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In the last few years, the financial advisory industry has 
been impacted by the emergence of digitalization and robo-
advisors. This phenomenon affects major financial services, 
including wealth management, employee savings plans, 
asset managers, private banks, pension funds, banking 
services, etc. Since the robo-advisory model is in its early 
stages, we estimate that robo-advisors will help to manage 
around $1 trillion of assets in 2020 (OECD, 2017). And this 
trend is not going to stop with future generations, who will 
live in a technology-driven and social media-based world.

In the investment industry, robo-advisors face different 
challenges: client profiling, customization, asset pooling, 
liability constraints, etc. In its primary sense, robo-advisory 
is a term for defining automated portfolio management. 
This includes automated trading and rebalancing, but 
also automated portfolio allocation. And this last issue is 
certainly the most important challenge for robo-advisory 
over the next five years. Today, in many robo-advisors, asset 
allocation is rather human-based and very far from being 
computer-based. The reason is that portfolio optimization is 
a very difficult task, and can lead to optimized mathematical 
solutions that are not optimal from a financial point of 
view (Michaud, 1989). The big challenge for robo-advisors is 
therefore to be able to optimize and rebalance hundreds of 
optimal portfolios without human intervention.

In this paper, we show that the mean-variance optimization 
approach is mainly driven by arbitrage factors that are 
related to the concept of hedging portfolios. This is why 
regularization and sparsity are necessary to define robust 
asset allocation. However, this mathematical framework 
is more complex and requires understanding how norm 
penalties impacts portfolio optimization. From a numerical 
point of view, it also requires the implementation of non-
traditional algorithms based on ADMM methods and 
proximal operators.
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1 Introduction

The concept of portfolio optimization has a long history and dates back to the seminal work
of Markowitz (1952). In this paper, Markowitz defined precisely what portfolio selection
means: “the investor does (or should) consider expected return a desirable thing and variance
of return an undesirable thing”. This was the starting point of mean-variance optimization
and portfolio allocation based on quantitative models. In particular, the Markowitz approach
became the standard model for strategic asset allocation until the end of the 2000s.

Since the financial crisis of 2008, another model has emerged and is now a very serious
contender for asset allocation (Roncalli, 2013). The risk budgeting approach is successfully
used for managing multi-asset portfolios, equity risk factors or alternative risk premia. The
main difference with mean-variance optimization is the objective function. The Markowitz
approach mainly focuses on expected returns and exploits the trade-off between performance
and volatility. The risk budgeting approach is based on the risk allocation of the portfolio,
and does not take into account expected returns of assets.

The advantage of the risk budgeting approach is that it produces stable and robust port-
folios. On the contrary, mean-variance optimization is very sensitive to input parameters.
These stability issues make the practice of portfolio optimization less attractive than the
theory (Michaud, 1989). Even for strategic asset allocation, many weight constraints need
to be introduced in order to regularize the mathematical solution and obtain an acceptable
financial solution. In the case of tactical asset allocation, professionals generally prefer to
implement the model of Black and Litterman (1991, 1992), because the optimized portfolio
depends on the current allocation. Therefore, the Black-Litterman model appears to be
slightly more robust than the Markowitz model because having a benchmark or introducing
a tracking error constraint is already a form of portfolio regularization. However, since the
Black-Litterman model is a slight modification of the Markowitz model, it suffers from the
same drawbacks.

Since the 1990s, academics have explored how to robustify portfolio optimization in
two different directions. The first one deals with the estimation of the input parameters.
For instance, we can use de-noising methods (Laloux et al., 1999) or shrinkage approaches
(Ledoit and Wolf, 2004) to reduce estimation errors of the covariance matrix. The second
one deals with the objective function. As explained by Roncalli (2013), the Markowitz model
is an aggressive model of active management due to the mean-variance objective function.
Academics have suggested regularizing the optimization problem by adding penalization
functions. For instance, it is common to include a L1 or L2 norm loss function. The
advantage of this is to obtain a “sparser” or “smoother” solution.

The success of risk parity, equal risk contribution (ERC) and risk budgeting portfolios has
put these new developments in second place. However, the rise of robo-advisors is changing
the current trend and highlights the need for active allocation models that are focused on
expected returns. Indeed, the challenge of robo-advice concerns tactical asset allocation and
not the portfolio construction of strategic asset allocation. Building a defensive, balance or
dynamic portfolio profile is not an issue, because they are defined from an ex-ante point
of view. Quantitative models can be used to define this step, but they are not necessarily
required. For example, this step can also be done using a discretionary approach, since
portfolio profiles are revised once and for all. The difficulty lies with the life of the invested
portfolio and the dynamic allocation. A robo-advisor that would consist in rebalancing a
constant-mix allocation is not a true robo-advisor, since it is reduced to the profiling of
clients. The main advantage of robo-advisors is to perform dynamic allocation by including
investment views, side assets or the client’s dynamic constraints, or some alpha engines
provided by the robo-advisor’s manager or distributor.
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The challenge for a robo-advisor is therefore to perform dynamic allocation or tactical
asset allocation in a systematic way without human interventions. In this case, expected
returns or trading signals must be taken into account. One idea is to consider an extension
of the ERC portfolio by using a risk measure that depends on expected returns (Roncalli,
2015). However, this approach is not always suitable when we target a high tracking error.
Otherwise, it makes a lot of sense for the mean-variance optimization to be the allocation
engine of robo-advisors. As said previously, the challenge is to develop a robust asset allo-
cation model. The purpose of this research is to provide a practical solution that does not
require human interventions.

This paper is organized as follows. Section Two illustrates the practice of mean-variance
optimization and highlights the limits of such models. In Section Three, we apply the theory
of regularization to asset allocation. In particular, we point out the calibration procedure
of the Lagrange coefficients of norm functions. In Section Four, we consider application to
robo-advisory. Finally, Section Five offers some concluding remarks.

2 Practice and limits of mean-variance optimization

2.1 The mean-variance optimization framework

We follow the presentation of Roncalli (2013). We consider a universe of n assets. Let
x = (x1, . . . , xn) be the vector of weights in the portfolio. We denote by µ and Σ the vector
of expected returns and the covariance matrix of asset returns. It follows that the expected
return and the volatility of the portfolio are equal to µ (x) = x>µ and σ (x) =

√
x>Σx.

The Markowitz approach consists in maximizing the expected return of the portfolio under
a volatility constraint (σ-problem):

x? = arg maxµ (x) s.t. σ (x) 6 σ? (1)

or minimizing the volatility of the portfolio under a return constraint (µ-problem):

x? = arg minσ (x) s.t. µ (x) > µ? (2)

Replacing the volatility by the variance scaled with the factor 1/2 does not change the
solution. Therefore, we deduce that the Lagrange functions associated with Problems (1)
and (2) are:

L1 (x, λ1, σ
?) = x>µ− λ1

(
1

2
σ2 (x)− 1

2
σ?

2

)
and:

L2 (x, λ2, µ
?) =

1

2
σ2 (x)− λ2 (µ (x)− µ?)

They satisfy L2 (x, λ2, 0) = −λ2L1 (x, θ, 0) where θ = λ−1
2 is the risk aversion of the

quadratic utility function. As strong duality holds, these two problems are equivalent.
Moreover, we can show that they can be written as a standard quadratic programming
problem (Markowitz, 1956):

x? (γ) = arg min
1

2
x>Σx− γx>µ (3)

where γ is the risk/return trade-off parameter. Since the problem is strongly convex and
the solution is x? (γ) = γΣ−1µ, we deduce that the solution of the µ-problem is given by:

γ =
µ?

µ>Σ−1µ
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whereas the solution of the σ-problem is obtained for the following value of γ:

γ =
σ?√

µ>Σ−1µ

The previous framework can be extended by considering a risk-free asset and portfolio
constraints:

x? (γ) = arg min
1

2
x>Σx− γx> (µ− r1) (4)

s.t. x ∈ Ω

where r is the risk-free rate and Ω is the set of restrictions. Let µ− 6 µ (x) 6 µ+ and
σ− 6 σ (x) 6 σ+ be the bounds of the expected return and the volatility such that x ∈ Ω.
It follows that there is a solution to the σ-problem and the µ-problem if σ? > σ− and
µ? 6 µ+.

Remark 1 The Sharpe ratio is the standard risk/return measure used in finance, and cor-
responds to the zero-homogeneous quantity:

SR (x | r) =
µ (x)− r
σ (x)

=
x>µ− r√
x>Σx

The capital asset pricing model (CAPM) defines the tangency portfolio as the optimized
portfolio that has the maximum Sharpe ratio. When the capital budget is reached (meaning
that

∑n
i=1 xi = 1), the solution of Problem (4) is equal to x? = γΣ−1 (µ− r1) where γ? =(

1>Σ−1 (µ− r1)
)−1

. Since the matrix Σ has a unique symmetric positive definite square

root denoted by Σ1/2, the Cauchy-Schwarz inequality yields:(
x> (µ− r1)

)2
=
(
x>Σ1/2Σ−1/2 (µ− r1)

)2

6
(
x>Σx

) (
(µ− r1)

>
Σ−1 (µ− r1)

)
The equality holds if and only if there exists a scalar γ ∈ R such that Σ1/2x = γΣ−1/2 (µ− r1).
It follows that:

∀x ∈ Rn SR (x | r) 6
√

(µ− r1)
>

Σ−1 (µ− r1) (5)

We deduce that the set of portfolios maximizing the Sharpe ratio is the one-dimensional
vector space defined by x ∈ Σ−1 (µ− r1). This means that unconstrained and constrained
portfolio optimizations are related when we impose only one simple constraint like the capital
budget restriction. In more complex cases, the constrained solution is not necessarily related
to the unconstrained solution. However, the bound remains valid, because it only depends on
the Cauchy-Schwarz inequality.

The previous result highlights the importance of constraints in portfolio optimization.
A portfolio is long-only if ∀ i ∈ {1, . . . , n} xi > 0 whereas it is long-short if ∃ (i, j) ∈
{1, . . . , n} such that xi > 0 and xj < 0. For long-only portfolios, a capital budget is
usually assumed, meaning that the portfolio is fully invested (

∑n
i=1 xi = 1). For long-

short portfolios, professionals sometimes impose a neutral or zero-capital budget, implying
that the long exposure is financed by the short exposure (

∑n
i=1 xi = 0). They can also

impose leverage constraints (
∑n
i=1 |xi| 6 c), while risk-budgeting portfolios require adding

a logarithmic barrier constraint (
∑n
i=1 ωi lnxi > c).
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In practice, the quantities µ and Σ are unknown and must be specified. We can assume
that they are estimated using an historical sample {R1, . . . , RT } where Rt is the vector of
asset returns at time t. Let µ̂ and Σ̂ be the corresponding estimators. We have:

µ̂ =

T∑
t=1

wtRt

and:

Σ̂ =

T∑
t=1

wt (Rt − µ̂) (Rt − µ̂)
>

where wt is the weighting scheme such that
∑T
t=1 wt = 1. In Appendix A.2 on page 51, we

show that Problem (4) can be written as follows1:

x? (γ) = arg min
1

2
‖Rx‖2W − γx

> (R>w − r1) (6)

s.t. x ∈ Ω

where w = (w1, . . . , wT ) ∈ RT , R = (R1, . . . , RT ) ∈ RT×n and W = diag (w) − ww>. In
this case, the Markowitz solution is the portfolio that maximizes the backtest for a given
volatility. When wt+1 > wt, we conclude that Problem (4) is a trend-following optimization
program, whose moving average is defined by the weighting scheme w. In order not to be
trend-following, we have to use a vector of expected returns µ that does not satisfy wt+1 > wt
or that does not depend on the sample of asset returns.

2.2 Stability issues

According to Hadamard (1902), a well-posed problem must satisfy three properties:

1. a solution exists;

2. the solution is unique;

3. the solution’s behavior changes continuously with the initial conditions.

We recall that the solution to Problem (3) is x? (γ) = γΣ−1µ. If Σ has no zero eigenvalues,
it follows that the existence and uniqueness is ensured, but not necessarily the stability.
Indeed, this third property implies that Σ has no “small” eigenvalues. This problem is
extensively illustrated by Bruder et al. (2013) and Roncalli (2013). If we consider the
eigendecomposition Σ = V ΛV >, we have Σ−1 = V Λ−1V > and x? (γ) = γV Λ−1V >µ. It
follows that V >x? (γ) = γΛ−1V >µ or:

x̃? ∝ Λ−1µ̃ (7)

where x̃? = V >x? (γ) and µ̃ = V >µ. By applying the change of basis V −1, we notice that
the Markowitz solution is proportional to the vector of return and inversely proportional to
the eigenvectors. We conclude that the mean-variance optimization problem mainly focuses
on the small eigenvalues. This is why the stability property is lacking in the original portfolio
optimization problem.

Let us consider an example to illustrate this problem. The investment universe is com-
posed of 4 assets. The expected returns are equal to µ1 = 7%, µ2 = 8%, µ3 = 9% and

1The norm ‖x‖A is equal to
(
x>Ax

)1/2
. All the notations are defined in Appendix A.1 on page 51.
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µ4 = 10% whereas the volatilities are equal to σ1 = 15%, σ2 = 18%, σ3 = 20% and
σ4 = 25%. The correlation matrix is the following:

C =


1.00
0.50 1.00
0.50 0.50 1.00
0.60 0.50 0.40 1.00


The portfolio manager’s objective is to maximize the expected return for a 15% volatility
target and a full investment2. The optimal portfolio x? is (26.3%, 25.5%, 32.3%, 15.9%). In
Table 1, we indicate how this solution differs when we slightly change the value of input
parameters. For example, if the volatility of the third asset is equal to 19%, the weight
of the third asset becomes 39.1% instead of 32.3%. In real life, we know exactly the true
parameters. For instance, there is a low probability that the realized correlation matrix is
exactly the one specified above. If we consider a uniform correlation matrix of 70%, we
observe significant differences in terms of allocation.

Table 1: Sensitivity of the MVO portfolio to input parameters

σ3 19% 21% 21%
C C4 (30%) C4 (70%) C4 (70%)
µ2 5% 7%
x1 26.30 21.48 30.20 7.03 54.59 54.72 70.75
x2 25.52 22.90 27.79 24.23 26.81 −2.43 13.95
x3 32.28 39.10 26.48 37.53 22.38 35.38 16.57
x4 15.90 16.52 15.53 31.21 −3.78 12.34 −1.27

We have seen that the lack of stability is due to the small eigenvalues of the covariance
matrix. More specifically, we notice that the important quantity in mean-variance optimiza-
tion is not the covariance matrix itself, but the precision matrix, which is the inverse of the
covariance matrix. In Tables 2 and 3, we have reported the eigendecomposition of Σ and
I = Σ−1. We verify that the eigenvectors of the precision matrix are the same as those
of the covariance matrix, but the eigenvalues of the precision matrix are the inverse of the
eigenvalues of the covariance matrix. This means that the risk factors are the same, but

Table 2: Principal component analysis of the covariance matrix Σ

Factor 1 2 3 4

Asset

1 36.16% 2.44% 5.72% −93.03%
2 42.19% 25.48% −86.21% 11.76%
3 44.74% 73.10% 46.52% 22.16%
4 70.08% −63.26% 19.25% 26.76%

Eigenvalue 0.10% 0.03% 0.02% 0.01%
% cumulated 63.80% 18.72% 10.65% 6.83%

they are in reverse order. We see that the most important risk factor for portfolio optimiza-
tion is a long/short portfolio, which is short on the first asset and long on the other assets.
The second most important risk factor is another long/short portfolio, which is short on

2We only impose that the sum of the weights is equal to 100%.
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Table 3: Eigendecomposition of the precision matrix I

Factor 1 2 3 4

Asset

1 −93.03% 5.72% 2.44% 36.16%
2 11.76% −86.21% 25.48% 42.19%
3 22.16% 46.52% 73.10% 44.74%
4 26.76% 19.25% −63.26% 70.08%

Eigenvalue 93.06% 59.65% 33.94% 9.96%
% cumulated 47.33% 30.34% 17.26% 5.06%

the second asset and long on the third asset3. Any changes in the covariance matrix then
impacts the largest eigenvalues of I and the long/short risk factors.

2.3 Which risk factors are important?

The previous eigendecomposition analysis is the traditional way to illustrate the stability
issue (Roncalli, 2017). However, the corresponding arbitrage factors are difficult to interpret
and, moreover, they do not fully help understand the Markowitz machinery, in particular
how mean-variance portfolios are built. In this section, we use the method developed by
Stevens (1998) in order to better characterize the underlying mechanism.

We have seen that the solution is x? (γ) = γΣ−1µ. If we assume that asset returns are
independent – C = In, we obtain the famous result:

x?i (γ) = γ
µi
σ2
i

The optimal weights are proportional to expected returns and inversely proportional to
variances of asset returns. In the general case – C 6= In, Stevens (1998) shows that the
optimal portfolio x? is connected to the linear regression4:

Ri,t = αi + β>i R
(−i)
t + εi,t (8)

where R
(−i)
t denotes the vector of asset returns excluding the ith asset. By noting R2

i the
coefficient of determination and s2

i the variance of εi,t, we have:[
Σ−1

]
i,i

=
1

σ2
i (1−R2

i )

and: [
Σ−1

]
i,j

= − βi,j
σ2
i (1−R2

i )
= − βj,i

σ2
j

(
1−R2

j

)
We deduce that:

x?i (γ) = γ
[
Σ−1µ

]
i

= γ
µi − β>i µ(−i)

σ2
i (1−R2

i )

3On Page 68, we have reported the representation quality and the contribution of each variable for the
PCA factors of Σ. Since the second risk factor of I is the third risk factor of Σ, we deduce that the first and
fourth assets have a very small contribution (respectively 0.33% and 3.71%).

4This means that:
Ri,t = αi +

∑
j 6=i

βi,jRt,j + εi,t
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where µ(−i) is the vector of expected returns excluding the ith asset. Since we have5 s2
i =

σ2
i

(
1−R2

i

)
and αi = µi − β>i µ(−i), we obtain:

x?i (γ) = γ
αi
s2
i

In the general case, the optimal weights are proportional to idiosyncratic returns αi and
inversely proportional to idiosyncratic variances s2

i .

We notice that βi represents the best portfolio for replicating the returns of Asset i. This
is why it is called the hedging (or tracking) portfolio of Asset i. The idiosyncratic return αi
is the difference between the expected return µi of Asset i and the expected return β>i µ

(−i)

of its hedging portfolio. The idiosyncratic volatility si is the standard deviation of residuals
εi,t. It is also equal to the volatility of the tracking errors ei,t = Ri,t− R̂i,t where R̂i,t is the
return of the hedging portfolio. The hedging portfolio concept is at the core of the Markowitz
optimization. Indeed, the Markowitz framework consists in estimating the hedging strategy
βi for each asset, and in forming two portfolios:

1. the first portfolio y? is the optimal portfolio of assets assuming that assets are not
correlated:

y?i = γ
µi
σ2
i

2. the second portfolio z? is the optimal portfolio of the hedging strategies:6:

z?i = γ
β>i µ

(−i)

σ2
i − s2

i

We deduce that:

x?i (γ) =

(
γ

µi
σ2
i (1−R2

i )

)
−
(
γ

β>i µ
(−i)

σ2
i (1−R2

i )

)
=

(
1

(1−R2
i )
· γµi
σ2
i

)
−
(

σ2
i − s2

i

σ2
i (1−R2

i )
· γβ

>
i µ

(−i)

σ2
i − s2

i

)
= (1 + ωi)

(
φ−1 µi

σ2
i

)
− ωi

(
φ−1 β

>
i µ

(−i)

σ2
i − s2

i

)
= y?i + ωi (y?i − z?i )

where:

ωi =
R2
i

1−R2
i

=
σ2
i − s2

i

s2
i

To take into account the correlation diversification, the optimal portfolio x? adds to the
portfolio y? a long/short exposure between y? and z? with a leverage that depends on the
quality of the hedge.

Let us consider the previous example. In Table 4, we have reported the linear regressions
between the four assets, which are the hedging portfolios of each asset. We observe that the
coefficient of determination lies between 33.5% and 45.8%. R2

i is the highest for the first
asset, because it exhibits the largest cross-correlations. Therefore, it is the lowest contributor
to the diversification whereas the third asset is the highest contributor to the diversification.

5See Appendix A.3 on page 52.
6Because the hedging strategies are independent and we have var

(
β>i R

(−i)
t

)
= var (Ri,t) − var (εi,t) =

σ2
i − s2i .
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Table 4: Linear dependence between the four assets (hedging portfolios)

Asset αi βi R2
i

1 1.70% 0.139 0.187 0.250 45.83%
2 2.06% 0.230 0.268 0.191 37.77%
3 2.85% 0.409 0.354 0.045 33.52%
4 1.41% 0.750 0.347 0.063 41.50%

Table 5: Risk/return analysis of hedging portfolios

Asset µi µ̂i αi σi σ̂i si R2
i

1 7.00% 5.30% 1.70% 15.00% 10.16% 11.04% 45.83%
2 8.00% 5.94% 2.06% 18.00% 11.06% 14.20% 37.77%
3 9.00% 6.15% 2.85% 20.00% 11.58% 16.31% 33.52%
4 10.00% 8.59% 1.41% 25.00% 16.11% 19.12% 41.50%

Table 6: Optimal portfolio

Asset ωi y?i z?i x?i
1 84.62% 80.22% 132.48% 36.00%
2 60.68% 63.67% 125.09% 26.39%
3 50.43% 58.02% 118.19% 27.67%
4 70.94% 41.26% 85.40% 9.94%

We then calculate the risk/return statistics of hedging portfolios in Table 5. We verify
that the following equalities hold7: µi = µ̂i + αi and σ2

i = σ̂2
i + s2

i . Finally, we obtain the
optimal portfolio given in Table 6. γ is set to 0.2578 in order to obtain a 100% exposure.
In this example, the optimal portfolio is: x?1 = 36%, x?2 = 26.39%, x?3 = 27.67% and
x?4 = 9.94%. There is no short position, because the alpha αi is positive for all the assets,
meaning that hedging portfolios are not able to produce a better expected return than the
corresponding assets.

We now modify the correlation between the third and fourth assets, and set ρ3,4 = 95%.
This high correlation changes the results of the linear regression (see Tables 7 and 8). Indeed,
the coefficient of determination for Assets 3 and 4 is larger than 90%, and the fourth hedging
portfolio has an expected return that is higher than that of the fourth asset. Since α4 is the
only negative alpha, the optimal portfolio is short on the fourth asset and long on the other
assets (see Table 9). Another important factor is the impact of R2

i on the weights ωi. Thus,
ω3 and ω4 are larger than 10 whereas ω1 and ω2 are smaller than 1. Even if the difference
between y?i and z?i is the smallest for Assets 3 and 4, the leverage effect largely compensates
the long/short effect, and explains why the optimal portfolio has a large exposure on Assets
3 and 4.

The theoretical analysis presented in this paragraph also highlights the importance of the
expected returns. Indeed, even if they do not change the composition and the risk analysis

7We have:
µ̂i = E

[
R̂i,t

]
= E

[
β>i R

(−i)
t

]
= β>i µ

(−i)

and:
σ̂2
i = var

(
R̂i,t

)
= var

(
β>i R

(−i)
t

)
= σ2

iR
2
i
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Table 7: Linear dependence between the four assets (ρ3,4 = 95%)

Asset αi βi R2
i

1 3.16% 0.244 −0.595 0.724 47.41%
2 2.23% 0.443 0.470 −0.157 33.70%
3 1.66% −0.174 0.076 0.795 91.34%
4 −1.61% 0.292 −0.035 1.094 92.37%

Table 8: Risk/return analysis of hedging portfolios (ρ3,4 = 95%)

Asset µi µ̂i αi σi σ̂i si R2
i

1 7.00% 3.84% 3.16% 15.00% 10.33% 10.88% 47.41%
2 8.00% 5.77% 2.23% 18.00% 10.45% 14.66% 33.70%
3 9.00% 7.34% 1.66% 20.00% 19.11% 5.89% 91.34%
4 10.00% 11.61% −1.61% 25.00% 24.03% 6.90% 92.37%

Table 9: Optimal portfolio (ρ3,4 = 95%)

Asset ωi y?i z?i x?i
1 90.16% 60.73% 70.30% 52.10%
2 50.82% 48.20% 103.08% 20.31%
3 1054.10% 43.92% 39.22% 93.44%
4 1211.48% 31.23% 39.25% −65.85%

of hedging portfolios, they impact the return analysis. An example is provided in Appendix
C.1 on page 68. We change the expected return of the first asset and set µ1 = 3%. In this
case, the expected return of the first asset is largely smaller than the expected return of
the corresponding hedging portfolio. At the same time, the alpha of the other three assets
increases sharply. This is why Markowitz optimization increases the allocation in the third
asset and takes a short position on the first asset.

Let us write Equation (8) as follows:

Ri,t − µi
σi

=
∑
j 6=i

β̃i,j

(
Rj,t − µj

σj

)
+ εi,t

where the coefficients β̃i,j only depend on the correlation matrix C. We have the following
correspondence:

αi = µi − σi
∑
j 6=i

β̃i,j

(
µj
σj

)
and:

βi,j = β̃i,j

(
σi
σj

)
Moreover, we notice that:

s2
i = σ2

i

(
1−R2

i

)
and:

R2
i =

(
e>i C(−i)

)(
C(−i)

)−1 (
C(−i)ei

)
where C(−i) is the correlation matrix excluding the ith asset. We obtain the following effects:
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• A change in the expected return µi impacts the alpha αi of the hedging portfolios. It
does not change the composition βi of hedging portfolios or the weights ωi;

• A change in the volatility σi impacts the exposures βi of the hedging portfolios. It does
not change the weights ωi, but modifies the value of alphas. As such, the composition
of the portfolio zi changes;

• A change in the correlation ρi,j impacts all the parameters (αi, βi and wi).

We also notice that the correlations are the only parameters that are used for calculating
the coefficient of determination R2

i . Therefore, correlations are the key parameters for
understanding the leverage effects in the Markowitz model. Indeed, they impact both the
tracking error volatilities si and the weights ωi. The main effect of the volatility σi concerns
the tracking error, because si is an increasing function of σi. A high volatility σi therefore
negatively impacts the allocation yi and zi.

3 Theory of regularization

The stability issue has been considered by Michaud (1989) in a very famous publication “The
Makowitz Optimization Enigma: Is Optimized Optimal?”. In his works, Michaud clearly
makes the distinction between mathematical optimization and financial optimality. For
instance, if we consider two assets that are highly similar in terms of risk and return, a fund
manager will most likely spread a long exposure into these two assets, whereas Markowitz
will play an arbitrage between them. Academics have proposed several approaches to make
Markowitz’s solutions more robust. Two main directions have been explored. The first one
concerns the regularization of the covariance matrix. As seen in Equation (7), the problem
is ill-conditioned because of the magnitude of eigenvectors. One solution is therefore to
change the eigenvalues of Σ. For instance, the direct approach consists in deleting the lowest
eigenvalues (Laloux et al., 1999). The indirect approach mixes different covariance matrices
in order to obtain a more robust estimator, and is called the shrinkage method (Ledoit and
Wolf, 2003). The second direction concerns the regularization of the optimization problem
(e.g. adding L2 penalty) or the sparsity of the solution (e.g. adding L1 penalty). The
simplest way is to add some weight constraints. For instance, we can impose that the
sum of weights is equal to one, the weights are positive, etc. Another approach consists in
modifying the objective function by adding some penalties, such as ridge or lasso norms.

3.1 Adding constraints

Let us specify the Markowitz problem in the following way:

min
1

2
x>Σx

s.t.

 1>x = 1
x>µ > µ?

x ∈ Ω

where Ω is the set of weight constraints. This is a variant of the µ-problem (2) described on
page 8. We consider two optimized portfolios:

• The first one is the unconstrained portfolio x? (µ,Σ) with Ω = Rn.

• The second one is the constrained portfolio x̃ (µ,Σ) with some constraints added.
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Jagannathan and Ma (2003) assume that the weight of asset i is between a lower bound x−i
and an upper bound x+

i :

Ω =
{
x ∈ Rn : x−i 6 xi ≤ x+

i

}
They show that the constrained optimal portfolio is the solution of the unconstrained prob-
lem:

x̃ (µ,Σ) = x?
(
µ̃, Σ̃

)
with: {

µ̃ = µ

Σ̃ = Σ + (λ+ − λ−) 1> + 1 (λ+ − λ−)
>

where λ− and λ+ are the Lagrange coefficients vectors associated with the lower and upper
bounds. Introducing weight constraints is then equivalent to using another covariance matrix
Σ̃, or shrinking the covariance matrix. More generally, if we introduce linear inequality
constraints:

Ω = {x ∈ Rn : Cx > d}

we obtain a similar result. The covariance matrix is shrunk as follows8:

Σ̃ = Σ−
(
C>λ1> + 1λ>C

)
where λ is the vector of Lagrange coefficients associated with the constraints Cx > d.

We again consider the previous example given on page 10. If we compute the global
minimum variable, the solution x? is equal to 65.57%, 29.06%, 13.61% and −8.24%. Let us
suppose that the portfolio manager is not satisfied with this optimized portfolio and decides
to impose some constraints. For instance, he could decide that the portfolio must contain at
least 10% of all assets. In order to achieve a certain degree of diversification, he could also
decide to impose an upper bound of 40%. With these constraints x−i = 10% and x+

i = 40%,
the solution becomes 40.00%, 31.18%, 18.82% and 10.00%. Thanks to the Jagannathan-Ma
framework, we can compute the shrinkage covariance matrix9, and deduce the shrinkage
volatilities σ̃i and correlation matrix C̃, which are reported in Table 10. To obtain this
new solution, one must increase (implicitly) the volatility of the first asset, and decrease
(implicitly) the volatility of the fourth asset. Concerning the correlations, we also notice
that they have changed. In Table 11, we report the results when the objective function is
to target an expected return of 9%. In this case, we notice that introducing constraints is
equivalent to introducing some views on the first asset. Indeed, this allows us to impose a
better Sharpe ratio and a lower correlation with the second asset.

Table 10: Jagannathan-Ma shrinkage of the GMV portfolio

Asset x?i x̃i σ̃i C̃
1 65.57% 40.00% 16.80% 100.00%
2 29.06% 31.18% 18.00% 54.10% 100.00%
3 13.61% 18.82% 20.00% 53.16% 50.00% 100.00%
4 −8.24% 10.00% 22.96% 53.07% 42.61% 32.90% 100.00%

8The shrinkage covariance matrix is not necessarily positive definite (Roncalli, 2013).
9We have λ−4 = 48.89 bps and λ+1 = 28.58 bps. The other Lagrange coefficients are equal to zero.
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Table 11: Jagannathan-Ma shrinkage of the MVO portfolio (µ? = 9%)

Asset x?i x̃i σ̃i C̃
1 3.30% 10.00% 12.06% 100.00%
2 23.44% 15.00% 18.00% 43.87% 100.00%
3 43.21% 40.00% 20.59% 49.20% 51.79% 100.00%
4 30.05% 35.00% 25.00% 61.43% 50.00% 41.18% 100.00%

Remark 2 Constraints are inherent to Markowitz optimization. Indeed, the raw solution
given by the mean-variance optimization is generally not satisfied. This is why Quants spend
a lot of time adding and testing constraints. This is particular true for strategic asset alloca-
tion, for which the annual exercises are very time-consuming. However, adding constraints
introduces the personal views of the Quant in charge of the optimization. Moreover, this
process of trial and error must be repeated each time the allocation problem changes. There-
fore, Markowitz optimization is more a handmade solution, and not an industrial solution.
This is why it cannot be used “as is” by robo-advisors, whose mass production/customization
approach is incompatible with human intervention.

3.2 Adding a benchmark

Let us now consider a benchmark which is represented by a portfolio b. The tracking error
between the portfolio x and its benchmark b is the difference between the return of the
portfolio and the return of the benchmark:

et = Rt (x)−Rt (b)

= (x− b)>Rt

where Rt = (Rt,1, . . . , Rt,n) is the vector of asset returns. The expected excess return is:

µ (x | b) = E [et] = (x− b)> µ

whereas the volatility of the tracking error is:

σ (x | b) = σ (et) =

√
(x− b)> Σ (x− b)

The investor’s objective is to maximize the expected tracking error with a constraint on the
tracking error volatility. Like the Markowitz problem, we transform this σ-problem into a
γ-problem:

x? (γ) = arg min
1

2
(x− b)>Σ (x− b)− γx>µ (x | b)

s.t. x ∈ Ω

The objective function is then:

f (x) =
1

2
(x− b)>Σ (x− b)− γ (x− b)> µ

=
1

2
x>Σx− x> (γµ+ Σb) +

(
1

2
b>Σb+ γb>µ

)
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We deduce that:

x? (γ) =
1

2
x>Σx− γx>µ̃

s.t. x ∈ Ω

where µ̃ = µ +
1

γ
Σb. Let µb be the vector of implied expected returns such that the

benchmark b is the optimal portfolio. Since we have b = γΣ−1µb, the optimization problem
becomes:

x? (γ) = arg min
1

2
x>Σx− ξx>

(
µ+ µb

2

)
s.t. x ∈ Ω

where ξ = 2γ. Introducing a benchmark constraint is then equivalent to regularizing the
expected returns.

3.3 Tikhonov and ridge regularization

Previously, we have seen a method that regularizes the covariance matrix and an approach
that regularizes the vector of expected returns. We now turn to a framework that regularizes
the two input parameters of Markowitz optimization problems, and not only the covariance
matrix or the vector of expected returns. While the two previous approaches are more
specific to financial optimization, the following methods have been developed in PDEs and
later in statistics. This is why we consider the following general optimization problem:

x? = arg min
1

2
‖A1x− b1‖22 (9)

s.t.

{
A2x = b2
A3x > b3

We recognize a standard quadratic programming problem. Problems (1) – (6) can easily be
written as Problem (9). For instance, the γ-problem (3) is obtained with A>1 A1 = Σ and
A>1 b1 = γµ, while we have b1 = 0, A3 = µ> and b3 = µ? for the µ-problem. If we prefer

to use the empirical model (6), we specify A1 = W 1/2R = D
1/2
w CTR and b1 = γW−1/2w =

γ
(
C>T D

1/2
w

)−1

w. We notice that the L2 norm is natural because of the specification of A1.

3.3.1 Formulation of the Tikhonov problem

In order to regularize the Markowitz optimization problem, we can add a penalty term. For
instance, the most famous approach is the Tikhonov regularization. The general problem
can be written as follows:

x? = arg min
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 (10)

s.t. A2x = b2

where %2 > 0 is a positive number, Γ2 ∈ Rn×n, A2 ∈ Rm×n and b2 ∈ Rm×1. The vector
x0 is an initial solution. The Tikhonov regularization matrix Γ2 forces the solution to be
close to x0 with respect to the semi-norm x 7→ ‖Γ2x‖2 whereas the Tikhonov regularization
parameter %2 indicates the strength of the regularization.
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Remark 3 In portfolio optimization, x0 can be seen as a reference portfolio. For instance,
it can be a benchmark, an heuristic portfolio10 or the investment portfolio of the previous
period. The L2 penalty term may then be used to control the deviation between the new
portfolio and the reference portfolio, the tracking error or the portfolio turnover.

Remark 4 The previous approach was introduced in asset management by Jorion (1988,
1992), who considered the Bayes-Stein estimator based on the one-factor model developed by
Sharpe (1963). With the notations above, we have the following correspondence: Γ2 = 11>

and x0 = 0.

In Appendix A.4 on page 53, we show that the optimal solution is the x-coordinate of
the linear system solution11:(

A>1 A1 + %2Γ>2 Γ2 A>2
A2 0

)(
x
λ

)
=

(
A>1 b1 + %2Γ>2 Γ2x0

b2

)
(11)

where λ is the vector of Lagrange coefficients associated with the constraint A2x = b2. The
OLS regression corresponds to Γ2 = 0 whereas the ridge regression is obtained with Γ2 = In.

For λ = 0 and %2 = 0, the OLS solution is simply x? = A†1b1 where A†1 =
(
A>1 A1

)−1
A>1

is the Moore-Penrose pseudo-inverse matrix of A1. For λ = 0 and %2 > 0, the regularized
solution becomes x? = A#

1 b
#
1 where A#

1 may be interpreted as the Tikhonov regularization

of A†1:

A#
1 =

(
A>1 A1 + %2Γ>2 Γ2

)−1
A>1

We also notice that A>1 A1 + %2Γ>2 Γ2 is invertible if the matrix Γ2 is invertible. Indeed, if(
A>1 A1 + %2Γ>2 Γ2

)
x = 0, we have:

0 = x>
(
A>1 A1 + %2Γ>2 Γ2

)
x = ‖A1x‖22 + %2 ‖Γ2x‖22 > %2 ‖Γ2x‖22

This ensures the property that the matrix A>1 A1 + %2Γ>2 Γ2 is positive definite. This idea
can be extended using spectral decomposition of A1, which naturally leads to defining the
regularization of the matrix A1 through spectral filters.

3.3.2 Relationship with covariance shrinkage methods

Let us consider the regularized Markowitz problem:

x? = arg min
1

2
x>Σx− γx>µ+R (x)

s.t. 1>x = 1

where R (x) is the regularization function. If we consider the Tikhonov formulation (10),
we have the following correspondence: A>1 A1 = Σ and A>1 b1 = γµ. We deduce that the

regularization on the matrix A†1 can be written as a regularization on the covariance matrix
Σ when there is no target portfolio (x0 = 0):

Σ (%2) = Σ + %2Γ>2 Γ2

Therefore, there is a strong relationship between regularization and shrinkage. Indeed, the
empirical covariance matrix Σ̂ is an unbiased estimator of Σ, but its convergence is very slow

10For instance, it can be the equally-weighted (EW) portfolio or the equal risk contribution (ERC) portfolio
(Roncalli, 2013).

11We obtain a linear system of the form Az = b where A is a symmetric 2 × 2 block matrix. The (1,1)
block depends on the matrix A1 while the (2,1) block depends on the matrix A2.
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in particular when n is large. We know also that the estimator Φ̂ based on factor models
converges more quickly, but it is biased. Ledoit and Wolf (2003) propose combining the two
estimators Σ̂ and Φ̂ in order to obtain a more efficient estimator. Let Σ̂ (α) = αΣ̂+(1− α) Φ̂
be this new estimator. Ledoit and Wolf estimate the optimal value of α by minimizing the
expected value of the quadratic loss:

α? = arg minE [L (α)]

where the loss function is equal to:

L (α) =
∥∥∥αΣ̂ + (1− α) Φ̂− Σ

∥∥∥2

2

We have, up to a scaling factor12, the following correspondence: %2 =
1− α?

α?
Γ2 = chol Φ̂

where cholM is the upper Cholesky factor of the matrix M . Therefore, the Ledoit-Wolf
shrinkage technique is a special case of Tikhonov regularization. In a similar way, the double
shrinkage method proposed by Candelon et al. (2012) is obtained by setting Γ2 = In and
x0 6= 0.

3.3.3 Ridge regularization

The ridge regularization is defined by Γ2 = In. We deduce that the mean-variance objective
function becomes:

f (x) =
1

2
x>Σx− γx>µ+

1

2
%2 ‖x− x0‖22

∝ 1

2
x> (Σ + %2In)x− x> (γµ+ %2x0)

=
1

2
x>Σ (%2)x− γx>µ (%2)

where Σ (%2) = Σ + %2In and µ (%2) = µ +
%2

γ
x0. Let x? (γ; %2, x0) be the unconstrained

solution of the ridge optimization problem:

x? (γ; %2, x0) = arg min
1

2
x>Σx− γx>µ+

1

2
%2 ‖x− x0‖22

We have:

x? (γ; %2, x0) = γΣ (%2)
−1
µ (%2)

= γ (Σ + %2In)
−1

(
µ+

%2

γ
x0

)
=

(
In + %2Σ−1

)−1
(x? (γ;µ) + x? (%2;x0))

where x? (γ;µ) = γΣ−1µ is the Markowitz solution. We deduce that the regularized solution
is the average of two portfolios: the Markowitz portfolio x? (γ;µ) and the optimal portfolio

12This is not an issue since γ is not a fixed parameter, but is calibrated to solve a σ-problem or a µ-problem.
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x? (%2;x0) when the vector of expected returns is equal to x0 and the risk/return trade-off
parameter is %2. Bruder et al. (2013) also show that:

x? (γ; %2, x0) = ω (%2)x? (γ;µ) + (In − ω (%2))x0

where the matrix of weights ω (%2) is equal to
(
In + %2Σ−1

)−1
. We verify that:

lim
%2→∞

ω (%2) = 0

Without any constraints, the ridge regularization reduces the leverage of Markowitz portfolio
when there is no target portfolio. When we impose that the portfolio is fully invested
(1>x = 1), this is equivalent imposing that the target portfolio is the equally-weighted
portfolio.

We consider an example where the investment universe is composed of 4 assets. The
expected returns are equal to µ1 = 4%, µ2 = 5%, µ3 = 9% and µ4 = 10% whereas the
volatilities are equal to σ1 = 15%, σ2 = 18%, σ3 = 20% and σ4 = 25%. The correlation
matrix is the following:

C =


1.00
0.70 1.00
0.10 0.10 1.00
−0.20 −0.20 −0.70 1.00


We assume that γ = 0.25 and the portfolio is fully invested. We impose that the target
portfolio x0 is equal to (40%, 30%, 20%, 10%). Figure 1 show the optimal weights with
respect to the penalization factor %2. We verify that the optimized portfolio converges
to the target portfolio when %2 increases. When there is no target portfolio, it converges
to the equally-weighted portfolio (see Figure 2). This result is due to the capital budget
constraint. Indeed, if we do not impose the constraint

∑n
i=1 xi = 1, the ridge portfolio

converges to the zero solution x? = 0. We also notice that the paths of weights are not
necessarily monotonous (increasing or decreasing). For instance, the weight of the second
asset decreases when %2 is small and increases when %2 is large.

We notice that the ridge regularization impacts entirely the covariance matrix. Indeed,
the shrinkage volatilities are equal to

√
σ2
i + %2 whereas the shrinkage correlation matrix is

defined by:

[C (%2)]i,j = ρi,j
σiσj√

(σ2
i + %2)

(
σ2
j + %2

)
It follows that lim%2→∞ C (%2) = In. Since the volatilities tend to∞, the ridge regularization
can be viewed as a shrinkage covariance method between the input covariance matrix Σ and
the identity matrix:

Σ (α) = αΣ + (1− α) In

Remark 5 A variant of the ridge regularization is to define Γ2 as a diagonal matrix. For
instance, if Γ2 = diag Σ, the regularized correlation matrix satisfies:

[C (%2)]i,j =
ρi,j

1 + %2

In Figure 3, we have reported the impact of the parameter %2 on the correlation values.
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Figure 1: Ridge regularization with a target portfolio
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Figure 2: Ridge regularization without a target portfolio

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-30

-15

0

15

30

45

60

23



Robust Asset Allocation for Robo-Advisors

Figure 3: Impact of the parameter % on the correlation (diagonal ridge regularization)
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3.4 Spectral filtering

Spectral filtering is a general approach based on the singular value decomposition (SVD) of
the matrix A1. Ridge regularization and denoising techniques can be seen as special cases
of the SVD method.

3.4.1 General filters

We consider the SVD decomposition of the matrix A1 by assuming that rankA1 = r:

A1 = USV >

where the matrices13 U ∈ Rn×r, V ∈ Rn×r, s = (s1, . . . , sr) ∈ Rr and S = diag (s) satisfy
U>U = V >V = Ir and sk > sk+1 > 0. The Moore-Penrose pseudo-inverse of A1 can be
defined as:

A†1 = V S−1U>

where S−1 = diag
(
s†
)
. Let us denote smax (A1) = s1 the largest singular value of A1.

As instability is raised by small eigenvalues, filtering can be applied to keep eigenvalues
away from 0. A filter G (s; %) = (G (s1; %) , . . . , G (sr; %)) is a vector-valued function, where
the kth entry G (sk; %) : ]0, smax (A)]→ R satisfies:

lim
%→0

G (sk; %) =
1

sk

for all % > 0 and sk ∈ ]0, smax (A)]. The parameter % controls the magnitude of the regular-

ization of A†1:

A†1 (%) = V diag (G (s; %))U>

13In the case of the empirical model, we have U ∈ RT×r.
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As a consequence, we verify the property of convergence:

lim
%→0

A†1 (%) = A†1

This method can be extended to regularize the matrix A>1 A1. On one hand, if A1 has

full rank, we can approximate Q = A>1 A1 by A>1

(
A†1 (%)

)−1

. On the other hand, a direct

computation leads to Q = A>1 A1 = V S2V >. Therefore, we can regularize Q = A>1 A1 by:

Q (%) = V diag
(
s2 (%)

)
V >

where s2 (%) is a vector that may be equal to G (s; %)
† � G (s; %)

†
, or G (s� s; %)

†
or G (s; %)

† �
s. Once again, we have the convergence property:

lim
%→0

Q (%) = A>1 A1

If we consider the problem:

x? = arg min
1

2
‖A1x− b1‖22

s.t. A2x = b2

the normal equations are: (
A>1 A1 A>2
A2 0

)(
x
λ

)
=

(
A>1 b1
b2

)
(12)

Spectral filtering is then equivalent to replacing the linear system (12) by the following set
of normal equations:(

V diag
(
s2 (%)

)
V > A>2

A2 0

)(
x
λ

)
=

(
U diag

(
G (s; %)

†
)
V >b1

b2

)
(13)

3.4.2 Application to Tikhonov regularization

To define the spectral regularization of the Tikhonov problem, the matrices A1 and Γ2 have
to be able to be factored in a coherent way:

A1 = US1V
>

and:

Γ2 = WS2V
>

Direct computations gives:

A>1 A1 + %2Γ>2 Γ2 = V
(
S2

1 + %2S
2
2

)
V >

We deduce that the kth entry of the spectral filter G (s1; %2) is defined by:

G (s1,k; %2) =
s1,k

s2
1,k + %2s2

2,k
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Using the previous notations, we have:

%2Γ>2 Γ2 = A>1 A1 + %2Γ>2 Γ2 −A>1 A1

= V diag
(
s2

1 (%2)
)
V > − V diag (s1 � s1)V >

= V diag
(
s2

1 (%2)− s2
1

)
V >

where s2
1 = s1� s1. In this case, the optimal portfolio x? is the x-coordinate of the solution

to the linear system:(
V diag

(
s2

1 (%2)
)
V > A>2

A2 0

)(
x
λ

)
=

(
A>1 b1 + V diag

(
s2

1 (%2)− s2
1

)
V >x0

b2

)
(14)

We notice that only the right singular vectors appear in Equation (14). Ridge regularization
can be viewed as particular filters14. More generally, when A1 and Γ2 have the same right
singular vectors, Tikhonov regularization can be stated in terms of a filter.

In Figure 4, we report the spectral filter of the ridge regularization. The spectral filtering
approach includes another popular method, which is the denoising method (Laloux et al.,
1999):

G (s1,k; %2) = 1 {|s1,k| > %2} · s†1,k
We notice that deleting singular values is equivalent to applying a hard thresholding method
while ridge regularization is a smoothing approach.

3.4.3 Improvement of the stability condition

The condition number κ (A) of the matrix A summarizes the level of difficulty when per-
forming the optimization in a stable way. More specifically, it measures how much an error
on the vector b changes the solution of the linear equation Ax = b. We have:

κ (A) =
∥∥A†∥∥ · ‖A‖

It follows that κ
(
A†
)

= κ (A), and we have the property κ (A) > 1. When κ (A) is low, the
problem is numerically stable and easy to solve. The closer to one, the better the stability.

With the L∞ norm, we obtain:

κ (A) =
maxk |sk|
mink |sk|

(15)

where the sk’s are the singular values of A. Using the filter G (s; %), we obtain:

κ
(
A† (%)

)
=

mink |G (sk; %)|
maxk |G (sk; %)|

(16)

For a fixed value of % > 0, all previous filters satisfy the two following properties:

1. G (sk; %) ∼ s−1
k for sk →∞;

2. G (sk; %) is bounded from above on [0,+∞).

As a consequence, if we compare Equations (15) and (16), the denominator is essentially
unchanged while the numerator is decreased15. Therefore, spectral filtering decreases the
condition number of A, because these techniques reduce the dispersion of singular values.

14For Γ2 = 0, we have G
(
s1,k; %2

)
= s†1,k. For Γ2 = In (ridge regularization), the kth entry of the spectral

filter G (s1; %2) is defined by:

G
(
s1,k; %2

)
=

s1,k

s21,k + %2

15From an unbounded function to a bounded function.
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Figure 4: Spectral filtering (ridge regularization and denoising method)
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3.5 Mixed penalties

The Euclidian regularization is natural because the L2 norm appears in Problem (3). Explicit
formulas are obtained, and can be implemented at once. Other regularization techniques
have been introduced to impose other constraints on the optimal solution x?. As the unit
ball for the L1 norm is not uniformly convex, sparse solutions may be obtained by penalizing
with L1 instead of L2.

3.5.1 Lp regularization

Instead of Tikhonov regularization, one may consider the Lp regularization:

x? = arg min
1

2
‖A1x− b1‖22 +

1

p
%p ‖Γp (x− x0)‖pp (17)

s.t. A2x = b2

where x0 ∈ Rn is a targeted portfolio and p > 0.

For p > 1, the function Γp (x) = ‖Γp (x− x0)‖pp is strictly convex and its gradient is

Lipschitz continuous. Indeed, the gradient is equal pΓ>p sign (Γp (x− x0))�|Γp (x− x0)|p−1
,

where the functions sign (x) and |x| are taken component wise. For p = 1, the function
Γ1 (x) is convex, lower semi-continuous but may not be differentiable at x = x0. An explicit
expression for its subgradient can be formulated in terms of proximal operators. For p ∈
]0, 1[, the function Γp (x) is not convex, and Problem (17) is not convex.

The penalties Lp for p > 1 are used for regularization, while the penalties Lp for p 6 1
are used for sparsity. The case p = 1 is the most interesting since it corresponds to the lasso
regression (Tibshirani, 1996). In this case, a large value of %1 associated with the constraint
1>x = 1 forces the optimal portfolio to have long-only positions (Brodie et al., 2009).
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Figure 5: Lasso regularization with a target portfolio
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Figure 6: Lasso regularization without a target portfolio
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We consider the example given on page 22. We use a L1 (or lasso) penalty with Γ1 = In.
Figure 5 show the optimal weights with respect to the penalization factor %1. Like in the ridge
approach, the optimized portfolio converges to the optimal portfolio when the parameter %
increases. When there is no target portfolio, we observe a divergence of the limit portfolio
between ridge and lasso approaches. While the ridge portfolio converges to the equally-
weighted portfolio, the lasso portfolio converges to the long-only mean-variance optimized
portfolio (Figure 6). If we compare Figures 1 and 5, we notice that the magnitude of the
regularization factor is not the same. We also observe that the paths are different. The
path is smoothed and continuous for the ridge approach, while it is more a piecewise linear
function for the lasso approach. We verify that the L1 penalty produces a sparse optimized
portfolio. This is obvious for the case where there is no target portfolio since weights may be
equal to zero. When there is a target portfolio, the sparsity concerns the bets between the
optimized portfolio x? and the target portfolio x0. In this case, relative (and not absolute)
weights are equal to zero. Another difference between the two approaches is that the lasso
method produces a monotonic path (decreasing or increasing) contrary to the ridge method.

3.5.2 L1 − L2 regularization

We can also consider a mixed penalty:

x? = arg min
1

2
‖A1x− b1‖22 + %p ‖Γp (x− x0)‖pp +

1

2
%2 ‖Γ2 (x− x0)‖22 (18)

s.t. A2x = b2

where p 6= 2. In the case p = 1, we obtain:

x? = arg min
1

2
‖A1x− b1‖22 + %1 ‖Γ1 (x− x0)‖1 +

1

2
%2 ‖Γ2 (x− x0)‖22 (19)

s.t. A2x = b2

This regularization is called elastic net (Hastie et al., 2009). This is the most common mixed
penalty used in portfolio optimization (Roncalli, 2013).

We consider again the example given on page 22. We use a lasso-ridge penalty with
Γ1 = Γ2 = In. Results are reported in Figures 7 and 8. We notice a large difference
concerning the convergence. Indeed, we recall that the lasso and ridge approaches converge
to the same portfolio when we impose a target portfolio, but to two different portfolios when
there is no target portfolio. When mixing the two norms, the limit portfolio is generally
the ridge portfolio, because of the magnitude of %1 and %2 in portfolio management (see
Appendix A.5 on page 54). This result is true because we have imposed Γ1 = Γ2 = In.

3.5.3 Solving the mixed penalty problem

Problems (18) and (19) are more complex to solve than a traditional quadratic programming
problem. In the case of the L1 − L2 regularization problem and if we assume that Γ1 is a
matrix with non-negative entries16, we can use a modified QP solver. The underlying idea
is to write Γ1 (x) in the following way:

Γ1 (x) = 1>Γ1δ
− + 1>Γ1δ

+

where δ− = max (0, x0 − x) and δ+ = max (0, x− x0). Therefore we obtain a standard
QP problem by augmenting the vector of unknown variables17. Thus, the optimization is

16Which is generally the case (Bruder et al., 2013; Roncalli, 2013).
17See Appendix A.6 on page 54 for a comprehensive presentation.
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Figure 7: Mixed regularization with a target portfolio
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Figure 8: Mixed regularization without a target portfolio
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performed with respect to y = (x, δ−, δ+) and no longer with respect to x. In the other
cases, when we consider an Lp penalty with p 6= 2 or when Γ1 is a matrix with some negative
entries, the general approach is to use the ADMM algorithm, which is described in Appendix
A.7 on page 55. For instance, Problem (19) can be written as:

{x?, z?} = arg min f (x) + g (z)

s.t. x− z = 0

where:

f (x) =
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 + 1Ω (x)

and:

g (z) = %1Γ1 (x)

= %1 ‖Γ1 (x− x0)‖1

where Ω = {x ∈ Rn : A2x = b2}. The interest of this choice is that the x-step includes
the constraint and can be explicitly computed18, while the z-step requires to compute the
proximal operator of the function Γ1 (x):

z(k+1) = arg min

{
g (z) +

ϕ

2

∥∥∥x(k+1) − z + u(k)
∥∥∥2

2

}
The update of the scaled dual variable is:

u(k+1) = u(k) +
(
x(k+1) − z(k+1)

)
The previous results can be extended when p 6= 1 and Ω is a set of more complex constraints.

Appendices A.7 and A.8 on pages 55–64 contain all the information for solving the
following optimization problem:

x? = arg min
1

2
‖A1x− b1‖22 + %p ‖Γp (x− x0)‖pp +

1

2
%2 ‖Γ2 (x− x0)‖22

s.t. x ∈ Ω

where Ω may be equality, inequality, bound and Lq norm constraints.

3.6 Optimal choice of the regularization factor

To choose the optimal regularization parameter, we first have to define an optimization
criterion. For instance, the optimal value of %1 or %2 is generally obtained by cross-validation
techniques. Exhaustive methods such as leave-p-out cross-validation (LpOCV) or leave-
one-out cross-validation (LOOCV) are computationally intensive. This is why it may be
better to use non-exhaustive methods such as k-fold cross-validation or out-of-sample testing.
However, in the case of the Tikhonov regularization, an explicit formula is known. Indeed,
the generalized cross-validation procedure for choosing %2 does not depend on the dual
variable or the constraints. In the case of the L1 penalty, no explicit formula is known and
the brute force algorithm must be used for finding the optimal value of %1.

18We have

x(k+1) = arg min

{
f (x) +

ϕ

2

∥∥∥x+ z(k)u(k)
∥∥∥2
2

}

31



Robust Asset Allocation for Robo-Advisors

3.6.1 Cross-validation and the PRESS statistic

Let us consider the data matrix X =
(
x>1 , . . . , x

>
T

)
∈ RT×K where xt ∈ RK , and a response

vector Y = (y1, . . . , yT ) ∈ RT where yt ∈ R. Since the Tikhonov regularization problem is
defined as follows:

β̂ = arg min
1

2
‖Y −Xβ‖22 +

1

2
%2 ‖Γ2β‖22

we have:
β̂ = S (%2)X>Y

where:
S (%2) =

(
X>X + %2Γ2Γ>2

)−1

It follows that β̂ is a function of %2. Therefore, the underlying idea is to find the optimal
value %̂2.

In order to accurately estimate the hyperparameters of the model and to avoid overfitting
problems, the cross-validation (CV) method comprises several steps:

1. the sample of data is partitioned into two sets, the training set and the test (or vali-
dation) set;

2. the model is fitted on the training set;

3. the model is tested on the validation set.

In order to reduce variability, steps 2 and 3 are performed using different partitions of
the data sample (step 1). The validation results are combined, according to a measure
of fit, to give an estimate of the model predictive performance. The hyperparameters are
then chosen in order to maximize this goodness-of-fit measure. Two types of CV may be
performed: exhaustive and non-exhaustive cross-validation. For the first type, the model is
estimated and tested on all possible ways to divide the original sample into training/test sets.
This type of CV consists of the leave-p-out cross validation (LpOCV). In this approach, p
observations are used in the test set and the remaining observations are used in the training
set19. This requires training and validating the model

(
T
p

)
times, which can be extremely

expensive if T is large, even for p = 1. Nevertheless, an explicit expression for the sum of
squares of the errors is known in the case of Tikhonov regression. This formula may lead
to O (T ) operations. For this reason, non-exhaustive cross-validation may be preferred in
practice, such as k-fold CV, holdout method, repeated random sub-sampling, jackknife, etc.
Performing k-fold CV is the most popular tool for model selection (Stone, 1974; Wahba,
1977; Stone, 1978).

In k-fold CV, the sample of data is randomly shuffled and split into k (almost) equally
sized groups, the model is fitted using all but the jth group of data, and the jth group of
data is used for the test set. We repeat the procedure k times, in such a way that each
group is tested exactly once. The k-fold cross validated error is generally computed as:

Ecv =
1

T

k∑
j=1

∑
t∈Gk

(
yt − x>t β (k)

)2
where t ∈ Gk denotes the observations of the kth group and β (k) the estimation of β obtained
by leaving out the kth group. Even in simple cases, it cannot be guaranteed that the function
Ecv has a unique minimum. The simple grid search approach is probably the best approach.

19The leave-one-out cross validation (LOOCV) procedure corresponds to the special case p = 1.
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The exhaustive Leave-one-out cross validation (LOOCV) is a particular case when k is equal
to the size of the dataset. The LOOCV is asymptotically equivalent to Akaike Information
Criterion (AIC), which is commonly used in statistics (Stone, 1977). Interestingly, For
Tikhonov regression, the cross validated error Ecv has an explicit expression known as the
Predicted Sum of Squares (or PRESS) statistic (Allen, 1971 & 1974).

We note Y−t and X−t the (T − 1) vector and (T − 1)×K matrix by leaving out the tth

observation to the vector Y and the matrix X. We have:

β̂−t =
(
X>−tXt + %2Γ2Γ>2

)−1
X>−tY−t

The explicit expression for the LOOCV procedure is20:

Press (%2) =

T∑
t=1

(
yt − x>t β̂−t

)2

=

T∑
t=1

(
1− x>t S (%2)xt

)−2
(
yt − x>t β̂

)2

=

T∑
t=1

(
[L (%2)Y ]t
[L (%2)]t,t

)2

where L (%2) is the projection matrix defined as:

L (%2) = IT −XS (%2)X>

= IT −X
(
X>X + %2Γ2Γ>2

)−1
X>

If S (%2) is a band matrix, which is the case for spline models, the coefficients [L (%2)]t,t
and [L (%2)Y ]t can be computed in O (T ) operations thanks to the Hutchinson-De Hoog
algorithm (Hutchinson and De Hoog, 1985).

3.6.2 GCV for centered data as the selection criterion

The generalized cross-validation (GCV) method is a rotation-invariant version of LOOCV
(Craven and Wahba, 1978). Even if it is not its main purpose, this approach replaces the
factor [L (%2)]t,t by the average value T−1 trace L (%2):

GCV (%2) =
T 2

trace2 L (%2)

T∑
t=1

(
yt − x>t β̂

)2

We deduce that the GCV criterion depends on L (%2) since the term T 2
∑T
t=1

(
yt − x>t β̂

)2

is constant. We recall that H (%2) = IT − L (%2) is the hat matrix. The value [H (%2)]t,t is
called the leverage value (Craven and Wahba, 1978) and determines the amount by which

the predicted value ŷt = x>t β̂ is influenced by yt. We also know that trace L (%2) = T −K.
From the Woodbury formula, we have21:

L (%2) = IT −X
(
X>X + %2Γ2Γ>2

)−1
X>

=
(
IT +X

(
%2Γ2Γ>2

)−1
X>
)−1

20Proof is given in Appendix A.9 on page 64.
21The Woodbury matrix identity is:

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1
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Let λt be the eigenvalues22 of the symmetric real matrix X
(
Γ2Γ>2

)−1
X>. We have:

trace L (%2) =

T∑
t=1

(
1 +

λt
%2

)−1

This formula allows the value of trace−2 L (%2) to be computed or every value of %2. As
GCV does not depend on the vector Y , it is suited for constrained portfolio optimization,
because it can be applied without taking into account the constraints (dual variable).

4 Application to robo-advisory

The previous techniques are of particular interest for portfolio optimization when building
a strategic asset allocation (SAA), a trend-following strategy or more generally a mean-
variance diversified portfolio. Depending on the approach, they can diversify or concentrate
the portfolio. By mixing the different approaches, we can also obtain a diversified allocation
on some selected stocks. In this case, portfolio regularization and portfolio sparsity are
combined. The previous techniques can also be used when implementing tactical asset
allocation (TAA). In this case, regularization and sparsity are imposed in a relative way
with respect to a benchmark or a current investment portfolio. In this section, we show
why these techniques are necessary when building a robo-advisor based on an automated
allocation engine.

4.1 Robo-advisory and the secret sauce of portfolio optimization

The idea that portfolio optimization is a simple mathematical problem is mistaken. It is a
process that requires manual interventions and may take considerable time before a solution
is found. And this human intervention has little in common with numerical algorithms.
Indeed, Quants know that the secret sauce of portfolio optimization lies in the alchemy of
defining the right constraints in order to obtain an acceptable solution that makes sense. Let
us consider the traditional strategic asset allocation exercise that is performed by institu-
tional investors almost every year. We assume that the SAA team has already produced the
two inputs: the vector µ of expected returns and the covariance Σ of asset returns. We could
think that the hard work has therefore been done, and that computing the SAA portfolio
will take a matter of seconds since we just have to run a Markowitz optimization. In reality,
solving one Markowitz optimization generally produces a bad solution and is not sufficient.
This is why Quants will use an iterative process based on this optimization program:

x?(k) = arg min
1

2
x>Σx− γx>µ (20)

s.t.

 1>x = 1
0 6 x 6 1
x ∈ Ω(k)

where Ω(0) = Rn and k is the step. They will begin by solving the traditional Markowitz
problem with long-only constraints and will find an initial solution x?(0). Then, they will
analyze this solution and define a new set of constraints Ω(1) that might produce a more
acceptable solution. The concept of “acceptable solution” remains unclear, but it means
one that can be accepted by the chief investment officer. Once Ω(1) is defined, Quants
will run the optimization problem (20) and obtain a new solution x?(1). Next, they will

22Computing the eigenvalues of X
(
Γ2Γ>2

)−1
X> can be done in O

(
T 3
)

operations.
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analyze this new solution and define a new set of constraints Ω(2) that might produce an
even more acceptable solution. They will iterate this process a number of times. Therefore,
this iterative process can be represented by the sequence P defined as follows:

P =
{
x?(0),Ω(1), x

?
(1),Ω(2), x

?
(2),Ω(3), x

?
(3), . . .

}
Using this tool, we can evaluate Quants and draw some conclusions:

• A good Quant is a person that is able to “close” this sequence in a limited number of
steps.

• A bad Quant is a person that produces an infinite sequence and is not able to end the
process.

• Quant Q1 is more efficient than Quant Q2 if:

cardP (Q1) < cardP (Q2)

Let us illustrate the previous process with an example23. We consider a universe of nine
asset classes: (1) US 10Y Bonds, (2) Euro 10Y Bonds, (3) Investment Grade Bonds, (4)
High Yield Bonds, (5) US Equities, (6) Euro Equities, (7) Japan Equities, (8) EM Equities
and (9) Commodities. In Tables 12 and 13, we indicate the statistics used to compute the
optimal allocation. The objective is to find the optimal allocation for an ex-ante volatility
of around 7%.

Table 12: Expected returns and risks (in %)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
µi 4.2 3.8 5.3 10.4 9.2 8.6 5.3 11.0 8.8
σi 5.0 5.0 7.0 10.0 15.0 15.0 15.0 18.0 30.0

Table 13: Correlation matrix of asset returns (in %)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1) 100
(2) 80 100
(3) 60 40 100
(4) −20 −20 50 100
(5) −10 −20 30 60 100
(6) −20 −10 20 60 90 100
(7) −20 −20 20 50 70 60 100
(8) −20 −20 30 60 70 70 70 100
(9) 0 0 10 20 20 20 30 30 100

Using these figures, we obtain an initial allocation x?(0) that is reported in Table24 14.
The optimal portfolio is invested in only four asset classes. The allocation in US 10Y Bonds
is 28%, while the allocation in High Yield Bonds is 70%. It is obvious that this portfolio

23This example is taken from Roncalli (2013) on page 287.
24The weights and the risk/return statistics are given in %.

35



Robust Asset Allocation for Robo-Advisors

cannot be a SAA policy. This is why the Quant will add some constraints in order to obtain
a better solution. We can impose that the weight of one asset class cannot exceed 25%.
Using this new set of constraints Ω(1), we obtain Portfolio x?(1) that is less concentrated than

Portfolio x?(0). The allocation in US 10Y Bonds and High Yield Bonds reaches the cap of 25%.

The portfolio is now invested in Euro 10Y Bonds (15.90%), US Equities (10.70%) and EM
Equities (21.27%). The drawback of this solution could be the allocation in equities, which
is too small. This is why the Quant will add another constraint in order to obtain an equity
allocation that is larger than 40%. At the third iteration, we then obtain Portfolio x?(3). If we
assume that the SAA exercise is complete for a European institutional investor, this solution
is not acceptable because it contains many US assets and too few European assets. This is
why the Quant will add two new constraints. He can require that the allocation in Euro
10Y Bonds is larger than the allocation in US 10Y Bonds, and that the allocation in Euro
Equities is larger than the allocation in US Equities. By using this new set of constraints
Ω(4), we obtain the following solution: the weight of US 10Y Bonds is 12.13%, the weight
of Euro 10Y Bonds is 22.13%, the weight of IG Bonds is 15.00%, etc. Again, this solution
may not be acceptable, because there is no allocation in Japanese equities. Therefore, the
Quant may impose that there is at least 5% invested in this asset class. After few additional
iterations, the solution is given by the last column in Table 14.

Table 14: The iterative trial-and-error solutions

Step k #0 #1 #2 #3 #4 · · · #K
US 10Y Bonds (1) 28.39 25.00 24.99 25.00 12.13 10.00

Euro 10Y Bonds (2) 0.00 15.90 18.60 16.50 22.13 30.00
IG Bonds (3) 0.00 0.00 0.00 4.86 15.00 10.00
HY Bonds (4) 69.64 25.00 16.41 10.00 10.00 5.00

US Equities (5) 0.00 10.70 20.86 25.00 10.00 10.00
Euro Equities (6) 0.00 0.00 3.16 5.00 20.00 20.00
Japan Equities (7) 0.00 0.00 0.00 0.00 0.00 5.00
EM Equities (8) 1.17 21.27 15.98 10.00 10.00 8.00
Commodities (9) 0.79 2.13 0.00 3.64 0.73 2.00

µ (x) 8.63 7.77 7.41 7.12 6.99 6.57
σ (x) 7.00 7.00 7.00 7.00 7.00 6.84

SR (x | r) 80.49 68.08 63.03 58.93 57.00 52.17

We notice that the previous iterative process P satisfies:

Ω(k+1) ⊂ Ω(k) ⊂ · · · ⊂ Ω(2) ⊂ Ω(1)

The underlying idea is to define an increasingly constrained investment universe. For in-
stance, we verify that the efficient frontiers are ordered and that they are more and more
constrained (see Figure 9).

Remark 6 Quants may use variants of Problem (20). When they are also in charge of pro-
ducing µ and Σ, they may also consider the iterative process with the following optimization
problem:

x?(k) = arg min
1

2
x>Σ(k)x− γx>µ(k)

In this case, the sequence P is defined as follows:

P =
{
x?(0),Ω(1),Σ(1), µ(1), x

?
(1),Ω(2),Σ(2), µ(2), x

?
(2), . . .

}
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Figure 9: How does the secret sauce of portfolio optimization work?
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It is obvious that the iterative process for defining the optimal portfolio conflicts with an
automated and algorithm-driven robo-advisor. First, this is not the intent of a robo-advisor,
unless we reduce the concept of robo-advisory to a digital application or a data-visualization
tool, meaning that allocation decisions are made outside the robo-advisor. Second, a robo-
advisor should be able to manage many portfolios on an industrial scale. If we consider the
traditional lifestyle approach based on three portfolios (defensive, balanced and dynamic),
which are rebalanced at the end of each month, it is obvious that the robo-advisor can
be manually loaded every month. Again, this approach does not correspond to the robo-
advisory concept. Indeed, robo-advisors claim that they better meet the expectations of
investors by taking into account their constraints and by being more granular. This is
particularly true with the emergence of goal-based investing in wealth management:

“While mass production has happened a long time ago in investment manage-
ment through the introduction of mutual funds and more recently exchange
traded funds, a new industrial revolution is currently under way, which involves
mass customization, a production and distribution technique that will allow in-
dividual investors to gain access to scalable and cost-efficient forms of goal-based
investing solutions” (Martellini, 2016, page 5).

Lastly, the iterative process does not help improve the portfolio management in a scientific
manner. Indeed, it is a blind-eye approach, because it is difficult to explain the performance
of the portfolio. We don’t know if it comes from the expected returns step (or the active
bets) or the portfolio optimization step. In robo-advisory, these two steps must be easily
identified and distinguished. Indeed, the portfolio optimization engine is part of the robo-
advisor while expected returns may be designed outside the robo-advisor. This is generally
the case because they can be imposed by the final investor himself, they can change from
one third-party distributor to another, some investors will want to introduce trend-following
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patterns, etc. Contrary to the optimization method, the engine of expected returns is
therefore not necessarily decided by the fintech that produces the robo-advisor. This is why
the two steps must be perfectly differentiated.

4.2 Formulation of the optimization problem

We note x̃ the reference portfolio25 and xt the current portfolio. The optimized portfolio
for the next period is the solution of this comprehensive optimization program:

x?t+1 = arg min f (x) + %̃1

∥∥∥Γ̃1 (x− x̃)
∥∥∥

1
+

1

2
%̃2

∥∥∥Γ̃2 (x− x̃)
∥∥∥2

2
+ (21)

+%1 ‖Γ1 (x− xt)‖1 +
1

2
%2 ‖Γ2 (x− xt)‖22

s.t.

 1>x = 1
0 6 x 6 1
x ∈ Ω

where Ω is a set of predetermined constraints. This problem considers both L1 and L2

penalty functions with respect to the reference portfolio and the current portfolio. Concern-
ing f (x), we can use the Markowitz function:

f (x) =
1

2
x>Σx− γx>µ

However, it is certainly better to consider the tracking-error function with respect to the
reference portfolio:

f (x) =
1

2
(x− x̃)

>
Σ (x− x̃)− γ (x− x̃)

>
µ

=
1

2
x>Σx− γx>

(
µ+

1

γ
Σx̃

)
+ C

where C is a constant that does not depend on the variable x.

The aims of Problem (21) are multiple:

1. The first objective is naturally to optimize the traditional risk/return trade-off.

2. The second objective is to control the active bets between the reference portfolio x̃
and the new optimized portfolio x?t+1 at various levels:

(a) The first layer is to target a tracking error by using the TE objective function in
place of the MVO objective function;

(b) The second layer is the L2 penalty %̃2

∥∥∥Γ̃2 (x− x̃)
∥∥∥2

2
that helps to smooth the

tactical allocation with respect to the strategic allocation. This layer implies
shrinking the covariance matrix Σ;

(c) The third layer is the L1 penalty %̃1

∥∥∥Γ̃1 (x− x̃)
∥∥∥

1
that helps to sparsify the

relative bets with respect to Portfolio x̃;

3. The third objective is to control the turnover (L1 penalty) and the quadratic costs (L2

penalty) with respect to the current portfolio xt.

25which is also called the strategic or the benchmark portfolio.
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With all these safeguards, we are equipped to perform stable and robust dynamic alloca-
tion for robo-advisors. However, three issues remain unsolved: the specification of expected
returns, the choice of the tracking error level and the calibration of the regularization pa-
rameters. The idea of the next section is not to give a solution or to publish our know-how
on these topics (Malongo et al., 2016). However, we will indicate the shortcomings to be
avoided.

4.3 Practical considerations

4.3.1 Incorporating active management views

In some cases, robo-advisors are closed systems, but most of the time, they are open sys-
tems. Often, the fintech that developed the robo-advisor technology enters into bilateral
agreements with third-party distributors (asset managers, private banks, wealth managers,
insurance companies, retail distributors, etc.). In this case, the robo-advisor platform is
adapted to take into account the distributor’s specific requirements, constraints and ob-
jectives. For instance, the robo-advisor platform may be plugged with the distributor’s
risk/return profiling system. The number of funds and the investment universe changes
from one distributor to another one. One of the big specific features is the engine that
produces expected returns. It is rare that the distributor uses the default engine provided
by the fintech. For instance, some investors will want to incorporate momentum patterns,
others prefer to use expected returns produced by their economic experts, etc.

In practice, it is extremely difficult to express bets in terms of absolute returns. Portfolio
managers prefer to use a rating scale S with different grades. The typical rating scale
contains 7 grades:

Grade Definition
−−− Strong bearish
−− Bearish
− Weak bearish
0 Neutral
+ Weak bullish

++ Bullish
+ + + Strong bullish

The challenge is then to transform these grades into expected returns. The most frequent
empirical approach is based on the Black-Litterman model, which is described in Appendix
B on page 65.

Given a strategic portfolio x̃, we compute the implied expected returns µ̃i of Asset i
thanks to the CAPM equation:

µ̃i = r + SR (x̃ | r)
(Σx̃)i√
x̃>Σx̃

(22)

We assume that the signal si on Asset i is homogeneous to a Sharpe ratio. In particular, we
have:

∆ SR i = δ
si
ns

where ns is the range index of the rating scale26 and δ is a scalar that indicates the flexibility
of active tactical management27. Then, we deduce that the expected return of the portfolio

26It is equal to:

ns =
−1 + cardS

2

27Typically, δ is set to one.
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manager is equal to:

µ̆i = (SR i + ∆ SR i) · σi
= µ̃i + δ

si
ns
σi

where SRi = (µ̃i − r) /σi is the implied Sharpe ratio of Asset i relative to the strategic
portfolio x̃ and σi is the estimated volatility of Asset i. The final step is to combine µ̃i and
µ̆i using the Black-Litterman framework:

µi =
τ

τ + 1
µ̃i +

(
1− τ

τ + 1

)
µ̆i

where τ is a parameter that measures the confidence into active bets. For instance, when
τ → ∞, the manager’s views are not taken into account, while the conditional expected
returns tends to manager’s views when τ → 0.

Table 15: Covariance matrix of asset classes (Jan. 2016 – Dec. 2016)

Volatility (in %)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
9.2 7.0 9.4 7.6 10.1 7.6 16.1 20.5 24.3 17.8

Correlation matrix (in %)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) 100.0
(2) 17.7 100.0
(3) 98.1 19.4 100.0
(4) 16.5 99.5 18.1 100.0
(5) 71.1 2.4 76.3 2.1 100.0
(6) 85.9 12.7 87.6 11.8 89.1 100.0
(7) 34.5 0.7 38.1 1.3 68.8 57.8 100.0
(8) -13.2 2.8 -4.0 3.6 41.0 18.2 59.5 100.0
(9) 20.3 2.0 27.6 0.8 21.6 25.3 8.0 15.6 100.0
(10) 16.6 10.2 26.0 10.5 57.2 44.6 54.3 67.7 42.9 100.0

We consider an example with 10 asset classes: (1) US Sovereign Bonds, (2) Euro
Sovereign Bonds, (3) US Investment Grade Bonds, (4) EMU Investment Grade Bonds, (5)
US High Yield Bonds, (6) EM Bonds, (7) US Equities, (8) Europe Equities, (9) Japan Eq-
uities and (10) EM Equities. In Table 15, we report the estimated covariance matrix for the
period January 2016 – December 2016. We consider an equally-weighted portfolio x̃, which
corresponds to a 40/60 strategic allocation. By assuming that r = 0 and SR (x̃ | r) = 0.5, we
calculate the vector of implied expected returns using Equation (22). The results are given
in the second column in Table 16. For instance, the implied expected return of US Sovereign
bonds is equal to 2.57%. We now consider a set of manager’s views. The first scenario #1
corresponds to a weak bearish scenario on equity markets. Therefore, the grades are set to
− for the four equity asset classes and + for the two sovereign bond asset classes. In Table
16, we calculate28 the expected returns µ̆ implied by these views, and the final expected
returns µ. For instance, µ̆i and µi are equal to 5.46% and 4.10% for US Sovereign bonds.
We verify that expected returns are increased for sovereign bonds, decreased for equities
and neutral for the other asset classes.
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Table 16: Expected returns in % (scenario #1)

Asset class µ̃i si µ̆i µi
US Sov. Bonds 2.57 + 5.64 4.10
Euro Sov. Bonds 0.96 + 3.29 2.12
US IG Bonds 3.02 0 3.02 3.02
EMU IG Bonds 1.02 0 1.02 1.02
US HY Bonds 4.09 0 4.09 4.09
EM Bonds 2.88 0 2.88 2.88
US Equities 5.76 − 0.40 3.08
Europe Equities 6.35 − −0.48 2.94
Japan Equities 6.76 − −1.34 2.71
EM Equities 7.18 − 1.24 4.21

Table 17: Scenario #2

Asset class µ̃i si µ̆i µi
US Sov. Bonds 2.57 0 2.57 2.57
Euro Sov. Bonds 0.96 0 0.96 0.96
US IG Bonds 3.02 0 3.02 3.02
EMU IG Bonds 1.02 0 1.02 1.02
US HY Bonds 4.09 0 4.09 4.09
EM Bonds 2.88 0 2.88 2.88
US Equities 5.76 + 11.13 8.45
Europe Equities 6.35 + + + 26.85 16.60
Japan Equities 6.76 + 14.86 10.81
EM Equities 7.18 + 13.11 10.14

Table 18: Scenario #3

Asset class µ̃i si µ̆i µi
US Sov. Bonds 2.57 0 2.57 2.57
Euro Sov. Bonds 0.96 0 0.96 0.96
US IG Bonds 3.02 0 3.02 3.02
EMU IG Bonds 1.02 0 1.02 1.02
US HY Bonds 4.09 0 4.09 4.09
EM Bonds 2.88 −−− −4.72 −2.18
US Equities 5.76 0 5.76 5.76
Europe Equities 6.35 0 6.35 6.35
Japan Equities 6.76 0 6.76 6.76
EM Equities 7.18 −−− −10.62 −4.69
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We consider a second scenario that is more favorable to stock markets, in particular
European stocks (see Table 17). By construction, the implied expected returns do not
change because we consider the same strategic allocation. However, the expected returns
µ̆i and µi are different because we have changed the scenario. Finally, we consider a third
scenario in Table 18, which is an adverse scenario on emerging markets29.

4.3.2 Choosing the right tracking error level

Volatility target strategies are very popular among Quants (Hallerbach, 2012; Hocquard et
al., 2013). This explains why many robo-advisors are based on volatility or tracking error
targeting. As said previously, we prefer TE objective function to MVO objective function.
In this case, there is no constraint on the portfolio volatility, which is related to the volatility
σ (x̃) of the reference portfolio. However, the question of the TE level remains open. We
provide some methods to set the right level of tracking error.

Let x and x̃ be the tactical and strategic portfolios. We have:

σ2 (x | x̃) = σ2 (Rt (x)−Rt (x̃))

= σ2 (x) + σ2 (x̃)− 2ρ (x, x̃)σ (x)σ (x̃)

where ρ (x, x̃) is the correlation between the portfolio x and the benchmark x̃. Generally,
we have σ (x) ≈ σ (x̃), implying that:

σ (x | x̃) =
√

2 (1− ρ (x, x̃)) · σ (x̃) (23)

In Figure 10, we have reported the relationship between the volatility of the strategic portfo-
lio and the tracking error of the portfolio. We notice that it depends on the correlation level.
It follows that if the strategic portfolio’s volatility is low (less than 5%), we cannot target
a high level of tracking error volatility. A level of 1% is certainly the maximum. When the
volatility is moderate between 5% and 10%, we can target a value between 1% and 2%. We
can achieve a higher tracking error only if the portfolio’s volatility is high.

The previous result is of major importance, because it states that the tracking error
level of the tactical portfolio must be related to the volatility of the strategic portfolio. In
practice, the volatility is time-varying, implying that using a constant tracking error strategy
is not optimal.

There is a second reason to consider a time-varying tracking error level, because another
issue concerns the relationship between the tracking error and the active bets. We can show
that (Grinold, 1994):

µ (x | x̃) = σ (x | x̃) · TC · IC ·
√
n

where TC is the transfer coefficient, IC is the information coefficient and n is the number
of assets. This relationship is known as “the fundamental law of active management”. If
we assume that TC and IC are constant for a given active manager and a given portfolio, it
follows that the excess return is proportional to the tracking error volatility:

µ (x | x̃) ∝ σ (x | x̃)

However, alpha generation is also linked to the number and strength of active bets:

µ (x | x̃) = gµ (s1, . . . , sn)

28We assume that δ = 1 and τ = 1.
29τ is set to 0.5 in order to reflect stronger confidence in this scenario.
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Figure 10: Relationship between volatility and tracking error levels

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

We deduce that the tracking error must be a function of the scores si:

σ (x | x̃) = gσ (s1, . . . , sn) (24)

This relationship is essential when considering tactical allocation. Indeed, if all the scores
are equal to zero, there is no active bet, implying that we must target a zero tracking error
level. If all the scores are equal, we are in the same situation. Indeed, since we are bullish
in all the asset classes, there is no reason to deviate from the strategic portfolio. In order
to take a high tracking error risk, we need the bets to present a high dispersion:

si #1 #2 #3 #4
s1 0 ++ + + + +
s2 0 ++ − + + +
s3 0 ++ + −−−
s4 0 ++ + −−−

σ (x | x̃) zero zero moderate high

Since the function gµ is unknown and difficult to estimate, the function gσ is also unknown.
However, we may use the following rule of thumb:

σ (x | x̃) ≈ c ·
(
σ (s) + mad (s)

2

)
· σ+ (25)

where σ (s) is the standard deviation of scores, mad (s) is the mean absolute difference of
scores, and σ+ is the maximum tracking error. The value of σ+ may be deduced from the
relationship (23). By construction, we have:

0 ≤
(
σ (s) + mad (s)

2

)
≤ 3.6213
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and:

0 ≤ lim
n→∞

(
σ (s) + mad (s)

2

)
≤ 3

where n is the number of assets. It follows that the scaling factor c is approximatively equal

to
1

3
.

Equation (25) is a preliminary approach to set the level of tracking error. Nevertheless,
this rule of thumb has a major drawback. It does not depend on the asset classes and their
scores. Let us consider the previous example described on page 40. We assume that the
signals are respectively +, 0, +, 0, +, 0, 0, +, 0 and +. In Figure 11, we report the tactical
allocation when we target a tracking error level. For Europe Equities, we have a signal equal
to +, and we verify that the allocation is increasing with respect to the tracking error. For
US Sovereign and IG Bonds, we also have a signal equal to +, but the relationship between
the allocation and the tracking error is not monotonically increasing. The case of US IG
Bonds will be easily solved once we consider Problem (21) instead of a simple tracking
error optimization. The case of US Sovereign Bonds is more problematic. Indeed, in an
initial period when the tracking error is low, the relationship is increasing. However, when
the tracking error increases too much, we obtain the opposite result. The reason is that
the volatility of US Sovereign Bonds is low compared to the other asset classes (equities,
investment grade and high yield). If we increase the tracking error, there is a threshold
beyond which it is better to play only active bets on the most risky assets. Indeed, playing
active bets on low risk assets does not give rise to a high tracking error budget. This is why
the optimizer switches from low-risk assets to high-risk assets. This means that the choice
of a tracking error level depends on the set of parameters: the maximum tracking error that
depends on the strategic portfolio, the scores or active bets and the volatility of the assets
that compose the tactical portfolio.

Figure 11: Relationship between active bets and tracking errors
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Figure 12: Impact of the ridge parameter on the shrinkage correlation
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4.3.3 Calibrating the regularization parameters

As said previously, the choice of the regularization parameters is not straightforward and
requires a solid expertise and experience. However, we will provide some tips that can help
to calibrate the model30. The first thing to notice concerns the magnitude of %1 and %2. On
page 22, we have seen that if Γ̃2 = diag Σ, the regularized correlations are:

ρ̃i,j =
ρi,j

1 + %̃2

In Figure 12, we have reported the relationship between the initial correlation ρi,j and
the shrinkage correlation ρ̃i,j . When %̃2 is equal to zero, ρ̃i,j = ρi,j . When %̃2 → ∞, the
shrinkage correlation tends to zero. We then obtain a diagonal matrix with equal volatilities.
Therefore, there is a trade-off between considering the initial covariance matrix and ignoring
the dependence between assets. A good way to choose %̃2 is to reduce the impact of arbitrage
factors while keeping the significance of common risk factors. If we now consider the L1

penalty %1 ‖Γ1 (x− xt)‖1 and if we set Γ1 = In, the L1 norm measures the portfolio’s two-
way turnover:

‖(x− xt)‖1 =

n∑
i=1

|xi − xi,t|

The parameter %1 may then be used to control the turnover. If Γ1 is a matrix with non-
negative entries that contains the unit transaction costs, the L1 norm measures the portfolio’s
transaction cost (Scherer, 2007). This means that %1 is the average transaction cost if Γ1

is the identity matrix. It follows that the order of magnitude of %̃2 is not comparable to
the order of magnitude of %1. In the first case, it is expressed as a percentage (for instance,

30We can also implement cross-validation methods presented in Section 3.6 on page 31
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%̃2 = 25%) whereas in the lasso problem it is expressed in basis points (for instance, %1 = 5
bps). This is in line with the practice that shows that optimal values of L2 regularization are
higher than those of L1 regularization. The second thing to notice concerns the specification
of regularization matrices Γ1, Γ̃1, Γ2 and Γ̃2. Most of the time, they correspond to diagonal
matrices, because it is not easy to consider the cross effects of regularization. The simplest
way is to consider identity matrices, meaning that the regularization patterns reduce to
ridge and lasso approaches. If we use the same parameters %1 = %̃1 and %2 = %̃2, it is
equivalent to considering that the two portfolios plays a symmetric role. However, this is
not the case. Portfolio xt is used in order to limit the turnover and to smooth the dynamic
allocation. Portfolio x̃ is used in order to control the relative active bets. This is why x̃
is more important than xt for implementing the active management. Last but not least,
the calibration of the parameters highly depends on the investment profile. If the fund
is composed of equities, we need to use more aggressive parameters in order to be more
active than with a multi-asset fund. This means that there is no magic formula, and the
calibration stage requires much empirical research and many tests in order to understand
the interconnectedness between the different terms of the portfolio optimization problem.

5 Conclusion

According to Fisch et al. (2017), robo-advisors are “computer algorithms that provide advice
on investment portfolios and then manage those portfolios”. Since they are digital-based
tools that are generally implemented as web online services, fintechs compete in order to
offer better customization, data visualization, analytics, process automation, etc. And the
concepts of artificial intelligence, big data and machine learning are never far away when
we see the presentation of a robo-advisor. Most of the time, fintechs prefer to insist on the
application’s ergonomics and functionalities, and give little insight into the robo-advisor’s
raison d’être: an automated portfolio allocation engine.

One of the reasons may be that portfolio allocation is more human-based than computer-
based. It is true that automation in portfolio optimization is a big issue. Indeed, portfolio
optimization is a hard task and does not always produce the desired results. This is because
the mathematical problem is not necessarily well defined when we would like to obtain a
smooth, sparse, active and dynamic allocation.

In this article, we come back to the traditional mean-variance optimization, and identify
the reason for the issues. We have shown that it primarily corresponds to an alpha opti-
mizer, and not to a beta optimizer. Then we have presented the theory of regularization
and sparsity, and have demonstrated how it improves portfolio optimization. Finally, this
approach is applied for building automated robo-advisory.
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A Mathematical results

A.1 Notations

We use the following notations:

• 1Ω (x) is the convex indicator function of Ω: 1Ω (x) = 0 for x ∈ Ω and 1Ω (x) = +∞
for x /∈ Ω.

• A† is the Moore-Penrose pseudo-inverse matrix of A; in the scalar case, we have 0† = 0
and a† = a−1 if a 6= 0.

• C = (ρi,j) denotes the correlation matrix with entries ρi,j .

• Cn (ρ) is the constant correlation matrix of dimension n, whose uniform correlation is
ρ.

• µ is the vector of expected return.

• Σ is the covariance matrix.

• ‖x‖p = (
∑n
i=1 |xi|

p
)
1/p

is the Lp norm.

• ‖x‖A =
(
x>Ax

)1/2
is the weighted L2 norm.

• [M ]i,j is the (i, j) entry of the matrix M .

• x� y is the Hadamard element-wise product: [x� y]i,j = [x]i,j [y]i,j .

• PΩ (x) is the projection of x on the set Ω:

PΩ (x) = arg miny∈Ω
1

2
‖y − x‖22

• proxf (v) is the proximal operator of f (x):

proxf (v) = arg minx

{
f (x) +

1

2
‖x− v‖22

}

A.2 Matrix form of the estimators µ̂ and Σ̂

Since we have µ̂ =
∑T
t=1 wtRt, it follows that µ̂ = R>w where w = (w1, . . . , wT ) ∈ RT

and R = (R1, . . . , RT ) ∈ RT×n. By noting Dw = diag (w), the expression of the covariance
matrix becomes:

Σ̂ =

T∑
t=1

wtRtR
>
t − µ̂µ̂>

=

T∑
t=1

wtRtR
>
t −

(
T∑
t=1

wtRt

)(
T∑
t=1

wtRt

)>
= R>DwR−R>w

(
R>w

)>
= R>

(
Dw − ww>

)
R
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An alternative form is:

Σ̂ =

T∑
t=1

wt (Rt − µ̂) (Rt − µ̂)
>

=
(
R− 1µ̂>

)>
Dw

(
R− 1µ̂>

)
=

(
R− 1w>R

)>
Dw

(
R− 1w>R

)
= R>

(
C>T DwCT

)
R

where CT = IT − 1w> is the (weighted) centering matrix31. In the case of uniform weights

wt = 1/T , CT is equal to IT −
1

T
11>. We observe that it is symmetric and idempotent. We

deduce that Σ̂ =
1

T
R>CTR.

A.3 Relationship between the conditional normal distribution and
the linear regression

Let us consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx
µy

)
,

(
Σxx Σxy
Σyx Σyy

))
The conditional distribution of Y given X = x is a multivariate normal distribution:

Y | X = x ∼ N
(
µy|x,Σyy|x

)
where:

µy|x = E [Y | X = x] = µy + ΣyxΣ−1
xx (x− µx)

and:
Σyy|x = σ2 [Y | X = x] = Σyy − ΣyxΣ−1

xxΣxy

It follows that Y = µy|x +U where U is a centered Gaussian random variable with variance
s2 = Σyy|x.We recognize the linear regression of Y on X:

Y = µy + ΣyxΣ−1
xx (x− µx) + U

=
(
µy − ΣyxΣ−1

xxµx
)

+ ΣyxΣ−1
xxx+ U

= α+ β>x+ U

where α = µy − ΣyxΣ−1
xxµx and β = ΣyxΣ−1

xx . Moreover, we have:

R2 = 1− var (U)

var (Y )

= 1− s2

Σyy

=
ΣyxΣ−1

xxΣxy
Σyy

31We verify that:

C>T DwCT =
(
IT − 1w>

)>
Dw

(
IT − 1w>

)
= Dw − w1>Dw −Dw1w> + w1>Dw1w

>

= Dw − ww>

because Dw1 = w and 1>Dw1 = 1.
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Remark 7 In the case where the correlation matrix of the random vector (X,Y ) is constant
– C = Cn+1 (ρ), Maillard et al. (2010) proved that:

C−1
xx =

ρ11> − ((n− 1) ρ+ 1) In
(n− 1) ρ2 − (n− 2) ρ− 1

We deduce that:

β = Σ−1
xxΣxy

=

(
σx
σy

)
� C−1

xx Cx,y

=

(
σx
σy

)
�
(
ρ11> − ((n− 1) ρ+ 1) In
(n− 1) ρ2 − (n− 2) ρ− 1

)
ρ1

and:

βi =
ρ (ρ− 1)

(n− 1) ρ2 − (n− 2) ρ− 1
· σy
σxi

where σy and σx are the standard deviation of random vectors Y and X. The coefficient of
determination becomes:

R2 =
ΣyxΣ−1

xxΣxy
Σyy

=
nρ2

nρ− (ρ− 1)

In the two-asset case, we obtain the famous result: R2 = ρ2. When the number of assets is
very large, the coefficient of determination is equal to the uniform correlation:

lim
n→∞

R2 =

{
1 if ρ < 0
ρ if ρ > 0

A.4 Tikhonov regularization

We consider the following optimization problem:

x? = arg min
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 (26)

s.t. A2x = b2

where A1 ∈ RT×n, b1 ∈ RT×1, %2 > 0, Γ ∈ Rn×n, A2 ∈ Rm×n, b2 ∈ Rm×1 and d ∈ Rm×1.
We assume that A1 has full rank. The Tikhonov matrix Γ2 forces desirable properties of the
solution whereas %2 indicates the strength of the regularization. x0 is an initial solution. In
the case of portfolio optimization, it could be an heuristic portfolio (like the EW portfolio)
or the current allocation in order to control the turnover (Scherer, 2007). The Lagrange
function is equal to:

L (x, λ) =
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 + λ> (A2x− b2)

Computation of the gradient leads to:

∂x L (x, λ) = A>1 (A1x− b1) + %2Γ>2 Γ2 (x− x0) +A>2 λ
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Since we have ∂x L (x, λ) = 0 and A2x = b2, the optimal portfolio x? is the x-coordinate
solution of the linear system:(

A>1 A1 + %2Γ>2 Γ2 A>2
A2 0

)(
x
λ

)
=

(
A>1 b1 + %2Γ>2 Γ2x0

b2

)
(27)

This linear system gives the primal and dual variables.

A.5 Limit solutions of Lp - L2 regularization

As %p is fixed and %2 tends to +∞, the formal limit to Problem (18) is given by:

x? = arg min ‖Γ2 (x− x0)‖22 s.t. A2x = b2

As %2 is fixed and %p tends to +∞, the formal limit to Problem (18) is given by:

x? = arg min ‖Γp (x− x0)‖pp s.t. A2x = b2

If %p and %2 both tend to +∞, the formal limit to Problem (18) depends on the regime
%p/%2.

A.6 Augmented QP algorithm

A quadratic programming (QP) problem is an optimization problem with a quadratic ob-
jective function and linear constraints:

x? = arg min
1

2
x>A1x− x>b1 (28)

s.t. A3x > b3

With the inequality constraints, we can easily manage equality constraints and bounds32. If
we introduce a L2 penalization, the optimization program becomes:

(∗) =
1

2
x>A1x− x>b1 +

1

2
%2 ‖Γ2 (x− x0)‖22

=
1

2
x>A1x− x>b1 +

1

2
%2x
>Γ2x− %2x

>Γ2x0 +
1

2
%2x
>
0 Γ2x0

We deduce that the regularization program can be cast into a QP problem:

x? = arg min
1

2
x>A1 (%2)x− x>b1 (%2) (29)

s.t. A3x > b3

where A1 (%2) = A1 + %2Γ2 and b1 (%2) = b1 + %2Γ2x0.

Let us now introduce an L1 penalization. We have:

x? = arg min f (x)

s.t. A3x > b3

where:

f (x) =
1

2
x>A1x− x>b1 + %1 ‖Γ1 (x− x0)‖1

32An equality constraint A2x = b2 is equivalent to two inequality constraints A2x > b2 and A2x 6 b2.
The same result applies to bounds x− 6 x 6 x+, which can be written as x > x− and −x > −x+.
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and Γ1 is a matrix with non-negative entries. If we use a decomposition of the following
form:

x = x0 + δ+ − δ− (30)

with δ− =
(
δ−1 , . . . , δ

−
n

)
, δ+ =

(
δ+
1 , . . . , δ

+
n

)
, δ−i > 0 and δ+

i > 0, we deduce that:

‖Γ1 (x− x0)‖1 =
∥∥Γ1

(
δ+ − δ−

)∥∥
1

= 1>
(
Γ1

(
δ+ + δ−

))
The objective function becomes:

f (x) =
1

2
x>A1x− x>b1 + 1>Γ1δ

+ + 1>Γ1δ
−

Let y = (x, δ−, δ+) be the vector of unknown variables. We obtain an augmented QP
problem of dimension 3× n:

y? = arg min
1

2
y>Ã1y − y>b̃1 (31)

s.t. Ã3y > b̃3

where:

Ã1 =

 A1 0 0
0 0 0
0 0 0


and:

b̃1 =

 b1
−Γ>1 1
−Γ>1 1


We can write Equation (30) as follows:

Inx+ Inδ
− − Inδ+ = x0

Since we have δ+ > 0 and δ− > 0, we deduce that:

Ã3 =


A3 0 0
In In −In
−In −In In

0 In 0
0 0 In


and:

b̃3 =


b3
x0

−x0

0
0


A.7 ADMM algorithm

A.7.1 Dual ascent principle and method of multipliers

The alternating direction method of multipliers (ADMM) is an algorithm introduced by
Gabay and Mercier (1976) to solve problems which can be expressed as33:

{x?, z?} = arg min f (x) + g (z) (32)

s.t. Ax+Bz = c
33We follow the standard presentation of Boyd et al. (2011) on ADMM.
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where A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and the functions f : Rn → R ∪ {+∞} and g : Rm →
R ∪ {+∞} are proper closed convex functions. The expression of the augmented Lagrange
function is:

Lϕ (x, z, λ) = f (x) + g (z) + λ> (Ax+Bz − c) +
ϕ

2
‖Ax+Bz − c‖22

where ϕ > 0. The ADMM algorithm uses the property that the objective function is
separable, and consists of the following iterations:

x(k+1) = arg minLϕ
(
x, z(k), λ(k)

)
= arg min

{
f (x) + λ(k)>

(
Ax+Bz(k) − c

)
+
ϕ

2

∥∥∥Ax+Bz(k) − c
∥∥∥2

2

}
and:

z(k+1) = arg minLϕ
(
x(k+1), z, λ(k)

)
= arg min

{
g (z) + λ(k)>

(
Ax(k+1) +Bz − c

)
+
ϕ

2

∥∥∥Ax(k+1) +Bz − c
∥∥∥2

2

}
The update for the dual variable λ is then:

λ(k+1) = λ(k) + ϕ
(
Ax(k+1) +Bz(k+1) − c

)
We repeat the iterations until convergence.

Boyd et al. (2011) notice that the previous algorithm can be simplified. Let r = Ax +
Bz − c be the (primal) residual. By combining linear and quadratic terms, we have:

λ>r +
ϕ

2
r2 =

ϕ

2
‖r + u‖2 − ϕ

2
‖u‖2

where u = ϕ−1λ is the scaled dual variable. We can then write the Lagrange function (32)
as follows:

Lϕ (x, z, u) = f (x) + g (z) +
ϕ

2
‖Ax+Bz − c+ u‖22 −

1

2ϕ
‖λ‖2 (33)

Since the last term is a constant, we deduce that the x- and z-updates become:

x(k+1) = arg minLϕ
(
x, z(k), u(k)

)
= arg min

{
f (x) +

ϕ

2

∥∥∥Ax+Bz(k) − c+ u(k)
∥∥∥2

2

}
(34)

and:

z(k+1) = arg minLϕ
(
x(k+1), z, u(k)

)
= arg min

{
g (z) +

ϕ

2

∥∥∥Ax(k+1) +Bz − c+ u(k)
∥∥∥2

2

}
(35)

For the scaled dual variable u(k), we have:

u(k+1) = u(k) + r(k+1)

= u(k) +
(
Ax(k+1) +Bz(k+1) − c

)
(36)
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where r(k+1) = Ax(k+1) + Bz(k+1) − c is the primal residual at iteration k + 1. Boyd et al.
(2011) also defined the variable s(k+1) = ϕA>B

(
z(k+1) − z(k)

)
and refer to s(k+1) as the

dual residual34 at iteration k + 1.

This algorithm benefits from the dual ascent principle and the method of multipliers.
The difference with the latter is that the x and z-updates are performed in an alternating
way. Therefore, it is more flexible because the updates are equivalent to compute proximal
operators for f and g, independently.

A.7.2 Convergence and stopping criteria

Under the assumption that the traditional Lagrange function L0 has a saddle point, one
can prove that the residual r(k) converges to zero, the objective function f

(
x(k)

)
+ g

(
z(k)

)
to the optimal value f (x?) + g (z?) , and the dual variable λ(k) to a dual optimal point.
However, the rate of convergence is not known and the primal variables x(k) and z(k) do
not necessarily converge to the optimal values x? and z?. Nevertheless, in the context of
Markowitz optimization with bound constraints, the results found by Raghunathan and Di
Cairano (2014) may be applied to obtain linear convergence for the primal variables.

In general, the stopping criterion is defined with respect to the residuals:{ ∥∥r(k)
∥∥

2
6 ε∥∥s(k)

∥∥
2
6 ε′

where r(k) = Ax(k) + Bz(k) − c and s(k) = ϕA>B
(
z(k) − z(k−1)

)
. Typical values when

implementing this stopping criterion are ε = ε′ = 10−18.

A.7.3 Penalization parameter and initialization

The convergence result holds regardless of the choice of the penalization parameter ϕ > 0.
But the choice of ϕ affects the speed of convergence (Ghadimi et al., 2015; Giselsson and
Boyd, 2017). In practice, the penalization parameter ϕ may be changed at each iteration,
implying that ϕ is replaced by ϕ(k) and the scaled dual variable uk is equal to λ(k)/ϕ(k).
This may improve the convergence and make the performance independent of the initial
choice ϕ(0). To update ϕ(k) in practice, He et al. (2000) and Wang and Liao (2001) provide
a simple and efficient scheme. On the one hand, the x and z-updates in ADMM essentially

comes from placing a penalty on
∥∥r(k)

∥∥2

2
. As a consequence, if ϕ(k) is large,

∥∥r(k)
∥∥2

2
tends to

be small. On the other hand, s(k) depends linearly on ϕ. As a consequence, if ϕ(k) is small,∥∥s(k)
∥∥2

2
is small (and

∥∥r(k)
∥∥2

2
may be large). To keep

∥∥r(k)
∥∥2

2
and

∥∥s(k)
∥∥2

2
within a factor µ,

one may consider:

ϕ(k+1) =


τϕ(k) if

∥∥r(k)
∥∥2

2
> µ

∥∥s(k)
∥∥2

2

ϕ(k)/τ ′ if
∥∥s(k)

∥∥2

2
> µ

∥∥r(k)
∥∥2

2

ϕ(k) otherwise

where µ, τ and τ ′ are parameters that are greater than one. In practice, we use ϕ(0) = 1,
u(0) = 0, µ = 103 and τ = τ ′ = 2.

34We can interpret s(k+1) as the residual of the dual feasibility conditions: 0 ∈ ∂f (x?) + A>λ? and
0 ∈ ∂g (z?) +B>λ? (Boyd et al., 2011).
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A.7.4 Tikhonov regularization

Let us consider the Tikhonov problem:

x? = arg min
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 (37)

s.t.


‖x‖q 6 cq
A2x = b2
A3x 6 b3
x− 6 x 6 x+

where q ∈ [1,∞). We note:

Ω1 =
{
x ∈ Rn : ‖x‖q 6 cq

}
Ω2 = {x ∈ Rn : A2x = b2}
Ω3 = {x ∈ Rn : A3x > b3}
Ω4 =

{
x ∈ Rn : x− 6 x 6 x+

}
We define:

f (x) =
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 + 1Ω2 (x)

and:

g (x) = 1Ω1 (x) + 1Ω3 (x) + 1Ω4 (x)

The Tikhonov problem becomes:

{x?, z?} = arg min f (x) + g (z)

s.t. x− z = 0

Therefore, the ADMM algorithm is:

x(k+1) = arg min

{
f (x) +

ϕ(k)

2

∥∥∥x− z(k) + u(k)
∥∥∥2

2

}
z(k+1) = arg min

{
g (z) +

ϕ(k)

2

∥∥∥x(k+1) − z + u(k)
∥∥∥2

2

}
u(k+1) = u(k) +

(
x(k+1) − z(k+1)

)
We notice that we can replace the second step by:

z(k+1) = P{g(z)<∞}
(
x(k+1) + u(k)

)
where P{g(z)<∞}

(
x(k+1) + u(k)

)
is the orthogonal projection of x(k+1) +u(k) onto the convex

set {z ∈ Rn : g (z) <∞}.With this formulation, the x-step is explicit35, while the z-step con-
sists in computing orthogonal projections onto a convex set. Explicit formulas for orthogonal
projections are presented in Appendix A.8 on page 60.

35The x-step is also given by:(
A>1 A1 + %2Γ>2 Γ2 + ϕ(k)In A>2

A2 0

)(
x(k+1)

λ

)
=

(
A>1 b1 + %2Γ>2 Γ2x0 + ϕ(k)

(
z(k) − u(k)

)
b2

)
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A.7.5 Mixed regularization

We now replace the objective function of the Tikhonov problem by:

x? = arg min
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 +

1

p
%p ‖Γp (x− x0)‖pp (38)

where p 6= 2. The constraints are the same than those specified for the Tikhonov problem.
We define:

f (x) =
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 +

1Ω1 (x) + 1Ω2 (x) + 1Ω3 (x) + 1Ω4 (x)

and:

g (z) =
1

p
%p ‖z‖pp

The L2 − Lp problem becomes:

{x?, z?} = arg min f (x) + g (z)

s.t. Γp (x− x0)− z = 0

With this specification, the ADMM algorithm is:

x(k+1) = arg min

{
f (x) +

ϕ(k)

2

∥∥∥Γpx− z(k) − Γpx0 + u(k)
∥∥∥2

2

}
z(k+1) = arg min

{
g (z) +

ϕ(k)

2

∥∥∥Γpx
(k+1) − z − Γpx0 + u(k)

∥∥∥2

2

}
u(k+1) = u(k) +

(
Γpx

(k+1) − z(k+1) − Γpx0

)
The x-step consists in minimizing a quadratic constrained problem. It can be carried out
explicitly if no inequality constraint is imposed. Otherwise, the x-step can be performed by
another ADMM. The z-step consists in computing the proximal operator of λ ‖z‖pp at the

point z = Γpx
(k+1)−Γpx0 +u(k) with λ = %p/

(
pϕ(k)

)
. Other choices for the functions f (x)

and g (z) give rise to computing constrained proximal operators or the proximal operator of
x 7→ ‖Γpx‖pp. No explicit formula is known for the latter, unless a positive multiple of Γp
is orthogonal (Beck, 2017). Our choice makes the z-step explicit for p ∈ {1, 2, 3, 4, 5}, and
easily computable for any p > 1.

A.7.6 Cardinality constraints

The ADMM algorithm can also be used to find a portfolio with at most n1 non-zero weights.
Let us introduce the set Z of n1-sparse vectors:

Z =
{
x ∈ Rn | cardx 6 n1, x

− 6 x 6 x+
}

(39)

We consider the augmented Tikohnov problem:

x? = arg min
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 (40)

s.t.

{
x ∈ Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4

Γ1 (x− x0) ∈ Z
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Zou and Hastie (2005) have been introduced Problem (38) with p = 1 as a convex relaxation
to problem (40). The constraint x ∈ Z is forced by the penalty %1 ‖Γ1 (x− x0)‖1 and the
strength of the penalty parameter %1 must be chosen as the smallest value that satisfies the
constraint cardx 6 n1 (Hastie et al., 2009).

The projection onto the non-convex set Z exists and is explicit (but may not be unique).
Diamond et al. (2018) show that:

PZ (v) = PΩ4
(v (n1))

where v (n1)i = vi if i ∈ I, v (n1)i = 0 if i 6∈ I, I is a set of indices of the n1 largest values of
|vi|, and PΩ4 is the projection onto Ω4 = {x ∈ Rn : x− 6 x 6 x+}. As previously, we have:

f (x) =
1

2
‖A1x− b1‖22 +

1

2
%2 ‖Γ2 (x− x0)‖22 +

1Ω1 (x) + 1Ω2 (x) + 1Ω3 (x) + 1Ω4 (x)

and:
g (z) = 1Z (z)

with the constraint Γ1 (x− x0) = z. With this specification, the ADMM algorithm is:

x(k+1) = arg min

{
f (x) +

ϕ(k)

2

∥∥∥Γpx− z(k) − Γpx0 + u(k)
∥∥∥2

2

}
z(k+1) = PZ

(
Γ1x

(k+1) − Γ1x0 + u(k)
)

u(k+1) = u(k) +
(

Γ1x
(k+1) − z(k+1) − Γ1x0

)
Hence, the z-step is explicit. The ADMM does not necessarily converge, and when it does, it
does not necessarily converge to an optimal point. Contrary to the convex case, the possible
convergence of the algorithm depends on the initial values of x0 and the penalization param-
eter ϕ(k). In the non-convex setting, the ADMM may be considered as a local optimization
method, and local neighbor search method with convex relaxation and restrictions may be
used to obtain the convergence of the algorithm (Diamond et al., 2018).

A.8 Proximal operators and projections

As shown previously, the z-step of the ADMM algorithm generally computes the proximal
operator of a norm or the projection onto the intersection of simple convex sets. We review
the most useful cases in active asset management and we refer the reader to Parikh and
Boyd (2014), Beck (2017), and Combettes and Müller (2018) for further examples. In most
of these cases, the proximal operators are explicit or consists in determining the zero of a
real-valued function.

A.8.1 Definition of the proximal operator

Let f : Rn → R ∪ {+∞} be a proper closed convex function. The proximal operator
proxf (v) : Rn → Rn is defined by:

proxf (v) = x? = arg minx

{
f (x) +

1

2
‖x− v‖22

}
(41)

Since the function fv (x) = f (x) +
1

2
‖x− v‖22 is strongly convex, it has a unique minimum

for every v ∈ Rn (Beck, 2017; Parikh and Boyd, 2014).
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If we would like to compute the proximal operator of λf (x) + 1Ω (x) for λ > 0, one has
to solve:

x? = arg minx

{
λf (x) +

1

2
‖x− v‖22

}
s.t. x ∈ Ω

In the case λ = 0, we have to determine the orthogonal projection PΩ (v) of v onto the set Ω.
In the case λ > 0, we may use different optimization algorithms depending on the regularity
of f (x) and the presence/absence of the set of constraints Ω (Nocedal and Wright, 2006).

A.8.2 The Lp norm

To compute the proximal operator of f (x) = λ
1

p
‖x‖pp, we may assume that the dimension

is n = 1 as x 7→ ‖x‖pp is fully separable:

fv (x) = λ
1

p
|x|p +

1

2
(x− v)

2

The case p = 1 is standard. When p > 1 and λ > 0, the derivative of fv (x) is:

f ′v (x) = λ sign (x) |x|p−1
+ x− v

Since f ′v (x) is an increasing function with respect to x, we obtain a unique minimum. We
deduce the following results:

f (x) proxf (v)

λ ‖x‖1 Sλ (v) = (|v| − λ1)� sign (v)

λ
1

p
‖x‖pp f−1

λ,p (v)

where fλ,p : R→ R is the odd and bijective function defined by:

∀x > 0 fλ,p (x) = λxp−1 + x

Explicit computations can be carried out for p ∈ {2, 3, 4, 5}. In particular, we have:

f−1
λ,2 (v) =

1

1 + λ
v ∀ v ∈ R

and:

f−1
λ,3 (v) =

1

λ

(
−1

2
+

√
1

4
+ λv

)
∀ v > 0

Explicit formulas for cubic and quartic equations are known, so that explicit expressions for
f−1
λ,4 (v) and f−1

λ,5 (v) may be written36.

In Figure 13, we have reported the proximal operator of x 7→ λ
1

p
‖x‖pp in the one di-

mension for several values of p and λ = 1. We verify that f−1
λ,p (v) is an odd function. The

proximal operator Sλ (v) = f−1
λ,1 (v) is known as the soft thresholding operator. The proxi-

mal map is not uniquely valued for the non-convex case (p < 1). The proximal operator for
p = 2 is a line with slope 1/2. We also notice that the convexity of the proximal operator is
different for p < 2 and p > 2 at v = 1.

36As the Galois group of P (X) = Xq + X − c for c ∈ Q and q > 5, may be not solvable, no explicit
formula can be provided for f−1

λ,p (v) when p > 6. However, bisection method can always be implemented to

compute f−1
λ,p (v) for any p > 1 and Newton algorithm for p > 2.
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Figure 13: Proximal operator of
1

p
‖x‖pp
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A.8.3 The case f (x) = 1Ω (x)

If we assume that f (x) = 1Ω (x) where Ω is a (convex) set, we have:

proxf (v) = arg minx

{
1Ω (x) +

1

2
‖x− v‖22

}
= PΩ (v)

where PΩ (v) is the standard projection. We give here the results37 for some polyhedra that
are used in portfolio optimization:

Ω PΩ (v)

A2x = b2 v −A†2 (A2v − b2)

a>x = b v −
(
a>v − b

)
‖a‖22

a

a>x 6 b v −
(
a>v − b

)
+

‖a‖22
a

x− 6 x 6 x+ v � 1 {x− 6 v 6 x+}+
x− � 1 {v < x−}+ x+ � 1 {v > x+}

If f is a norm, then f∗ (x) = 1B (x) where B is the unit ball of the dual norm38 of f .

37See Parikh and Boyd (2014), and Beck (2017).
38The norms Lp and Lq are dual if and only if the exponents {p, q} ∈ [1,∞) are Hölder conjugates

(p−1 + q−1 = 1).
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Thus, Moreau decomposition yields:

proxλf (v) = v − λPB
(

1

λ
v

)
meaning that we only use projections onto norm balls.

A ball for the L∞ norm is a particular case of box constraint. The orthogonal projection
onto the unit ball for the L2 norm is:

PB (v) =

{ v

‖v‖2
for ‖v‖2 > 1

v for ‖v‖2 6 1

The projection on the unit ball for the L1 norm is less straightforward. It is given by:

PB (v) = sign (v)� (|v| − λ1)

where λ satisfies:
‖|v| − λ1‖1 = 1 (42)

Equation (42) can be solved by the bi-section algorithm39 or projected subgradient methods
(Duchi et al., 2008).

Remark 8 Note also that the projection onto an L1 ball and a simplex are equivalent prob-
lems, applying twice the symmetry x 7→ −x.

Projections onto intersections of convex sets are examples in which the computation of
the proximal operator reduces to determining a zero of a real-valued function. For instance,
the projection onto the intersection of two balls Bp ∩ Bq is a particular case of projection
onto a sublevel set that is defined by {x : f (x) 6 R} where f (x) = ‖x‖q + 1Bp (x). Indeed,
we consider a non-empty Lp ball Bp and a non-empty Lq ball Bq. The orthogonal projection
PΩ onto the intersection Ω = Bp ∩ Bq is given by:

PΩ (v) =

{
PBp

(v) if PBp
(v) ∈ Bq

proxf (v) if PBp (v) /∈ Bq

where f (x) = λ? ‖x‖p and λ? is a scalar such that proxf (v) ∈ ∂Bq where ∂Bq is the
boundary of Bq.

We now consider the projection of v on the intersection of a convex set Ω and a hyperplane
H =

{
x ∈ Rn, a ∈ Rn \ {0} | a>x = b

}
. We have:

x? = PH∩Ω (v)

= arg min
x∈H∩Ω

1

2
‖x− v‖22

Leaving the constraint x ∈ Ω implicit, we can write the partial Lagrange function for this
problem:

L (x, λ) =
1

2
‖x− v‖22 + λ

(
a>x− b

)
=

1

2
‖x− (v − λa)‖22 + λ

(
a>v − b

)
− 1

2
λ2 ‖a‖22 (43)

39If the vector v has ordered components, the value of λ is explicit.
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As strong duality holds, x? is the optimal solution if, and only if, there exists a scalar λ? ∈ R
satisfying:

x? ∈ arg min
x∈Ω
L (x, λ?) and x? ∈ H

Using Equation (43), we obtain:

x? = PΩ (v − λ?a) and x? ∈ H

where λ? is the solution to the equation:

a>PΩ (v − λ?a) = b

Particular cases of the last formula are projections onto the standard simplex Ω = Rn+, the in-
tersection of two non-empty balls Ω = Bp∩Bq and the hyperplane Ω =

{
x ∈ Rn | 1>x = 0

}
.

A.9 Derivation of the PRESS statistic for the Tikhonov regular-
ization

We have:
X>X = X>−tX−t + xtx

>
t

and:
X>Y = X>−tY−t + xtyt

The Sherman-Morrison-Woodbury formula40 leads to:

β̂−t =
(
X>−tX−t + %2Γ2Γ>2

)−1
X>−tY−t

=
(
X>X + %2Γ2Γ>2 − xtx>t

)−1 (
X>Y − xtyt

)
=

(
S (%2)

−1 − xtx>t
)−1 (

X>Y − xtyt
)

=

(
S (%2) +

S (%2)xtx
>
t S (%2)

1− x>t S (%2)xt

)(
X>Y − xtyt

)
= S (%2)X>Y − S (%2)xtyt +

S (%2)xtx
>
t S (%2)

1− x>t S (%2)xt
X>Y − S (%2)xtx

>
t S (%2)

1− x>t S (%2)xt
xtyt

We denote zt = x>t S (%2)xt. Since β̂ = S (%2)X>Y , we get:

x>t β̂−t = x>t β̂ − ztyt +
zt

1− zt
x>t β̂ −

z2
t

1− zt
yt

Finally, we obtain:

yt − x>t β̂−t = yt

(
1 + zt +

z2
t

1− zt

)
− x>t β̂

(
1 +

zt
1− zt

)
= yt

(
1

1− zt

)
− x>t β̂

(
1

1− zt

)
=

1

1− x>t S (%2)xt
(yt − x>t β̂)

40Suppose u and v are two vectors and A is an invertible square matrix. It follows that:(
A+ uv>

)−1
= A−1 −

1

1 + v>A−1u
A−1uv>A−1
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It follows that the PRESS statistic is equal to:

Press (%2) =

T∑
t=1

(
yt − x>t β̂−t

)2

=

T∑
t=1

(
yt − x>t β̂

)2

(
1− x>t S (%2)xt

)2
B The Black-Litterman model

B.1 Computing the implied risk premia

Let us consider the following optimization problem:

x? (γ) = arg min
1

2
x>Σx− γx> (µ− r1)

s.t. 1>x = 1

The unscaled solution is:
x? = γΣ−1 (µ− r1)

Given an initial allocation x0, we deduce that this portfolio is optimal if the vector of
expected returns is defined by:

µ̃ = r +
1

γ
Σx0

By assuming that we know the Sharpe ratio of the initial allocation, we deduce that:

µ̃ = r + SR (x0 | r)
Σx0√
x>0 Σx0

(44)

We retrieve one of the fundamental results from the capital asset pricing model. At the
optimum, risk premia are proportional to marginal risks (Roncalli, 2013).

B.2 Conditional distribution of expected returns

Black and Litterman (1992) state that vector Rt of asset returns follow a Gaussian distri-
bution:

Rt ∼ N (µ̃,Σm)

where µ̃ is the implied expected return associated with the allocation x0 and Σm is the
market covariance matrix of asset returns. To specify the portfolio manager’s views, they
assume that they are given by this relationship:

PRt = Q+ ε (45)

where P is a (k × n) matrix, Q is a (k × 1) vector and ε ∼ N (0,Σε) is a Gaussian vector
of dimension k. The k views of the portfolio manager can be expressed in absolute or
relative terms. It follows that the joint distribution of the expected returns Rt and the
views νt = PRt − ε is given by the following relationship:(

Rt
νt

)
∼ N

((
µ̃
P µ̃

)
,

(
Σm ΣmP

>

PΣm PΣmP
> + Σε

))
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By applying the conditional expectation formula41, we obtain:

µ̄ = E [Rt | νt = Q]

= µ̃+ ΣmP
> (PΣmP

> + Σε
)−1

(Q− Pµ̃)

and:

Σ̄ = E
[
(Rt − µ̄) (Rt − µ̄)

> | νt = Q
]

= Σm − ΣmP
> (PΣmP

> + Σε
)−1

PΣm

The vector of conditional expected returns µ̄ has two components:

1. The first component corresponds to the vector of implied expected returns µ̃.

2. The second component is a correction term which takes into account the disequilibrium
(Q− Pµ̃) between the manager’s views and the market’s views.

In the same way, the conditional covariance matrix has two components. Indeed, we have42:

Σ̄ =
(
In + ΣmP

>Σ−1
ε P

)−1
Σm

=
(
Σ−1
m + P>Σ−1

ε P
)−1

(46)

Again, the conditional covariance matrix is a weighted average of the market covariance
matrix Σm and the covariance matrix Σε of the manager views.

B.3 The case of absolute views

If the portfolio manager specifies absolute views, it is equivalent imposing P = In and
Q = µ̆. We deduce that:

µ̄ =
(
In − Σm (Σm + Σε)

−1
)
µ̃+ Σm (Σm + Σε)

−1
µ̆

and43:
Σ̄ = Σm (Σm + Σε)

−1
Σε

If we consider the (unscaled) optimal portfolio x̄, we obtain:

x̄ = γΣ̄−1µ̄

= γΣ−1
ε (Σm + Σε) Σ−1

m

((
In − Σm (Σm + Σε)

−1
)
µ̃+ Σm (Σm + Σε)

−1
µ̆
)

= Σ−1
m Σx̃+ x̆

where x̆ is the mean-variance optimized portfolio based on the manager’s views. In particu-
lar, if Σm = Σ, it follows that the optimal portfolio x̄ is simply the sum of the SAA portfolio
x̃ and the MVO portfolio x̆.

41See Appendix A.3 on page 52.
42Let A, B and C three compatible matrices. We have:

AB>
(
BAB>

)−1
B = I −

(
I +AB>C−1B

)−1

43We remind that:
A−1 +B−1 = B−1 (A+B)A−1
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Let Σ̂ be the empirical covariance matrix. If we assume that Σm = τ Σ̂ and Σε = τ Σ̂, we
obtain:

µ̄ =
µ̃+ µ̆

2

and:
Σ̄ =

τ

2
Σ̂

The conditional expected returns are therefore an average between the implied expected
returns and the manager’s views, whereas the conditional covariance matrix is proportional
to the empirical covariance matrix. In particular, if τ is set to 1, asset volatilities are divided
by
√

2. This type of parametrization is a real problem, because it dramatically reduces the
covariance matrix of asset returns.

We now consider a second approach with Σm = Σ̂ and Σε = τ Σ̂. It follows that:

µ̄ =
τ

1 + τ
µ̃+

1

1 + τ
µ̆ (47)

and:
Σ̄ =

τ

1 + τ
Σ̂

When τ → 0, we verify that that the conditional expectation tends toward the manager’s
views. However, the covariance matrix also tends towards the null matrix (see Figure 14).
Again, we notice an arbitrage between the weight of the manager’s views and the reduction
of the covariance matrix.

In practice, we would like to control the contribution of the manager’s views without
modifying necessarily the covariance matrix of asset returns. This is why we can impose
that Σ̄ = Σ̂.

Figure 14: Variance reduction in the Black-Litterman model

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

67



Robust Asset Allocation for Robo-Advisors

C Additional results

C.1 Tables

Table 19: Quality representation of each asset

Factor 1 2 3 4

Asset

1 58.35% 0.08% 0.24% 41.33%
2 55.18% 5.90% 38.46% 0.46%
3 50.25% 39.36% 9.07% 1.32%
4 78.91% 18.87% 0.99% 1.23%

Table 20: Contribution of each asset

Factor 1 2 3 4

Asset

1 13.07% 0.06% 0.33% 86.54%
2 17.80% 6.49% 74.32% 1.38%
3 20.02% 53.43% 21.64% 4.91%
4 49.11% 40.02% 3.71% 7.16%

Table 21: Linear dependence between the four assets (µ1 = 3%)

Asset αi βi R2
i

1 −2.30% 0.139 0.187 0.250 45.83%
2 2.98% 0.230 0.268 0.191 37.77%
3 4.49% 0.409 0.354 0.045 33.52%
4 4.41% 0.750 0.347 0.063 41.50%

Table 22: Risk/return analysis of hedging portfolios (µ1 = 3%)

Asset µi µ̂i αi σi σ̂i si R2
i

1 3.00% 5.30% −2.30% 15.00% 10.16% 11.04% 45.83%
2 8.00% 5.02% 2.98% 18.00% 11.06% 14.20% 37.77%
3 9.00% 4.51% 4.49% 20.00% 11.58% 16.31% 33.52%
4 10.00% 5.59% 4.41% 25.00% 16.11% 19.12% 41.50%

Table 23: Optimal portfolio (µ1 = 3%)

Asset ωi y?i z?i x?i
1 84.62% 53.59% 206.52% −75.81%
2 60.68% 99.25% 164.80% 59.46%
3 50.43% 90.44% 135.19% 67.87%
4 70.94% 64.31% 86.63% 48.48%

C.2 Figures
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Figure 15: Mixed regularization with a target portfolio (x?1)
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Figure 16: Mixed regularization with a target portfolio (x?2)
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Figure 17: Mixed regularization with a target portfolio (x?3)
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Figure 18: Mixed regularization with a target portfolio (x?4)
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Figure 19: Mixed regularization without a target portfolio (x?1)
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Figure 20: Mixed regularization without a target portfolio (x?2)
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Figure 21: Mixed regularization without a target portfolio (x?3)
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Figure 22: Mixed regularization without a target portfolio (x?4)
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in Switzerland is concerned, a “Qualified Investor” within the meaning of the provisions 
of the Swiss Collective Investment Schemes Act of 23 June 2006 (CISA), the Swiss 
Collective Investment Schemes Ordinance of 22 November 2006 (CISO) and the FINMA’s 
Circular 08/8 on Public Advertising under the Collective Investment Schemes legislation 
of 20 November 2008. In no event may this material be distributed in the European Union 
to non “Professional” investors as defined in the MIFID or in each local regulation, or in 
Switzerland to investors who do not comply with the definition of “qualified investors” 
as defined in the applicable legislation and regulation. This document is not intended for 
citizens or residents of the United States of America or to any «U.S. Person» , as this term 
is defined in SEC Regulation S under the U.S. Securities Act of 1933.

This document neither constitutes an offer to buy nor a solicitation to sell a product, and 
shall not be considered as an unlawful solicitation or an investment advice.

Amundi accepts no liability whatsoever, whether direct or indirect, that may arise from the 
use of information contained in this material. Amundi can in no way be held responsible 
for any decision or investment made on the basis of information contained in this material. 
The information contained in this document is disclosed to you on a confidential basis 
and shall not be copied, reproduced, modified, translated or distributed without the prior 
written approval of Amundi, to any third person or entity in any country or jurisdiction 
which would subject Amundi or any of “the Funds”, to any registration requirements 
within these jurisdictions or where it might be considered as unlawful. Accordingly, this 
material is for distribution solely in jurisdictions where permitted and to persons who may 
receive it without breaching applicable legal or regulatory requirements.

The information contained in this document is deemed accurate as at the date of 
publication set out on the first page of this document. Data, opinions and estimates may 
be changed without notice.

You have the right to receive information about the personal information we hold on 
you. You can obtain a copy of the information we hold on you by sending an email to 
info@amundi.com. If you are concerned that any of the information we hold on you is 
incorrect, please contact us at info@amundi.com

Document issued by Amundi, a société anonyme with a share capital of €1,086,262,605 
- Portfolio manager regulated by the AMF under number GP04000036 – Head office: 
90 boulevard Pasteur – 75015 Paris – France – 437 574 452 RCS Paris - www.amundi.com
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