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Abstract 

 

 

Accurate estimations of volatility and correlation risk represent crucial inputs in terms of 

investment decisions. This article presents a new way to capture the portfolio dependence by 

introducing a new covariance estimator called the reactive covariance model. This new 

model is easy to implement and comes from the generalization to the multivariate framework 

of the reactive volatility model introduced by Valeyre et al. (2013). We examine the properties 

of this new covariance estimator and present its attractive features by exploring its ability to 

capture the dominant factors that create changes in the correlation structure of asset returns. 

By comparing our model with other traditional existing covariance models, we finally examine 

and present the advantages of using this new model in multi-asset portfolio construction. 

 

Key words: Covariance matrix, investment strategy, asset allocation, portfolio choice, risk 

parity. 
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1. Introduction

Building a realistic covariance model that is both statistically relevant and consistent with

empirical properties of asset returns is still a key issue for academics and practitioners.

Indeed, the stylized facts of financial assets such as fat tails, volatility clustering, leverage

effect or conditional heteroskedasticity are not easy to capture and that explains why

modelling the joint behaviour of asset returns remains a big concern in asset allocation

for instance.

Considering the univariate framework, a lot of specifications have been proposed to cap-

ture these stylized facts in the academic literature. Since the seminal paper of Bollerslev

(1987)[1], the standard GARCH model has been one of the most commonly used mod-

els in empirical studies to estimate the conditional volatility, despite being a symmetric

model unable to capture the leverage effect. Asymmetric models such as GJR-GARCH

(Glosten et al. (1993)[5]) and EGARCH (Nelson (1991)[8]) that belong to the GARCH

family models are alternative models that allow volatility clustering, as well as the lever-

age effect and fat tails, to be taken into account. Bouchaud et al. (2001)[2] have also

contributed to this literature by introducing a new way to capture the leverage effect with

their retarded volatility model in which the variations in assets’ prices no longer depend

on the last price but rather on the exponential average of the past values. Their model

works well in practice but it has one particular drawback: it only captures the retarded

effect for individual stocks but does not take into account the panic effect for indices. To

overcome this problem, Valeyre et al. (2013)[9] have recently proposed a new way to take

into account both the retarded effect (specific risk) and the panic effect (systematic effect)

when modelling the conditional volatility by introducing the reactive model, which is built

out of an Exponentially Weighted Moving Average volatility model (EWMA)1 based on

filtered homoscedastic returns.

Even if these univariate volatility models allow us to capture the empirical properties2 of

asset returns, the problem remains in multivariate framework partly due to the so-called

1Note that an EWMA model may be seen as a degenerate GARCH(1,1) model.
2A complete overview of the stylized facts of asset returns is given in Mandelbrot (1967)[6] and Cont

(2001)[4].
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”curse of dimensionality” problem that induces an explosion of the number of parameters

and then generates large uncertainties concerning the model estimates and the forecasting

performances. In this paper, we aim to introduce a new covariance model, easy to imple-

ment, which allows us to capture the main stylized facts of asset returns when modelling

their joint distribution. Our new model is called the reactive covariance model and comes

from the generalization to the multivariate framework of the reactive volatility model

introduced by Valeyre et al. (2013). Later in this paper, we provide the theoretical for-

mulas before examining the properties of this new covariance estimator. We then present

its main attractive features and explore its ability to capture the dominant factors that

create changes in the correlation structure of asset returns. By comparing our model with

other standard existing covariance models, we finally discuss and present the advantages

of using this new model in asset allocation.

The paper is structured as follows. In Section 2, we briefly review the construction of

the reactive volatility model. Section 3 extends this particular model to the multivariate

framework by both introducing the reactive covariance model and presenting its main

mathematical and empirical properties. Section 4 outlines the methodology used to assess

the value of this new covariance estimator and presents the empirical results while section

5 provides the main conclusions.

2. The reactive volatility model

In order to capture the main stylized facts of asset returns such as the volatility clustering

(large - respectively small price changes are followed by other large - respectively small

changes), the leverage effect (negative returns tend to cause greater increases in volatility

than the one induced by positive returns of the same magnitude) and the conditional

heteroskedasticity (the conditional volatility is not constant), Valeyre et al. (2013) have

recently proposed a new volatility model called the reactive volatility model. In this sec-

tion, we give a brief review and the key concepts of the construction of this model before

extending it to the multivariate framework.

Let It denote an index price at discrete time t. As empirical arithmetic returns defined
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by ∆It
It

:= It+1−It
It

are heteroscedastic due to the price-volatility correlations, Valeyre et al.

(2013) have defined a level Lt for an index price from two exponentially moving average

levels denoted Ls and Lf (which represent respectively the slow decay for specific risk and

fast decay for systematic risk) in order to construct the homoscedastic returns that they

have defined by ∆It
Lt

. These two levels are formally defined as below:

Lst+1 = (1− λs)Lst + λsIt+1 (2.1)

Lft+1 = (1− λf )Lft + λfIt+1 (2.2)

where λs = 0.0241 and λf = 0.1484 represent3 respectively the inverse of the relaxation

time for the retarded or specific risk effect and the panic or systematic risk effect (see

Bouchaud et al. (2001) for more details). In order to make Ls more robust to extreme

events, the authors have introduced a filter Fφ in order to build a new level L̂s defined as:

L̂st+1 = It+1

(
1 + Fφ

(Lst+1 − It+1

It+1

))
(2.3)

where the filter function was chosen as Fφ(z) = tan(φz)
φ

with4 φ = 3.3. The level L used

to construct the homoscedastic returns is then defined from both levels Ls and Lf by

writing:

Lt+1 = L̂st+1

(
1 + Fφ

((
Lft+1

It+1

)l
− 1

))
(2.4)

where l represents a leverage parameter set5 at l = 8 (the authors found and argued that

this value parameter is universal as it is stable over time and is approximately the same

for different mature of stock markets). Using the first order Taylor expansion, equation

(2.4) can be derived as:

Lt+1 ≈ L̂st+1

(
1 + l

(
Lft+1 − It+1

Lft+1

))
(2.5)

3These values were calibrated from the leverage correlation function defined in Bouchaud et al. (2001).
4They have set φ = 1/0.3 ≈ 3.3, which corresponds to a maximum stock index daily variation of ±30%

or a maximum drawdown on the order of 30% over 40 days (1/λs ≈ 40).
5The value of l = 8 of the leverage parameter means that if the index varies by 1%, the volatility is

expected to vary by −l ∗ 1% = −8%.
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This level L is then used to calculate an exponential moving average volatility process σ̃I

based on re-normalized returns ∆It
Lt

:

(σ̃It+1)2 = (1− λσ)(σ̃It )
2 + λσ

(
∆It
Lt

)2

(2.6)

where the weighting parameter6 λσ = 0.025. They found that this estimator built on

homoscedastic returns σ̃I is both stable and able to capture the volatility variations in the

long term. The reactive volatility estimator for an index σI is then obtained by modulating

σ̃I with the factor Lt+1

It+1
which helps to capture the instantaneous price changes:

σIt+1 = σ̃It+1

Lt+1

It+1

≈ σ̃It+1

Lst+1

It+1

(
1 + l

(
Lft+1 − It+1

Lft+1

))
(2.7)

When dealing with single stocks i with prices P i
t , the equivalent reactive volatility esti-

mator is obtained by replacing the index price It with the stock price P i
t in equations

(2.1) and (2.3) while keeping the systematic risk relative to an index I in equation (2.2)

unchanged. The reactive volatility estimator formula for a single stock is then defined as:

σit+1 = σ̃it+1

Li,t+1

Pi,t+1

≈ σ̃it+1

Lsi,s,t+1

Pi,t+1

(
1 + l

(
Lft+1 − It+1

Lft+1

))
(2.8)

Looking at the second part of equation (2.8), we can see one of the key strengths of the

reactive volatility formula for single stocks: its ability to take into account both the specific

risk (retarded effect) and the systematic risk (panic effect). With this interesting feature,

one can expect to capture in a reactive way both the idiosyncratic risk and the systematic

risk of single stocks that make up an equity portfolio or a diversified portfolio. Figure 1

gives an example of the calibration of the reactive volatility model on an equity index and

a bond index. We can observe that the slow level captures the long term movements of

the index price changes while the fast level captures its instantaneous variations. While

the re-normalized volatility estimator (from equation (2.6)) appears to be less volatile in

short term than the reactive volatility, it is still able to capture the long-term moves.

6They have set λσ = 1/40 = 0.025 since economic uncertainty does not change significantly in a period

of 2 months (40 trading days).
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Fig 1. Level prices and reactive volatility estimates for the MSCI World and JPM Global
Aggregate Bond indices. Upper and lower left: The slow level (red) captures the long term movements
of the index price changes (blue) while the fast level (green) captures the instantaneous variations. Upper
and lower right: the re-normalized volatility (red) is more stable than the reactive volatility (green).

3. The reactive covariance model

Let us start by highlighting the volatility limits and the importance of extending our

study to the multivariate framework. In fact, the volatility is unable to capture higher

dimensional information as it is possible to have two portfolios with the same volatility

but with different intrinsic characteristics. The volatility therefore conceals some higher

dimensional information which is important to estimate when building hedging strate-

gies or designing portfolios for instance. In the following section, we extend the reactive

volatility model presented above to the multivariate framework and present its theoretical

validation.
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3.1. Definition

In order to write the reactive covariance model, we have built a reactive covariance oper-

ator inspired by the construction of the reactive volatility model. For each pair of stocks

(i, j)i≤j, the reactive covariance operator is then built out of an EMA covariance on ho-

moscedastic returns.

Definition 3.1 (Reactive covariance) The reactive covariance between two assets (i, j) is

defined by the following equations :

Σ̃ij
t+1 = (1− λσ)Σ̃ij

t + λσ

(
∆P i

t

Lit

∆P j
t

Ljt

)
(3.1)

Σij
t+1 = Σ̃ij

t+1

Lit+1

P j
t+1

Ljt+1

P j
t+1

(3.2)

Remark 3.1 Recall that for a single stock, the reactive volatility was calculated by taking

an EMA on re-normalized homoscedastic returns
∆P i

t

Li
t

=
P i
t+1−P i

t

Li
t

. Taking i = j in equations

(3.1) and (3.2) yields the reactive volatility of Section 2 :

(σ̃it+1)2 = (1− λσ)(σ̃it)
2 + λσ

(
∆P i

t

Lit

)2

(3.3)

σit+1 = σ̃it+1

Lit+1

P i
t+1

(3.4)

Remark 3.2 Reiterating equation (3.1), we get :

Σ̃ij
t = λσ

∞∑
k=1

(1− λσ)k−1 ∆P i
t−k

Lit−k

∆P j
t−k

Ljt−k
(3.5)

We get another expression for the reactive covariance7:

Σij
t =

(
λσ

∞∑
k=1

(1− λσ)k−1 ∆P i
t−k

Lit−k

∆P j
t−k

Ljt−k

)
Lit
P i
t

Ljt

P j
t

(3.6)

Equation (3.5) corresponds simply to an EWMA covariance estimator computed on

homoscedastic returns. It clearly assumes a linear relationship between homoscedastic re-

turns of two assets and is able to capture the long term variations. Re-normalizing this

expression by the reactive factor
Li
t

P i
t

Lj
t

P j
t

yields clearly to a non-linear estimator as shown in

7Similar to the univariate case, we use λσ = 0.025.
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equation (3.6). The reactive covariance estimator is therefore able to account for the long

term linear relationship between two assets while incorporating non-linear effects in instan-

taneous price changes. However, from a mathematical perspective, the re-normalization

leads to a non-bilinear operator which could be problematic when computing the reactive

volatility of a portfolio from the reactive covariance matrix of its constituents. This high-

lights once again the tradeoff that one has to deal with when modelling the covariance

matrix between model complexity and mathematical tractability. The aim of the next

section is to make some theoretical approximations and test them empirically in order to

reconcile the two perspectives.

3.2. Theoretical validation

We start by checking if the operator of equation (3.6) is well defined from a theoretical

point of view. Indeed, a covariance operator should define a dot product 〈., .〉 on Rn. As a

reminder, 〈., .〉 is a dot product if and only if it is positive semi-definite (∀x, 〈x, x〉 ≥ 0),

symmetric (∀x, y, 〈x, y〉 = 〈y, x〉) and bilinear (∀x, y, z ∈ Rn,∀α, β ∈ R, 〈αx + βy, z〉 =

α〈x, z〉+β〈y, z〉). It must verify the Cauchy-Schwarz inequality: 〈x, y〉 ≤
√
〈x, x〉

√
〈y, y〉,

which ensures that the correlation is well defined in [−1, 1]. In our case, we can directly

apply this inequality to easily show that Σij ≤ σiσj since the operator is defined as a

sum. This allows us to define the reactive correlation and ensures that it takes values in

the interval [−1, 1].

Proposition 3.1 The reactive correlation ρij := Σij

σiσj ∈ [−1, 1] is well defined ∀1 ≤ i, j ≤
n.

Proof. Using the triangle and the Cauchy-Schwarz inequalites, we have:

∣∣∣∣∣Σij
t

∣∣∣∣∣ =

∣∣∣∣∣
(
λσ

∞∑
k=1

(1− λσ)k−1 ∆P i
t−k

Lit−k

∆P j
t−k

Ljt−k

)
Lit
P i
t

Ljt

P j
t

∣∣∣∣∣
≤

(
∞∑
k=1

(√
λσ(1− λσ)k−1

∣∣∣∣∣∆P i
t−k

Lit−k

Lit
P i
t

∣∣∣∣∣
)(√

λσ(1− λσ)k−1

∣∣∣∣∣∆P j
t−k

Ljt−k

Ljt

P j
t

∣∣∣∣∣
))

≤

(
∞∑
k=1

λσ(1− λσ)k−1

(
∆P i

t−k

Lit−k

Lit
P i
t

)2
) 1

2
(
∞∑
l=1

λσ(1− λσ)l−1

(
∆P j

t−l

Ljt−l

Ljt

P j
t

)2
) 1

2

= σitσ
j
t
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We easily verify that the reactive covariance operator is a symmetric and positive semi-

definite matrix. But what about the bi-linearity? In other words, could we write the

reactive variance of a portfolio on a pool of stocks as the double weighted sum of their

paired reactive covariance? (i.e. is (σportfoliot )2 =
∑

1≤i,j≤n
αiαjΣ

ij
reactive ?)

Proposition 3.2 The reactive covariance operator is a symmetric and positive semi-

definite matrix. Moreover, if ∀k > 0,
P i
t−k

Li
t−k

=
P i
t

Li
t
, then this operator is bilinear.

Proof. Let (P i
t )1≤i≤n denote the historical asset prices at date t. Let define by Ri

t+1 =
∆P i

t

P i
t

=
P i
t+1−P i

t

P i
t

the heteroscedastic returns and by R̃i
t+1 =

∆P i
t

Li
t

the homoscedastic returns

(i = 1, ...n, t = 1, ..., T ). We have therefore the relation:

Ri
t = R̃i

t

Lit
P i
t

(3.7)

Let Q be a portfolio built on these n assets and (α1, ..., αn) be the vector of weights. We

can write the heteroscedastic returns of the portfolio RQ
t using the heteroscedastic returns

of the assets (Ri
t)1≤i≤n:

RQ
t =

n∑
i=1

αiR
i
t (3.8)

We then obtain the homoscedastic return R̃Q(t) using equation (3.7):

R̃Q
t =

PQ
t

LQt
RQ
t =

PQ
t

LQt

n∑
i=1

αiR
i
t =

PQ
t

LQt

n∑
i=1

αi
Lit
P i
t

R̃i
t (3.9)

For the reactive covariance of the portfolio Q, we get:
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(σQt )2 =

(
LQt

PQ
t

)2(
λσ

∞∑
k=1

(1− λσ)k−1

(
∆PQ

t−k

LQt−k

)2)

=

(
LQt

PQ
t

)2(
λσ

∞∑
k=1

(1− λσ)k−1

(
R̃Q
t−k

)2)

=

(
LQt

PQ
t

)2(
λσ

∞∑
k=1

(1− λσ)k−1

(
PQ
t−k

LQt−k

n∑
i=1

αi
Lit−k
P i
t−k

R̃i
t−k

)2)

=

(
LQt

PQ
t

)2(
λσ

∞∑
k=1

(1− λσ)k−1
∑

1≤i,j≤n

αiαj
Lit−k
P i
t−k

Ljt−k

P j
t−k

R̃i
t−kR̃

j
t−k

(
PQ
t−k

LQt−k

)2)

=

(
LQt

PQ
t

)2( ∑
1≤i,j≤n

αiαjλσ

∞∑
k=1

(1− λσ)k−1L
i
t−k

P i
t−k

Ljt−k

P j
t−k

R̃i
t−kR̃

j
t−k

(
PQ
t−k

LQt−k

)2)

Under the following assumption : ∀k > 0,
PQ
t−k

LQt−k
=
PQ
t

LQt
and

Lit−k
P i
t−k

=
Lit
P i
t

, we get :

(σQt )2 =

(
LQt

PQ
t

)2( ∑
1≤i,j≤n

αiαjλσ

∞∑
k=1

(1− λσ)k−1L
i
t−k

P i
t−k

Ljt−k

P j
t−k

R̃i
t−kR̃

j
t−k

(
PQ
t−k

LQt−k

)2)

=

(
LQt

PQ
t

)2( ∑
1≤i,j≤n

αiαjλσ

∞∑
k=1

(1− λσ)k−1L
i
t

P i
t

Ljt

P j
t

R̃i
t−kR̃

j
t−k

(
PQ
t

LQt

)2)

=

(
LQt

PQ
t

)2(
PQ
t

LQt

)2( ∑
1≤i,j≤n

αiαj

(
λσ

∞∑
k=1

(1− λσ)k−1R̃i
t−kR̃

j
t−k

)
Lit
P i
t

Ljt

P j
t

)
=

∑
1≤i,j≤n

αiαjΣ
ij (3.10)

Under this assumption the reactive covariance operator defined by equation (3.6) is

bilinear.

We verify empirically that this assumption is not very restrictive by running a procedure

that consists of using daily data of a pool of four equity indices and four bond indices be-

tween January 2003 and May 2015. We compute at each date time t the reactive volatility

of the equally-weighted portfolio based on these data using two different approaches:
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1. In the first approach, we calibrate the reactive volatility estimates σ̂reactt of the

equally-weighted portfolio using equations (3.3) and (3.4) directly on the time series

of its empirical returns.

2. In the second approach, we estimate the reactive covariance matrix Σ̂react
t using

equations (3.1) and (3.2) and compute the following quantity8: 1
N

√
e′Σ̂react

t e.

Fig 2. Relative spread
(
( 1
N

√
e′Σ̂te−σ̂t)/σ̂t

)
t
. Upper left and right: the evolution of the relative spread is

bounded by 5% and the distribution of the relative spread (blue) with a fitted gaussian (red) is concentrated
around 0. Lower: The equally-weighted portfolio reactive volatility with univariate (blue) vs multivariate
approach (dotted red).

If the assumption is not very restrictive, we should get the quasi-bilinearity of the reactive

covariance estimator, i.e. σ̂reactt ≈ 1
N

√
e′Σ̂react

t e. Figure 2 shows the distribution and the

evolution of the relative spread ( 1
N

√
e′Σ̂te−σ̂t)/σ̂t over time. It follows that the assumption

is not too restrictive since the distribution is concentrated around 0. Moreover, in the worst

case, the relative spread is bounded by 5%.

8Where e stands for the N × 1 vector of ones.
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4. The reactive covariance model: implications in asset

allocation

4.1. Data description

To make the empirical tests, we have considered a balanced portfolio that is meant to

represent a well diversified investment with both exposure to bond and equity risk. The

sample comes from Bloomberg and consists of a dataset of eight asset classes (four bond

and four equity indices) taken at daily frequency in total return term and denominated

in US Dollar. The bond group contains two government bond indices and two corporate

bond indices represented by the 10-year US bond (Barclays US Govt 10Y), the 10-year

European bond (Barclays EMU Govt 10Y), the US Investment Grade Bonds (Barclays

US Corp IG TR) and the US High Yield Bonds (Barclays US Corp HY TR). The equity

group is made of four regional equity indices that represent US equities (MSCI USA TR),

EURO equities (MSCI EMU TR USD), Japanese equities (MSCI Japan TR USD) and

Emerging Market equities (MSCI EM TR USD). The sample spans the period January 2,

2002 to May 1, 2015 and the LIBOR USD 1 Month index is used to calculate the excess

returns and Sharpe ratios.

Descriptive statistics over the entire sample are given in Table 1. We clearly observe

that there is a large heterogeneity in terms of individual returns, volatility and correlation

coefficients when considering this balanced portfolio. In the following section, we will check

if the reactive covariance model helps to manage this heterogeneity properly, especially in

times of market turbulence.

Table 1
Historical descriptive statistics for the balanced portfolio (Jan 2002 – May 2015)

Asset classes Ann. Returns (%) Ann. Vol (%) Correlations (%)

US Bonds 10Y 6.10 7.00 100 57.49 90.77 -7.44 -38.11 -32.24 4.93 -24.46
EU Bonds 10Y 6.77 4.74 100 51.26 -11.09 -29.06 -38.14 2.35 -24.90
US IG 5.96 4.99 100 18.81 -29.01 -17.23 15.26 -6.31
US HY 8.65 5.01 100 26.31 43.78 29.81 51.98
US Equities 8.63 20.08 100 58.97 5.03 46.24
EU Equities 9.49 25.58 100 23.88 67.59
Japan Equities 7.98 22.60 100 48.47
EM Equities 13.90 20.56 100
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4.2. Methodology

We explore the values of the reactive covariance model within a risk parity or risk bud-

geting framework. The risk parity approach provides a risk-based investment style that

doesn’t rely on return forecasts and where the risk contribution of each component of

the portfolio is equal to a certain risk budget defined by the portfolio manager. This new

framework is considered today as the main alternative method to the traditional mean-

variance portfolio optimization and its theoretical properties can be found in Bruder and

Roncalli (2012) [3].

To broadly present the risk parity approach, let us consider a portfolio of n assets. We

define by xi the weight of the ith asset and by R(x1, ..., xn) the risk measure of the portfolio

x = (x1, ..., xn). In this paper, we focus on the volatility as the risk measure and therefore

consider the case R(x) = σ(x) =
√
x′Σx where Σ denotes the variance covariance matrix

(VCV) of the portfolio. Considering this case, the risk contribution of an asset i is then

defined by:

RCi(x1, ..., xn) = xi
∂R(x1, ..., xn)

∂xi
= xi.

(Σx)i√
x′Σx

(4.1)

As the risk budgeting approach consists in building the portfolio such that the risk con-

tribution matches a given risk budget bi = (b1, ..., bn), our risk parity portfolio is then

defined by the following constraint:

RCi(x1, ..., xn) = bi ∗R(x1, ..., xn) (4.2)

The general mathematical system that defines our optimization problem is therefore:
xi.(Σx)i = bi.(x

′Σx),

bi > 0, xi > 0
n∑
i=1

bi = 1,
n∑
i=1

xi = 1

(4.3)

For empirical tests, we have considered two cases to define the vector of budget bi. In

the first case, we have considered bi =
1

n
which corresponds to the well-known equally-

weighted risk contribution case (ERC) case introduced by Maillard et al. (2010) [7] while

in the second case, we have considered a risk budgeting (RB) process with bi =
σ−1
i∑n

k=1 σ
−1
k

.
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The intuition behind the second case is that we want to allocate the portfolio’s weights

according to the inverse of their volatility level in order to check if the reactive covariance

model provides accurate estimates of asset volatilities that could help to reduce the port-

folio risk especially in times of market shock and violent rally.

To take into account the effect of equity and bond systematic risk when estimating the

single stocks reactive volatilities and covariances of our multi-asset portfolio, we use the

MSCI World index and JPM Global Aggregate Bond index as proxies of the equity and

bond systematic risks in order to estimate the level L (as defined in equation (2.5)) and

also consider the equally-weighted portfolio made of these two indices as the benchmark

of our balanced portfolio. We compare the risk parity portfolios obtained from reactive

covariance estimates with two standard existing models, namely the empirical covariance

matrix and the EWMA covariance matrix (as defined by Risk-Metrics). We estimate the

three VCVs in a one year rolling window time frame, calculate the risk parity weights at

a daily re-balancing frequency and provide the out-of-sample optimal portfolios over the

period January 2003 to May 2015.

4.3. Empirical results

The summary statistics of optimal ERC and RB portfolios are presented in Table 2.

Compared to the classical historical covariance matrix or to the EWMA covariance matrix,

we observe that the portfolios generated with the reactive covariance model exhibit higher

returns with lower (versus empirical portfolio) or equal (versus with EWMA portfolios)

risk. Higher Sharpe ratios are not generated at the expense of a higher drawdown that

stay lower for reactive portfolios, mainly with ERC portfolios. In a relative world, the

advantages of portfolios with reactive covariance matrices persist even if excess returns

are generated with slightly higher tracking error. Over the whole period, excess returns are

significantly higher for reactive covariance portfolios compared to empirical and EWMA

models whatever the risk parity approaches considered.

The cumulative ERC and RB portfolios’ performances over the out-of-sample period are

given in Figure 3. This graph highlights the ability of the reactive covariance matrices to

generate portfolios with better risk/return/drawdown profiles in times of market turbu-

lence compared to empirical or EWMA covariance matrices. This interesting feature of
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Table 2
Risk Parity optimal portfolios statistics using different covariance matrices (Jan 2003 -

May 2015)

ERC RB

Portfolios Portfolios

Statistics
Benchmark Empirical EWMA Reactive Emp EWMA Reactive

50% Equity + 50% Bond VCV VCV VCV VCV VCV VCV

Ann. arthm mean 6.38% 6.20% 6.58% 7.00% 5.82% 6.49% 7.27%
Ann. geo mean 6.15% 6.30% 6.71% 7.15% 5.92% 6.63% 7.47%
Ann. vol 9.09% 4.30% 4.23% 4.20% 3.71% 3.66% 3.69%
Max drawdown -33.79% -14.76% -13.46% -11.71% -16.22% -11.72% -9.91%
Sharpe ratio 0.70 1.44 1.56 1.67 1.57 1.77 1.97

Excess return cumulated – 3.71% 14.02% 25.68% -5.54% 12.11% 34.44%
Ann. excess return – 0.15% 0.56% 1.00% -0.23% 0.49% 1.32%
Ann. realized tracking error – 7.29% 7.99% 8.07% 8.06% 8.73% 8.73%
Information ratio – 0.02 0.07 0.12 -0.03 0.06 0.15

Fig 3. Cumulative portfolio performances of asset classes that made up the balanced portfolio over
the period January 2003 to May 2015. Left: the cumulative performance of ERC portfolios. Right: the
cumulative performance of RB portfolios (risk budget with volatility weighted). Portfolios are obtained
using empirical, EWMA or reactive covariance matrices.

the portfolios obtained with reactive covariance matrices is emphasized in Figure 4, which

provides a close-up of the cumulative portfolios performances over the period July 2007-

December 2011 considered as the period where financial markets experienced different

volatility regimes, bubbles and market crashes.
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Fig 4. Cumulative portfolio performances of asset classes that made up the balanced portfolio over
the period July 2007 to December 2011. Left: the cumulative performance of ERC portfolios. Right: the
cumulative performance of RB portfolios (risk budget with volatility weighted). Portfolios are obtained
using empirical, EWMA or reactive covariance matrices.

4.4. The reactive covariance: some interesting features

One of the strengths of the reactive covariance model is that it could be seen as a good

proxy for systematic risk in a multi-asset framework as shown in Figure 5. This graph

provides the evolution of the maximum eigenvalues of the distinct9 reactive covariance ma-

trices of the equity and bond groups of the balanced portfolio considered in the previous

section. It clearly shows that the maximum eigenvalues of the reactive covariance matrices

could be seen as a good risk factor that allows us to see when the covariance structure of a

group of assets changes. For instance, when considering the risk factor of the bond group,

we can see that the systemic risk factor of this group spikes in mid-2010 and 2011, in line

with what happened during the recent sovereign debt crisis. The same observation can be

made with the systematic risk factor from the reactive covariance maximum eigenvalues of

9We have used the whole reactive covariance matrix of the balanced portfolio to get the distinct equity

and bond reactive covariance matrices and have calculated the maximum eigenvalues of the resulting

matrices to obtain the plot in Figure 5.
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the equity group. In times of equity market turbulence, the equity risk factor could help to

identify what happens within the equity group of assets of a portfolio and therefore, could

help the portfolio manager to dynamically change or reduce his equity exposure. In other

words, the maximum eigenvalue of the reactive covariance matrices helps to capture more

quickly the market changes of equities and bonds and therefore can be used to manage

the leverage of a portfolio for example.

Fig 5. Evolution of the maximum eigenvalues of reactive covariance matrices: a proxy for
systematic risk in a multi-asset framework for the equity group (blue) and bond group (red) in a balanced
portfolio.

To highlight the fact that the systematic risk factors obtained from reactive covariance

matrices could be considered as good indicators of covariance structure changes of a port-

folio, we have plotted in Figure 6 the evolution of the maximum eigenvalues of the whole

reactive covariance matrices of our balanced equity-bond portfolio against the VIX index.

This graph also provides the 1-year rolling window correlations between the increments of

risk indicators (from empirical, EWMA and reactive covariance matrices) with our equity-
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bond portfolio benchmark as defined in section 4.2. Looking at the graphs, we can see

that, like the VIX index, the systematic risk factor derived from the reactive covariance

matrix is strongly negatively correlated with benchmark returns. This observation makes

it an ideal candidate for strategic or tactical strategies, which is not the case for both

the empirical and EWMA covariance matrix. This last observation can be seen as one of

the main features of the reactive covariance matrix compared to the EWMA covariance

matrix. Thus, unlike linear estimator such as the historical empirical or the EWMA co-

variance, the reactive covariance better reflects the systematic risk and specific risk of a

pool of assets as it allows the non-linearity of the market to be captured.

Fig 6. Maximum eigenvalue of reactive covariance matrix : Upper: Evolution of VIX index (blue)
and the maximum eigenvalues of the reactive covariance matrices of the equity-bond universe (red). Lower:
One-year rolling correlations between benchmark returns and the maximum eigenvalues of the empirical
covariance matrix (cyan), the EWMA matrix (yellow), the reactive covariance matrix (blue) and the VIX
index (red). The systematic risk factor from reactive covariance matrices could be seen as a good proxy
of systematic risk since it is strongly negatively correlated with benchmark returns: it allows to quickly
capture periods of market turbulence.

On a practical basis, the systematic risk factor based on maximum eigenvalues gives

balanced portfolio managers a gauge of having a proxy of implied market equity and
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bond risks without having to deal with complex or non-existent options data on both

asset classes. We note that the high correlation between our systematic risk factor and

the VIX is due to the historical dataset sample under study. Indeed, in the last fifteen

years of financial market history, the main risk in a balanced portfolio has come from

the equity class. But we could reasonably expect that over the coming years, with the

US Federal Reserve engaged in raising short term rates after 8 years of unconventional

monetary policy, the main risk factor may come this time from the bond market. In this

scenario, the systematic risk factor derived from the reactive covariance model will bring

more added value than ever to the balanced investment process. In terms of use, the

new leading indicator presented in this paper (that also includes implied risk from the

bond market) could be used to build market timing signals to allocate assets between

low and high risk portfolios. In other words, the maximum eigenvalue risk indicator from

equity-bond reactive covariance matrices could be seen as a new tool used for leverage

adjustment or beta management in turbulent markets.

5. Conclusion

In this article, we have proposed a new covariance matrix estimator which comes from the

generalization to the multivariate framework of the reactive volatility model. This new

model allows one to model the leverage effect of single stocks of a portfolio as a function

of their own idiosyncratic risk and benchmark systematic risk.

We have compared the added-value of this new estimator with standard existing ones

within a risk parity framework. When applied to a multi-asset universe, our findings show

that portfolios obtained with the reactive covariance model have superior diversification

with minimum drawdowns and good risk-adjusted characteristics. The new proposed co-

variance estimator then has the ability to quickly adapt to market changes and provides

accurate estimates of the variances and covariances of a group of assets. Moreover, we also

found that systematic risk factor build on the maximum eigenvalues of the reactive covari-

ance matrices can be used as an interesting risk aversion indicator that could enable one

to manage the leverage or the beta of the portfolio especially in times of market turbulence.
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Further development or application of this model could be to use it to build signals that

allow one to dynamically change the strategic asset allocation of a multi-asset portfolio ac-

cording to market environments. Finding a multi-assets grid based on the new systematic

risk factor introduced in this paper could allow the portfolios obtained with the reactive

covariance model to outperform the benchmark even further. Application of the reactive

covariance model in risk management when considering a single asset class framework for

instance could also lead to a better managed portfolio, especially in crisis entry and exit

phases, as the reactive feature of the covariance matrices could lighten the risk manage-

ment constraint in a crisis exit scenario by stopping the overestimation of risk coming from

an empirical measure. Finally, an interesting study could be to assess all the advantages

of using the reactive covariance model in a complex portfolio optimization process with

tracking error constraints.
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