for

NIKKEI, with an exception of DAX with an abnormal unconditional VRP of -0.386. The

latter value is due to an unusual period in the early 2000’s where DAX realized variance

was systematically above the implied variance for several months, possibly due to imprecise

estimation of DAX volatility index during its early stages of introduction. The DAX results

below should therefore be interpreted with caution.

Table 12 presents parameter estimates of our model for the eight indices. Generally

speaking, we find similar results to the S&P 500 index case. In terms of the dynamics

of Σt−1,t, we find values ranging from 0.754 to 0.914, with SMI and AEX being the least

and the most persistent, respectively. As expected, the idiosyncratic stationary component

of ΠC
t,t+1 is generally very persistent with mean reversion coefficients between 0.830 and

0.962 for SMI and DJIA respectively. In terms of regime duration, the first regime lasts on

average six months, the second regime on average 1.5 months, and the third regime about

three months with small variability across indices and the model filters out the jump

component well as can be seen from the distribution of JP
t−1,1 and EQ

t [J
Q
t,t+1] exhibiting a

large location and variance compared to those of the continuous state variables. Finally,

the link between Σt−1,t and ΠC
t,t+1, represented by the parameter dSt

, shows evidence of

time variation, though it disappears for CAC and DAX in periods of high volatility and

jumps.

Figures 7 to 10 display the smooth component of the VRP from our model, ΠC
t,t+1,
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Table 11: Properties of the risk-neutral, physical variances and unconditional VRP

Index Variable Mean Std. deviation Minimum Maximum AR(1)

DJIA
IVt,t+1 36.669 34.493 8.367 259.75 0.816
RVt−1,t 26.053 44.802 2.941 493.43 0.606
E(Πt,t+1) 10.616

STOXX
IVt,t+1 59.021 50.482 12.772 313.55 0.787
RVt−1,t 40.125 54.406 5.675 547.98 0.499
E(Πt,t+1) 19.016

CAC
IVt,t+1 51.743 43.695 11.609 301.01 0.767
RVt−1,t 44.851 57.917 5.325 569.98 0.525
E(Πt,t+1) 7.153

DAX
IVt,t+1 47.420 43.402 10.528 279.95 0.776
RVt−1,t 48.175 64.786 6.303 582.79 0.563
E(Πt,t+1) -0.386

AEX
IVt,t+1 53.181 53.763 2.774 314.47 0.834
RVt−1,t 40.584 63.169 5.549 642.27 0.539
E(Πt,t+1) 12.781

FTSE
IVt,t+1 39.736 35.278 8.445 244.35 0.807
RVt−1,t 27.814 42.711 3.816 457.3 0.549
E(Πt,t+1) 12.007

SMI
IVt,t+1 33.524 34.237 7.038 284.90 0.781
RVt−1,t 28.944 45.530 3.219 464.73 0.503
E(Πt,t+1) 4.647

NIKKEI
IVt,t+1 62.172 62.877 15.436 696.93 0.625
RVt−1,t 35.023 30.242 5.680 303.93 0.520
E(Πt,t+1) 27.209

Notes: This table reports descriptive statistics for the implied variance, IVt,t+1, and the
realized variance, RVt−1,t, for the eight market indices. AR(1) is the sample autocorrelation
of order one and E(Πt,t+1) is the difference between the unconditional means of IVt,t+1 and
RVt−1,t, respectively. The sample used is monthly data from January, 2000, to September,
2015, totalling 189 observations.
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Table 12: Parameter estimates for our model - international evidence

Index

State Var.Parameter DJIA STOXX CAC DAX AEX FTSE SMI NIKKEI

Σt−1,t

b0 10.456 12.133 17.672 20.506 8.765 10.620 9.906 22.391
b1, b2 22.738 23.188 37.024 43.939 22.570 22.827 22.356 30.500

φΣ 0.806 0.845 0.837 0.797 0.914 0.828 0.754 0.789

σ2
Σ,0 6.656 5.461 12.307 27.404 12.265 3.301 3.505 15.183

σ2
Σ,1, σ

2
Σ,2 24.304 54.175 64.770 247.156 35.233 36.920 96.508 25.401

ΠC
t,t+1

a0 4.859 8.678 [2.916] -7.876 [2.843] 7.564 [1.501] 12.517
a1, a2 7.048 11.258 9.232 5.926 8.659 9.813 6.429 20.696

φC 0.962 0.862 0.838 0.932 0.904 0.950 0.830 0.909

d0 0.122 0.652 0.400 0.203 0.534 0.930 0.474 0.480
d1 0.917 0.829 [0.189] [-0.082] 0.783 [0.538] 0.479 0.783
d2 0.382 0.996 [0.510] [0.186] 1.064 1.684 0.722 0.966

σ2
C,0 [0.569] 0.684 [0.008] [1.492] 0.786 [0.019] [1.048] [0.236]

σ2
C,1, σ

2
C,2 3.919 13.235 22.690 14.299 11.109 2.589 7.655 9.078

JP
t−1,1

jP 49.398 56.825 59.015 75.127 67.353 48.092 60.479 31.837
σ2
JP 728.49 1765.5 2031.8 3509.5 2256.9 1131.1 1461.5 580.84

E
Q
t [JQ

t,t+1]
jQ 44.971 56.982 47.217 44.687 59.403 32.617 37.340 42.055
σ2
JQ 306.57 513.57 623.61 306.50 1600.3 387.49 233.09 544.81

εRV
t

σ2
RV,0 1.951 7.496 13.900 9.732 [4.972] 8.149 4.692 13.780

σ2
RV,1, σ

2
RV,2 142.49 87.216 114.24 21.102 144.08 92.130 59.119 55.206

εSW
t

σ2
SW,0 11.314 5.449 14.218 11.554 7.320 12.163 4.842 [0.904]

σ2
SW,1, σ

2
SW,211.791 45.938 125.19 82.389 58.811 41.953 33.536 29.662

P

p00 0.847 0.637 0.801 0.813 0.742 0.837 0.827 0.777
p11 0.628 0.341 0.247 0.159 0.205 0.407 0.439 0.696
p12 0.061 0.122 0.173 0.091 0.035 0.029 0.117 0.085
p22 0.751 0.667 0.674 0.594 0.598 0.681 0.679 0.649

Notes: This table provides maximum likelihood estimates for our model. Parameters that
are insignificant at a ten percent level are in brackets. The sample used is monthly data from
January, 2000, to September, 2015, totalling 189 observations.

50



Jan00 Sep02 Jun05 Mar08 Dec10 Sep13
−350
−150
−60
−20

0

10

20

30

40

50

60

70

80

90

100

(a) DJIA

Jan00 Sep02 Jun05 Mar08 Dec10 Sep13
−350
−150
−60
−20

0

20

40

60

80

100

120

140

160

180

200

(b) STOXX

Figure 7: ΠC
t,t+1 (red) vs Π

RW
t,t+1 (black). The shaded areas identify the high vol-of-vol (light)

and jump (dark) regimes

along with the VRP from a model that assumes random walk dynamics for the realized

variance, ΠRW
t,t+1. We see that the positivity of ΠC

t,t+1 over the sample period is generally

satisfied with only a few exceptions and these are numerically small. These occurrences may

appear because the short sample (189 observations) available does not allow to precisely

separate the signal from the noise. Furthermore, the peculiar behaviour of the IVt,t+1

series for DAX, is inherited by ΠC
t,t+1 as can be seen from Figure 8(b) which show multiple

positivity violations, though to a lesser extent than ΠRW
t,t+1.
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Figure 8: ΠC
t,t+1 (red) vs Π

RW
t,t+1 (black). The shaded areas identify the high vol-of-vol (light)

and jump (dark) regimes
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The regime capturing the extreme shocks on the market, i.e. the shaded areas in the

figures, is generally common across markets and precisely identifies the well known market

turmoil events since 2000. For all markets, we observe an increase in ΠC
t,t+1 coinciding

with the peak of the global financial crisis (September, 2008), which instead triggers an

unrealistic sharp fall in the VRP computed under the random walk dynamics. The same

behaviour is observed with respect to the flash crash and the European Sovereign debt

crisis. Table 13 presents descriptive statistics for the sentiment indicators, computed as

in Section 4. Overall, jumps occur in about 10 percent of the observations. Note that

NIKKEI is the only index where the implied variance lies above realized variance with

only few sparse exceptions. This is reflected in ∆J+
t and ∆J−

t , in that NIKKEI is the only

case where fear reactions to extreme events have a higher mean compared to optimistic

ones.

6.2 Predictive return regressions

Tables 14 to 17 display the adjusted R2s of predictive return regressions with the VRP,

sentiment indicators and their interaction with the state of the market as regressors. For

the sake of comparison, we also report the results for the standard approaches described in

Section 2. Since realized measures of variance robust to extreme events are available from

the Oxford-Man Institute starting from January 2000, we also include an ARX type model

denoted by BH. The latter model, inspired by Bekaert and Hoerova (2014), is based on the

non-parametric decomposition of the realized variance into its jump and continuous part.

With respect to the smooth part of the VRP, ΠC
t,t+1 generally has no predictive power

on future aggregate market excess returns for any horizons. An exception is SMI, showing

sizeable R2s up to the five month horizon with a maximum of 4.45 at the three month

horizon. When we add to the predictive regression our sentiment indicators, the R2s

globally increase in the same fashion as observed in the case of S&P 500 index. This result
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Figure 9: ΠC
t,t+1 (red) vs Π

RW
t,t+1 (black). The shaded areas identify the high vol-of-vol (light)

and jump (dark) regimes
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Figure 10: ΠC
t,t+1 (red) vs ΠRW

t,t+1 (black). The shaded areas identify the high vol-of-vol
(light) and jump (dark) regimes
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Table 13: Descriptive statistics for international attitude and sentiment indicators

Sentiment Interaction with state of the market

Index ∆J+
t ∆J−

t ∆J+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t

DJIA
Mean 31.881 53.998 35.417 56.889 21.275 30.865
N.obs 8 9 6 8 2 1

STOXX
Mean 27.236 73.111 31.337 89.544 10.832 34.769
N.obs 20 10 16 7 4 3

CAC
Mean 27.268 77.107 28.714 92.566 21.486 25.575
N.obs 15 13 12 10 3 3

DAX
Mean 43.615 79.245 43.615 89.622 − 22.167
N.obs 6 13 6 11 0 2

AEX
Mean 32.049 67.450 38.351 79.982 13.144 25.677
N.obs 12 13 9 10 3 3

FTSE
Mean 20.781 55.413 19.917 68.099 22.797 26.870
N.obs 10 13 7 9 3 4

SMI
Mean 17.076 55.676 21.038 67.194 5.192 29.760
N.obs 8 13 6 9 2 4

NIKKEI
Mean 50.083 22.957 47.066 24.368 64.165 20.606
N.obs 17 8 14 5 3 3

Notes: The statistics are computed considering only the non-zero values for the variables.
The sample used is monthly data from January, 2000, to September, 2015, totalling 189
observations.
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clearly indicates that the information contained in the jump component of the VRP bears

most of, if not all, the predictive power on future aggregate market returns. The only

exception seems again to be SMI where adding the sentiment indicators to the predictive

regression only marginally increases the predictive power at all horizons and though often

significantly so.

Isolating the asymmetric effect of ∆J+
t and ∆J−

t with respect to the state of the market,

allows to further increase the R2s particularly at the short and long horizons. The most

striking example is DJIA, where the interaction of the sentiment indicators with the sign

of the market performance explain up to 13.8% of the future return variation at the four

month horizon. Overall the results for DJIA are very similar to our findings for the S&P

500 index in the previous section. The STOXX and FTSE indices show the same sharp

increase in return predictability though to a lower extent. For instance, in the case of

FTSE, the four indicators contribute to a staggering increase in return predictability from

0.33 to 6.81 at the four month horizon.

Figure 11 provides an overall view of the R2 patterns of the regressions with the inter-

action of the sentiment indicators with the sign of the market performance, i.e. the R2s

in the 4th row of Tables 14 to 17. We clearly see that for DJIA, STOXX, CAC, DAX

and AEX, the inverse U-shape is positioned within the one and six month horizons before

flattening out at their initial levels. For SMI and FTSE, the R2s trajectory decays much

slower. Contrary to what is normally observed, the NIKKEI reveals an inverse U-shape

R2 pattern with peaks at horizon nine.

In terms of marginal contribution, Fear&Bear explains a large part of the return pre-

dictability at all horizons for the DJIA, SMI and to a limited extent AEX and FTSE.

The R2s of DJIA are particularly high at the long horizons while the reverse is true for

SMI. The Optimism&Bear indicator yields similar return predictability. The combinations

Fear&Bull and Optimism&Bull contribute to explaining the return variation only to a lim-
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Table 14: Adjusted R2 from predictive return regressions

DJIA

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 -0.56 -0.56 -0.49 -0.22 0.26 0.17 0.13 0.62

ΠC
t,t+1 ∆Jt 4.16 5.39 8.63 12.76 8.26 4.81 1.13 0.85

ΠC
t,t+1 ∆J

+
t ∆J−

t 6.06 8.06 10.36 13.66 9.76 7.52 5.31 5.00
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
7.20 8.18 10.44 13.80 9.87 7.68 7.03 7.18

ΠC
t,t+1 ∆J

+
t 3.91 5.46 5.20 4.94 5.21 5.71 5.29 4.88

ΠC
t,t+1 ∆J−

t 1.90 2.43 5.19 9.13 5.25 2.29 0.19 0.67

ΠC
t,t+1 ∆J

+

t,r−t
2.27 4.04 4.46 4.07 4.17 5.53 6.83 6.60

ΠC
t,t+1 ∆J−

t,r−t
2.18 2.28 4.94 8.71 5.02 2.27 0.20 0.64

ΠC
t,t+1 ∆J+

t,r+t
1.37 0.83 0.19 0.59 1.25 0.47 0.21 0.83

ΠC
t,t+1 ∆J−

t,r+t
-0.10 -0.35 -0.18 0.30 0.56 0.18 0.22 0.89

ΠRW
t,t+1 3.30 5.24 10.63 14.06 10.31 6.84 1.41 0.53

Π
AR(1)
t,t+1 0.92 1.97 3.42 5.18 5.58 5.55 3.98 3.88

ΠARX2
t,t+1 0.40 1.17 1.96 3.22 3.99 4.44 3.87 4.04

ΠBH
t,t+1 0.30 1.14 1.89 3.12 4.21 4.83 4.15 4.37

STOXX

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 -0.56 -0.51 -0.35 -0.39 -0.51 -0.57 -0.22 -0.02

ΠC
t,t+1 ∆Jt 0.03 0.70 1.20 2.26 1.37 -0.21 0.05 0.50

ΠC
t,t+1 ∆J

+
t ∆J−

t 0.70 0.70 1.21 2.29 1.37 -0.01 0.09 0.68
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
1.53 1.90 2.09 3.10 2.71 0.29 0.24 1.28

ΠC
t,t+1 ∆J

+
t -0.49 -0.13 0.05 0.73 0.18 -0.07 0.00 0.55

ΠC
t,t+1 ∆J−

t 0.49 0.51 1.03 1.64 1.00 -0.43 -0.07 0.23

ΠC
t,t+1 ∆J

+

t,r−t
-0.39 -0.31 -0.12 0.42 -0.10 -0.20 0.05 0.74

ΠC
t,t+1 ∆J−

t,r−t
0.54 0.17 0.67 1.23 0.59 -0.47 -0.06 0.25

ΠC
t,t+1 ∆J+

t,r+t
0.22 0.42 0.39 0.50 0.74 -0.19 -0.13 0.39

ΠC
t,t+1 ∆J−

t,r+t
-0.55 0.19 0.21 0.09 0.15 -0.50 -0.21 -0.01

ΠRW
t,t+1 -0.15 0.68 0.78 1.68 1.31 -0.08 -0.22 0.23

Π
AR(1)
t,t+1 -0.51 -0.55 -0.56 -0.46 -0.41 -0.48 -0.35 0.06

ΠARX2
t,t+1 -0.10 -0.20 0.02 -0.25 -0.43 -0.57 -0.53 -0.41

ΠBH
t,t+1 -0.01 -0.06 0.25 -0.09 -0.30 -0.52 -0.57 -0.51

Notes: This table reports the adjusted R2s in percentage from the predictive return regressions
in (25) with VRP, sentiment indicators and their interaction with the state of the market as
regressors. The sample used is monthly data from January, 2000, to March, 2015, totalling 189
observations. 58



Table 15: Adjusted R2 from predictive return regressions

CAC

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 -0.51 -0.14 0.16 0.06 -0.42 -0.57 -0.44 -0.13

ΠC
t,t+1 ∆Jt 1.82 3.52 4.59 4.36 2.96 0.78 1.10 1.91

ΠC
t,t+1 ∆J

+
t ∆J−

t 1.83 3.76 4.76 4.78 3.15 1.30 1.64 2.25
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
2.44 4.53 5.72 6.21 4.39 1.60 1.74 2.34

ΠC
t,t+1 ∆J

+
t 0.03 1.38 1.71 2.18 0.95 0.72 0.96 1.14

ΠC
t,t+1 ∆J−

t 1.53 2.74 3.78 3.29 2.25 0.25 0.52 1.31

ΠC
t,t+1 ∆J

+

t,r−t
-0.31 0.72 0.91 1.10 0.19 0.33 0.65 1.04

ΠC
t,t+1 ∆J−

t,r−t
1.57 2.41 3.49 2.92 1.93 0.12 0.53 1.34

ΠC
t,t+1 ∆J+

t,r+t
0.32 0.88 1.65 2.05 1.14 -0.14 -0.19 -0.08

ΠC
t,t+1 ∆J−

t,r+t
-0.50 0.47 0.54 0.76 0.22 -0.21 -0.44 -0.12

ΠRW
t,t+1 1.31 3.59 4.60 4.33 4.13 1.92 2.03 2.83

Π
AR(1)
t,t+1 -0.53 -0.53 -0.54 -0.53 -0.46 -0.52 -0.24 0.29

ΠARX2
t,t+1 0.04 -0.08 0.11 -0.03 -0.27 -0.39 -0.58 -0.49

ΠBH
t,t+1 -0.16 -0.32 -0.20 -0.27 -0.44 -0.51 -0.57 -0.38

DAX

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 -0.33 0.11 -0.21 -0.45 -0.11 0.38 0.34 1.60

ΠC
t,t+1 ∆Jt 0.87 1.54 1.44 2.33 1.75 0.73 0.70 2.62

ΠC
t,t+1 ∆J

+
t ∆J−

t 1.72 2.49 3.04 3.10 3.00 1.43 0.80 2.67
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
1.96 2.65 3.34 3.46 3.32 1.44 0.98 3.27

ΠC
t,t+1 ∆J

+
t -0.05 0.41 0.42 -0.35 0.29 0.74 0.35 1.61

ΠC
t,t+1 ∆J−

t 1.39 2.13 2.32 2.96 2.53 1.03 0.79 2.67

ΠC
t,t+1 ∆J

+

t,r−t
-0.05 0.41 0.42 -0.35 0.29 0.74 0.35 1.61

ΠC
t,t+1 ∆J−

t,r−t
1.24 2.23 2.48 3.16 2.70 1.04 0.84 2.82

ΠC
t,t+1 ∆J+

t,r+t
-0.33 0.11 -0.21 -0.45 -0.11 0.38 0.34 1.60

ΠC
t,t+1 ∆J−

t,r+t
0.05 0.18 -0.06 -0.26 0.06 0.38 0.47 2.06

ΠRW
t,t+1 1.08 2.61 2.67 3.43 2.94 0.82 0.57 1.96

Π
AR(1)
t,t+1 -0.56 -0.50 -0.56 -0.49 -0.50 -0.56 -0.58 -0.24

ΠARX2
t,t+1 0.08 0.02 0.69 0.18 0.06 0.09 -0.26 -0.53

ΠBH
t,t+1 0.03 -0.08 0.53 0.05 -0.05 0.02 -0.31 -0.56

Notes: This table reports the adjusted R2s in percentage from the predictive return regressions
in (25) with VRP, sentiment indicators and their interaction with the state of the market as
regressors. The sample used is monthly data from January, 2000, to March, 2015, totalling 189
observations. 59



Table 16: Adjusted R2 from predictive return regressions

AEX

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 0.14 0.16 0.72 0.33 -0.24 -0.53 -0.26 -0.45

ΠC
t,t+1 ∆Jt 1.03 2.29 2.47 2.49 2.21 1.01 0.86 0.58

ΠC
t,t+1 ∆J

+
t ∆J−

t 1.04 2.53 2.88 2.74 2.22 1.05 0.92 0.67
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
2.97 2.99 3.60 3.18 3.00 1.22 1.39 0.81

ΠC
t,t+1 ∆J

+
t 0.67 1.93 2.52 2.38 1.12 0.75 0.54 0.42

ΠC
t,t+1 ∆J−

t 1.03 1.95 2.11 2.22 2.15 0.90 0.73 0.44

ΠC
t,t+1 ∆J

+

t,r−t
0.76 1.70 2.21 2.28 1.07 0.77 0.68 0.49

ΠC
t,t+1 ∆J−

t,r−t
1.19 1.95 2.08 2.09 1.91 0.83 0.74 0.43

ΠC
t,t+1 ∆J+

t,r+t
1.47 1.74 2.54 1.85 1.07 0.53 0.60 0.18

ΠC
t,t+1 ∆J−

t,r+t
1.56 1.14 1.61 2.25 1.80 0.72 0.27 0.11

ΠRW
t,t+1 0.63 1.14 1.58 1.70 0.94 0.52 0.26 0.10

Π
AR(1)
t,t+1 0.34 -0.21 0.00 0.25 0.06 0.23 -0.04 -0.28

ΠARX2
t,t+1 1.09 0.96 1.42 1.73 1.90 1.65 1.16 0.66

ΠBH
t,t+1 -0.50 -0.54 -0.56 -0.36 -0.10 -0.13 0.89 1.07

FTSE

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 0.14 0.16 0.72 0.33 -0.24 -0.53 -0.26 -0.45

ΠC
t,t+1 ∆Jt 0.53 1.34 4.18 4.66 2.89 1.94 1.03 0.44

ΠC
t,t+1 ∆J

+
t ∆J−

t 0.98 2.23 5.36 6.49 5.53 5.01 1.97 1.55
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
3.61 6.00 6.71 6.81 6.46 5.44 2.57 2.12

ΠC
t,t+1 ∆J

+
t 0.23 1.97 4.09 5.05 4.91 4.70 1.67 1.45

ΠC
t,t+1 ∆J−

t 0.72 0.87 3.16 3.28 1.58 0.75 0.52 0.01

ΠC
t,t+1 ∆J

+

t,r−t
0.93 0.18 1.51 2.70 1.88 2.15 1.84 1.74

ΠC
t,t+1 ∆J−

t,r−t
0.39 0.49 2.64 3.22 1.72 0.79 0.64 0.06

ΠC
t,t+1 ∆J+

t,r+t
0.76 4.76 4.23 2.57 2.94 1.87 -0.18 -0.41

ΠC
t,t+1 ∆J−

t,r+t
1.27 1.33 1.08 0.35 -0.08 -0.48 -0.10 -0.38

ΠRW
t,t+1 -0.37 0.71 3.36 3.93 2.74 2.38 0.38 0.45

Π
AR(1)
t,t+1 -0.47 -0.50 -0.22 -0.07 0.05 0.41 0.17 0.01

ΠARX2
t,t+1 -0.21 -0.46 -0.44 -0.49 -0.57 -0.49 -0.30 -0.44

ΠBH
t,t+1 -0.35 -0.23 -0.34 -0.12 0.02 0.37 -0.27 -0.53

Notes: This table reports the adjusted R2s in percentage from the predictive return regressions
in (25) with VRP, sentiment indicators and their interaction with the state of the market as
regressors. The sample used is monthly data from January, 2000, to March, 2015, totalling 189
observations. 60



Table 17: Adjusted R2 from predictive return regressions

SMI

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 2.29 2.75 4.45 4.21 2.50 0.56 -0.58 -0.58

ΠC
t,t+1 ∆Jt 4.07 3.36 4.45 4.57 3.06 1.10 -0.13 -0.34

ΠC
t,t+1 ∆J

+
t ∆J−

t 5.47 4.93 5.71 4.79 3.21 1.14 0.13 -0.33
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
7.91 5.52 5.79 5.23 4.83 3.87 0.63 -0.17

ΠC
t,t+1 ∆J

+
t 4.77 4.85 5.61 4.26 2.51 0.56 -0.53 -0.57

ΠC
t,t+1 ∆J−

t 3.32 2.95 4.48 4.70 3.17 1.14 0.02 -0.33

ΠC
t,t+1 ∆J

+

t,r−t
4.77 5.06 5.67 4.28 2.54 0.56 -0.56 -0.56

ΠC
t,t+1 ∆J−

t,r−t
2.66 2.85 4.49 4.50 2.79 0.69 -0.18 -0.41

ΠC
t,t+1 ∆J+

t,r+t
2.31 2.89 4.46 4.31 3.01 1.02 -0.26 -0.51

ΠC
t,t+1 ∆J−

t,r+t
5.31 3.09 4.45 4.65 3.85 3.19 -0.21 -0.42

ΠRW
t,t+1 0.65 -0.48 -0.29 0.73 0.83 0.52 -0.24 -0.36

Π
AR(1)
t,t+1 4.50 3.19 3.49 2.37 1.29 0.25 -0.47 -0.48

ΠARX2
t,t+1 0.86 1.81 4.33 5.22 3.93 2.01 -0.03 -0.15

ΠBH
t,t+1 -0.42 -0.10 0.61 0.73 0.32 -0.22 -0.58 -0.51

NIKKEI

Regressors Horizon
Πi SIj,t 1 2 3 4 5 6 9 12

ΠC
t,t+1 -0.53 -0.33 0.31 0.35 -0.28 -0.46 0.26 1.10

ΠC
t,t+1 ∆Jt 0.90 2.93 0.89 0.40 0.10 0.23 4.03 2.62

ΠC
t,t+1 ∆J

+
t ∆J−

t 1.29 3.01 1.06 0.41 0.21 0.36 4.40 2.69
ΠC

t,t+1 ∆J
+

t,r−t
∆J−

t,r−t
∆J+

t,r+t
∆J−

t,r+t
2.12 3.06 1.43 0.74 0.35 1.65 5.42 3.05

ΠC
t,t+1 ∆J

+
t 0.40 2.94 0.68 0.38 -0.04 0.02 3.09 2.30

ΠC
t,t+1 ∆J−

t 0.41 -0.24 0.72 0.38 -0.02 -0.10 1.68 1.53

ΠC
t,t+1 ∆J

+

t,r−t
-0.14 2.47 0.78 0.35 -0.10 -0.29 2.03 1.98

ΠC
t,t+1 ∆J−

t,r−t
0.65 -0.20 0.95 0.35 0.10 0.50 2.22 1.80

ΠC
t,t+1 ∆J+

t,r+t
0.11 -0.32 0.40 0.59 -0.27 -0.03 0.77 1.17

ΠC
t,t+1 ∆J−

t,r+t
-0.52 -0.33 0.33 0.48 -0.28 -0.20 0.27 1.12

ΠRW
t,t+1 -0.31 -0.29 -0.35 -0.05 -0.49 -0.56 -0.56 -0.36

Π
AR(1)
t,t+1 -0.32 -0.33 -0.30 0.04 -0.44 -0.57 -0.58 -0.10

ΠARX2
t,t+1 -0.33 -0.36 -0.28 0.06 -0.42 -0.57 -0.56 0.05

ΠBH
t,t+1 -0.17 -0.26 -0.34 0.07 -0.44 -0.57 -0.58 -0.10

Notes: This table reports the adjusted R2s in percentage from the predictive return regressions
in (25) with VRP, sentiment indicators and their interaction with the state of the market as
regressors. The sample used is monthly data from January, 2000, to March, 2015, totalling 189
observations. 61
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Figure 11: Adjusted R2s from predictive return regressions with sentiment indicators for
the eight international indices: DJIA (black), STOXX (black dashed), CAC (black dotted),
DAX (black dot-dashed), AEX (grey solid), FTSE (grey dashed), SMI (grey dotted) and
NIKKEI (grey dot-dashed)

ited extent, e.g. CAC has R2s equal to 2.05 and 0.76 for Fear&Bull and Optimism&Bull,

respectively, at the four month horizon. For STOXX, NIKKEI and DAX, the individual

contribution of each indicator is difficult to assess. The heterogeneity of the return pre-

dictability shows that the attitude of agents towards risk as well as the pricing of different

risk factors varies across markets. In the Euro area, the sentiment factors are priced only

to a lower extent and in the short term. In the Japanese, Swiss and UK markets, the effect

on prices is stronger and longer lasting. Last, for the US markets, asset prices are the most

reactive to agents beliefs towards the future occurrence of extreme shocks.

We next turn our attention to the performance of the VRPs estimated using the stan-

dard approaches in the literature. In terms of size of the R2s, we observe large differences

in the level of DJIA excess return predictability compared to the other markets. In par-

ticular, the US markets show higher predictability when compared to the other markets

considered here. The VRP based on random walk expectations shows higher explanatory

power then the one based on autoregressive type models. This holds for all markets ex-
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cept for NIKKEI and SMI. In fact, for NIKKEI, none of the standard approaches yields

excess return predictability at any horizon. For SMI, in turn, ΠRW
t,t+1 does not show any

predictability, but VRP estimates based on autoregressive type models do. For example,

ΠARX2
t,t+1 explains 4.93% of the excess return variation at the one month horizon and exhibits

sizeable though decreasing R2s up to the five month horizon. These results are generally

in line with Bollerslev, Marrone, Xu, and Zhou (2014), though their findings only extend

to the case of ΠRW
t,t+1, rely on a shorter sample period ending in December 2011 and con-

siders only a subset of the indices used in this paper. For example, in terms of R2s’ size

and patterns, they find similar predictability for the CAC, DAX, FTSE and the NIKKEI.

However, a difference is SMI for which instead they document the usual inverse U-shape

R2s pattern with substantial predictability at medium to long horizons.

Compared to the case of the standard approaches, the R2s of the predictive return

regressions including the sentiment indicators and their interaction with the state of the

market as explanatory variables largely dominates over most if not all horizons those using

the random walk based VRP for all indices. The results reported for DJIA, which shows

stronger gains at the short and long horizons, displays very similar patterns and levels as

observed for the S&P 500 index. For FTSE, the extra degree of flexibility provided by

the sentiment indicators, produces gains in predictability from 3.36 to 6.71, and 2.38 to

5.44 at the three and six month horizon respectively. Another example is SMI with gains

from -0.29 to 5.79, and 0.52 to 3.87 at the three and six month horizon respectively. Thus,

the international evidence not only confirms our findings from the US but also shows that

for several markets the sentiment indicators have significantly more predictive power than

what is obtained with any of the existing methods for modeling the VRP.
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7 Conclusion

This paper proposes a flexible approach for retrieving the variance risk premia which

is essential for risk management, asset pricing and portfolio management. The method

delivers more refined, precise and realistic estimates of the market price of risk and it

is straightforward to implement using maximum likelihood. Moreover, our model allows

identifying not only the smooth component associated with the price of risk in periods of

normal market activity but also to infer the occurrence and size of extreme variance events

or jumps and the risk neutral expectation of these. Based on this decomposition we show

how to construct a number of sentiment indicators based on agents’ expectations response

to extreme shocks.

Our empirical application to the S&P 500 index documents the importance of allowing

for interactions, discontinuities and occurrence of extreme events. In particular, our model

specification is strongly supported by the data and all structural parameters are estimated

with a high degree of precision. Moreover, the filtered variance predictions and the risk

neutral variance expectations match adequately the level and the dynamics of their ob-

servable counterparts along the entire sample. Finally and most importantly, the resulting

filtered variance risk premium satisfies the positivity constraint, shows a reasonable degree

of smoothness and it appropriately reacts to changes in level and variability.

We address a puzzle in the existing literature related to return predictability by disen-

tangling the predictability stemming from the part of the variance risk premium associated

with normal sized price fluctuations from that associated with extreme tail events, i.e. tail

risk. In particular, using our sentiment indicators we show that predictability comes almost

entirely from the way agents adapt their expectations when exposed to extreme variance

realizations and our results essentially show that future market performance is driven by

fear and optimism with respect to the current state of the market. The documented pre-
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dictive power is distinct from that of alternative economic predictors. Our results extend

internationally to eight major markets for which we find that excess returns are to a large

extent explained by extreme tail events and only marginally, if at all, by the premium

associated with normal price fluctuations.
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A Technical details

This appendix provides further details on how the model in Section 3 can be written in

state space form and can be estimated using straightforward filtering techniques.

A.1 State space formulation

To rewrite the model in state space form, we define for measurement and transition equa-

tions of the physical variance Σ∗
t−1,t = Σt−1,t + jPSt

and ERV
t = εRV

t + σJP ,St
uPt , with

Var(ERV
t ) = σ2

RV,St
+ σ2

JP ,St
= ς2RV,St

. Then after the following transformation we can

rewrite (15) as

Σ∗
t−1,t = (bSt

+ jPSt
) + φΣ(Σ∗

t−2,t−1 − bSt−1
− jPSt−1

) + σΣ,St
vΣt

= k
(1)
St

+ φΣ(Σ∗
t−2,t−1 − k

(1)
St−1

) + σΣ,St
vΣt (27)

RVt−1,t = Σ∗
t−1,t + ERV

t (28)

where k
(1)
St

is a regime switching drift parameter.

We also re-parameterize and reduce the measurement and transition equations of the

risk neutral expectation of the variance to functions of the latent states F and Σ. We can
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first compute EP
t [Σt,t+1] as

EP
t [Σt,t+1] = bSt

+ φΣ(Σt−1,t − bSt
)

= bSt
+ φΣ(Σ∗

t−1,t − bSt
− jPSt

)

= (bSt
(1− φΣ)− φΣjPSt

) + φΣΣ∗
t−1,t. (29)

Second, the term in (18) which links the variance to the VRP can be written as

dSt
(Σt−1,t − bSt

) = dSt
(Σ∗

t−1,t − bSt
− jPSt

)

= −dSt
(bSt

+ jPSt
) + dSt

Σ∗
t−1,t. (30)

By defining F ∗
t,t+1 = Ft,t+1 + jQSt

+ bSt
(1−φΣ − dSt

)− jPSt
(φΣ + dSt

) = Ft,t+1 + k
(2)
St

− aSt
,

then we can write the transition equation for the latent state F ∗
t,t+1 as

F ∗
t,t+1 = k

(2)
St

+ φF (Ft−1,t − aSt−1
) + σF,St

vFt

= k
(2)
St

+ φF (F ∗
t−1,t − k

(2)
St−1

) + σF,St
vFt (31)

where k
(2)
St

is a Markov-state dependent parameter defining the drift in the reduced form

of the second latent state.

Following the same rationale for the physical variance, we define for the risk-neutral

variance ESW
t = εSWt + σJQ,St

uQt , with Var(ESW
t ) = σ2

SW,St
+ σ2

JQ,St
= ς2SW,St

. The reduced

form for the measurement equation of SWt,t+1 in (16) is given by

SWt,t+1 = F ∗
t,t+1 + (dSt

+ φΣ)Σ∗
t−1,t + ESW

t

= F ∗
t,t+1 + h

(12)
St

Σ∗
t−1,t + ESW

t . (32)

Putting the pieces together, the reduced form model in its state space form is thus







RVt−1,t

SWt,t+1






=







1 0

h
(12)
St

1













Σ∗
t−1,t

F ∗
t,t+1






+







ERV
t

ESW
t






, (33)
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with






Σ∗
t−1,t

F ∗
t,t+1






=







k
(1)
St

k
(2)
St






+







φΣ 0

0 φF



















Σ∗
t−2,t−1

F ∗
t−1,t






−







k
(1)
St

k
(2)
St












+







σΣ,St
0

0 σF,St













vΣt

vFt






. (34)

A.2 Estimation by maximum likelihood

The model in (33)-(34) is estimated using Kim (1994) filter which consists of a combination

of extended versions of the Kalman filter and the Hamilton filter, adapted with suitable ap-

proximations. We use a non-linear optimization procedure to maximize the approximated

log-likelihood function with respect to the parameters of interest, in a quasi maximum

likelihood framework, see Kim and Nelson (1999) for details. Computations are done in

Matlab 2016a and the code developed by the authors is available upon request.

71



       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chief Editors: 

Pascal Blanqué 

Chief Investment Officer  

Philippe Ithurbide 

Global Head of Research, Strategy and Analysis 



 

 research-center.amundi.com 

Amundi Working Paper  
 
WP-067-2017 
 
October 2016 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Written by Amundi. 

Amundi is a French joint stock company (société anonyme) with a registered capital of EUR 746,262,615. 

An investment management company approved by the French Securities Authority (Autorité des Marchés Financiers - 

“AMF”) under No. GP04000036. Registered office: 90, boulevard Pasteur 75015 Paris-France. 437 574 452 RCS Paris. 

In each country where they carry on investment business, Amundi and its affiliates are regulated by the local regulatory 

authority. This information contained herein is not intended for distribution to, or use by, any person or entity in any 
country or jurisdiction where to do so would be contrary to law or regulation or which would subject Amundi or its 

affiliates to any registration requirements in these jurisdictions. The information contained herein is produced for 
information purposes only and shall not be considered as an investment advice nor the sole basis for the evaluation of 
any Amundi’s product. Any data provided herein is based on assumptions and parameters that reflect our good faith 

judgment or selection and therefore no guarantee is given as to the accuracy, completeness or reasonableness of any 
such data. No examination has been executed by us with respect to the financial, legal, tax, regulatory – and any 
related aspects thereof – situation of any addressee of the information here in. 

Photo credit: Thinkstock by Getty Images 
 


	pages Rombouts et al.pdf
	Introduction
	Definitions and data 
	Data
	Current approaches to estimate the VRP
	Return predictability implied by existing VRPs 

	A dynamic model for variance risk premia 
	Nonparametric measures of quadratic variation
	Smooth dynamics
	Heteroskedasticity and extreme variance events

	Return predictability and investors' sentiment 
	VRP and the S&P500 index 
	Parameter estimates and smooth component dynamics
	Return predictability 
	Predictability with other economic predictors 

	International evidence 
	Data and parameter estimates
	Predictive return regressions

	Conclusion 
	Technical details
	State space formulation
	Estimation by maximum likelihood



