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This paper addresses the methodological challenges in quantifying 
physical risks associated with climate change, proposing a novel 
top-down stochastic approach focused on modeling financial 
losses from extreme events. Unlike existing studies limited to 
specific events, our approach utilizes predefined climate sensitivity 
parameters, enabling a broader application across various extreme 
events using the example of tropical cyclones. We have also 
conducted an extended review of the literature on the modeling 
of indirect shocks to cover the full scope of the damage modeling 
from cost-push Leontief price model to Adaptive Regional 
Input-Output approaches (ARIO, Hallegatte, 2013). Building on 
Desnos et al. (2023)’s adaptation of the value-at-risk concept for 
transition risk analysis, we extend the framework to incorporate 
direct physical shock impacts with co-occurrence, cascading 
effects through input-output mechanisms (indirect damages to 
the economy), and temporal considerations (forward projection, 
capacity for a sector to rebuild itself). By bridging the gap between 
these two approaches, we provide a comprehensive assessment of 
climate risks, considering uncertainties associated with transition 
scenarios and offering insights into the amplification of impacts 
through time and across global economies.
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1 Introduction

Following Bank of England’s governor pivotal address Carney (2015), the financial com-
munity has begun to more seriously consider climate-related risks. Regulatory bodies and
central banking officials have specifically urged financial institutions to implement stress-
testing systems to quantify their exposure to both transition and physical risks (ESMA,
2022). Direct costs of extreme events have a significant impact on economies worldwide, of-
ten reaching magnitudes of hundreds of billions of dollars. This paper focuses on the physical
risk dimension using the example of tropical cyclones, its amplification coefficient through
the supply-chain, adverse effect of supply-chain disruption and post-crisis recovery.

As of 2023, only one in ten companies provides incentives for the management of climate
change issues, according to CDP’s Messenger et al. (2023), even though 83% of companies are
recognizing physical risks as a financial risk for their business. If the current trend continues,
the number of disasters could rise to 560 per year by 2030, up 40% as compared to 2015.
Up to $340 billion per year of adaptation finance is needed by 2030 to pay for investments
in technology and in transforming agriculture and water systems.

Physical risks are far more difficult to quantify than transition risks as their evaluation
requires multidisciplinary methodologies: climate modeling, physical asset geolocation, fi-
nancial loss estimation, etc. (Le Guenedal, 2022). For example, Le Guenedal et al. (2022)
measured the impact of cyclone-related damage in the future representative concentration
pathways in a Monte-Carlo fashion, and offer an integrated approach to channel the impact to
sovereign 10Y treasury bonds spreads - using Hilscher and Nosbusch (2010) approach. This
study is limited to direct costs and complex to generalize to other events (floods, droughts,
wildfire, etc.) because it requires physical modeling and interdisciplinary approach. Thus,
we propose a novel top-down stochastic approach to model the damages caused by extreme
events based on predefined climate sensitivity parameters which allow us to focus on the
modeling of financial losses, introducing co-occurrence of extreme events.

In the context of transition risk analysis, Desnos et al. (2023) introduced a method to
adapt the value-at-risk concept to the assessment of climate risks. The probability of extreme
losses in a climate value at risk fashion is not calibrated on historical losses but on a wide
range of possible transition hypothesis. In particular, this model includes cascading effect
occurring through an input-output framework. It also accounts for various additional un-
certainties associated with transition scenarios (pass-through, regulatory pressure), allowing
practitioners to better understand the level of uncertainty associated with transition scenar-
ios. In this paper, we bridge the gap between the two approaches, allowing direct physical
shock impacts to cascade and be amplified through input-output effect within the countries
and worldwide (Adenot et al., 2022; Desnos et al., 2023) and through time with rebuilding
modeling (Hallegatte, 2013). This paper thus extends Desnos et al. (2023) structural climate
Value-At-Risk to the physical risks from climate change.

In this paper, we advance the scholarly understanding of physical risk modeling by ad-
dressing both direct and indirect dimensions comprehensively. Initially, we undertake a
thorough review of existing methodologies for the direct and indirect modeling of physical
risks, delineating the procedural steps necessary for the calibration of a bottom-up approach.
This approach demands asset-level, geolocated data, and due to its extensive data require-
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ments, we defer the empirical application of our model to future research. Concurrently, we
explore a top-down method that simplifies computational demands and facilitates the incor-
poration of the co-occurrence of extreme events through appropriate calibration at both the
sectoral and national levels.

Further, we employ a Monte Carlo methodology to model the distribution of direct and
indirect economic damages, thereby generating parametric estimates of physical Value-at-
Risk (VaR). While our examples are illustrative, we assert that with proper calibration, this
model can offer robust operational insights, enhancing the measurement and management
of physical risks within portfolios. Additionally, our paper integrates adaptive input-output
(IO) approaches to better capture the temporal economic responses following disasters. This
integration not only deepens the theoretical framework but also holds practical implications
for investment strategies post-disaster. Through these contributions, our study not only
enriches the academic discourse on physical risk but also provides a foundational tool for
future empirical and theoretical exploration.

The literature on changes in the severity and frequency of acute extreme events and
chronic risks is extensive. There is a more or less explicit increase in the intensity of extreme
events due to global warming, and these changes need to be measured using climate data
produced by the Atmosphere-Ocean Climate General Circulation Models (AOGCMs) of the
Coupled Model Intercomparison Project (CMIP), currently in its sixth phase. The IPCC
aggregate several studies based on these climate projections, and alert on a series of facts.

For example, using the CGMs of CMIP5, Tabari (2020) reports that approximately 72%
of the global land is likely to go through aridification in the future, with substantial changes
in MENA, south Europe, south Africa and Australia, leading a shift in climate regime.
Globally, arid and semi-arid regions would expand by 10.3% and 9.9% respectively, while
humid and semi-humid regions would decrease by 2.3% and 4.9% respectively. It makes
the area coverage of humid, semi-humid, semi-arid and arid climates at the end of the 21st
century equal to 55%, 20%, 11% and 14% of the total terrestrial land area respectively.

They also found flood intensity increases with global warming at the rates of 5.07%/K for
humid, 3.63%/K for semi-humid and 3.12%/K for semi-arid climate regions. Examination
of 12 General Circulation Models (GCMs) - in the present and five future CMIP6 SSP
forcing scenarios - reveals a global trend where the frequency, duration, and severity of
Meteorological Flash Droughts (MFDs) are anticipated to escalate by approximately 20–50%,
20–58%, and 26–62% respectively. Notably, these increases are most probable during the
summer months (Sreeparvathy & Srinivas, 2022). For wildfires, some advanced models have
also been developed such as BURN-P3 (Parisien et al., 2005).

All together, the use of these models with properly unbiased climate data allows modelers
to anticipate changes in exposure to extreme events sensitive to climate change. Based on the
suggested variations of droughts, floods from the mentioned literature, and cyclones damages
(Le Guenedal et al., 2022), we can propose a new mathematical approach to describe the
evolution of return periods of each events depending on its total direct costs.

The indirect effects of tropical cyclones and disaster have been measured in the literature.
For example, in the financial sphere, Mandel et al. (2021) measured the cascading effect of
flood risk within the financial system with a network propagation approach. Fereshtehne-
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jad et al. (2021) propose a probabilistic risk assessment of coupled natural-physical-social
systems exposed to coastal storm. Kunze (2021) shows that the losses induced by tropi-
cal cyclones are local and found limited lagged impact of tropical cyclones worldwide using
input-output in a panel analysis for a maximum of 205 countries over the 1970–2015 period.

However, Lenzen et al. (2019) demonstrates important economic spillovers induced by
tropical cyclones focusing on Debbie in Australia in 2017. Their Australian region-based
input-output analysis shows that regions not physically impacted by the cyclone were affected
economically (job losses, reduced activity...) and that the Australian country has lost 660
million AUD value added across the supply chain network on an overall 2.2 billion AUD losses
in value added. Kuhla et al. (2021) reveal an economic ripple resonance, which magnifies
losses by 21% on average when successive or overlapping weather extremes interact, affecting
1.8 million trade relations between over 7000 regional sectors, with high-income economies
experiencing the most significant effects, a critical consideration in assessing past and future
economic climate impacts. Moreover, Hallegatte (2008) finds that indirect costs of Hurricane
Katrina lead to an increase of the total costs by 39% compared with the direct costs, going
from $107 Billion to $149 Billion.

Subsequent to the seminal contributions of Hallegatte (2008), considerable progresses
have been made. A remarkable improvement is the BoARIO package, a Python-based im-
plementation of the Adaptive Regional Input Output (ARIO) model delineated in Hallegatte
(2013), enhanced by the global perspectives introduced by Guan et al. (2020). This enhance-
ment incorporates world input-output matrices, now accessible through pymrio, as elabo-
rated by Stadler (2021). Accordingly, this facilitates the adaptation of internal exchanges
and the aggregate imports/exports variables, foundational to the approach of Hallegatte
(2008), to the global input-output framework, as demonstrated in Table 5. We also present
this methodology, illustrate its use and apply it to a real example of a 95% VaR level shock
to the US economy.

The last step consists in modeling the impact on asset price and the literature has inves-
tigated extreme event impact on several asset classes. For example, commodities response
to news related to natural disasters (Marvasti & Lamberte, 2016). Fink et al. (2010) focuses
on the impact of a particular cyclone on crude oil price index and show that price reactions
to storm forecasts are observable within a 24-hour forecast period. Notably, a category 4
hurricane in this area causes an increase in refined petroleum prices compared to crude oil
by approximately 13.5%. Kim and Bui (2019) focus on the island ports and supply chain
resilience. Energy prices also respond to disasters (Wen et al., 2021).1

This research paper is organized as follows. Section Two describes the different ap-
proaches tackled for Direct damage modeling. Section Three explains how the indirect ef-
fects of physical shocks on the economy can be estimated using multi-regional input-output
(MRIO) modeling. Section Four introduces the Monte-Carlo simulation we use to calculate
the future potential losses due to physical risks. Section Five concludes.

1Both natural and human extreme events significantly increase oil price risk. Among all natural disasters,
the negative impact of an epidemic on oil price risk is the greatest.
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Key Findings

Summary

In this paper, we introduce a bottom-up methodology to forecast damages from ex-
treme events to the economy during the 21st century. We model direct and indirect
damages using the example of tropical cyclones worldwide and country by country in
a top-down fashion with co-occurrence of extreme events and illustrate the distribu-
tion of future damages for several countries. We also simulate a 95% VaR magnitude
extreme event on the US economy introducing insured damages, impacts and recovery
sector by sector.

Results

Under the current modeling assumptions of our framework, an extreme event occurring
once every 20 years could come back once every 4 years by 2050 and the average yearly
damages from cyclones worldwide might reach 380 billion USD from the current 85
billion USD. Using the example of a 95 % VaR magnitude cyclone on the US economy,
losses above 300 billion USD of direct and indirect damages have to be feared, with a
significant (40%) part of insured damages and contagions to related sectors (specifically
to the financial system).

Insights

This framework can be adapted to tackle a wider variety of physical risks and assess
the impact and recoveries throughout the world using regional and sectoral specificities
while introducing co-occurrence of extreme events. We should keep in mind the risk
of over-fitting our predictions while still supporting strong enough assumptions. No
gdp growth assumption is a choice to present more comprehensive results.
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2 Direct damage modeling

Currently, there are two primary methods for measuring the damages caused by climate
change. The bottom-up approach requires a geolocated cartography of all the physical assets
of each company, their sensitivities to the damages related to all disasters, and to aggregate
them (first at the company, then at the portfolio level).

To estimate the direct exposure of issuers’ facilities this way, we must introduce asset
level information and alternative data. On the other hand, the top-down approach gener-
ates damages at the sector and country level from past observations and has to model the
inheritance of shocks between and within each sector. In both cases, the company direct
shock S(direct)k,t writes:

S(direct)k,t =
Ak,t −Dk,t

Ak,t

(1)

where Ak is the total asset value of issuer k at year t and Dk is the value of the damages
caused by extreme events at year t.2

2.1 Bottom-up approach: Case of tropical cyclones

In this section, we detail the modeling of company level damages, with the physical impacts
of extreme events. We focus on the modeling of tropical cyclones following Le Guenedal and
Roncalli (2022).

Hazard intensity We introduce Poisson processes with stochastic intensity Λ(t). For each
tile (we introduce g to simplify the notation, which initially involves latitude and longitude,
such as Xg ∼ Xlat5,lon5,m), we represent the number of land-falling cyclones with a counting
process:

dNg(t) = λg(t)dt + dPg(t), (2)

where dNg(t) is the marginal increment of the counting process for location g, λg(t) is the
stochastic intensity, and dPg(t) is a Poisson random measure projecting random occurrences
of tropical cyclones in future synthetic tracks. Let λg(t) follow a deterministic drift such as:

dλg(t) = µgdt (3)

Thus, for each location on the grid, we can fit the laws based on a large number of future
synthetic tracks.3

2In what follows we omit the temporal subscript to ease the notation.
3Historical landfalling statistics have been compared over tracks produced with synthetic (Meiler et al.,

2022), and changes in log-scale occurrence can be extrapolated as in Bloemendaal et al. (2022) or Le Guenedal
et al. (2022). Future uncertainty in economic impact is also investigated in Meiler et al. (2023).
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Example of physical modeling: CATHERINA Wind 95th percentile maps

A bottom-up evaluation of damages involves a detailed, granular approach to assess the
impact of extreme events, such as natural disasters, on a specific area or infrastructure.
The process of building maps to represent the activity of an extreme event is a crucial
step in a bottom-up evaluation. For example, results from Le Guenedal et al. (2022)
allow us to decompose the contribution to shift in tropical cyclones induced damages.

Representative Concentration Pathways 2.6W/m2

Representative Concentration Pathways 8.5W/m2

We reiterate that this illustrative dataset contains 300 representative years with 7
different models on monthly data produced between 2070 and 2100, under the three
representative concentration pathways (RCP 2.6, 4.5 and 8.5). From the synthetic
tracks generated, one can compute the 95th percentile of maximum wind speeds, which
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produces for the RCP 2.6 and 8.5 scenarios W/m2 in the north American continent
the grids above. Thus, we obtain a physical probability - aligned with the concept of
value at risk and extreme risks measurement - to obtain a cyclone of each category
making landfall each month.
These figures show that there will be enough thermodynamic potential available to
lead tropical cyclones to intensify up to Category 5 in the North America by the end
of the century using RCP 8.5. We reiterate that CATHERINA makes no assumption
on change in initialized disturbances (µg = 0 in Equation (3)). Therefore, it maintains
very low probability of seeing a cyclone. Refined versions of these maps allow us to
produce local Climate Value-at-Risk based on expected losses from the extreme winds.

For each event (cyclone, drought, floods) it is possible to model physically the intensifi-
cation process. For example for each generated cyclone, it is possible to model precisely the
intensification process (depression in the eye), and maximum wind along tracks (Le Guenedal
et al., 2022). We can generalize this approach to other disasters.

However, to simplify the process it may be easier to model only highly damaging event
(starting with cyclones), and calibrate total damage based on one landfall wind value, gen-
erated with stochastic process. The calibration of the Poisson law, guided by the selection of
a particular filtration for tropical cyclones (or any specified event), enables the adjustment
of the intensity parameter (in the case of tropical cyclones, wind speed). This adjustment
aims to align with the aggregated damages produced by the event in various locations. This
calibration process facilitates the derivation of pertinent damage distributions and can be
executed for individual regions, incorporating numerous hyper-parameters if necessary.

For example, the maximum wind speed for each simulated cyclone can be drawn from
a normal distribution, characterized by mean (µv) and standard deviation (σv), which are
derived from historical data on maximum wind speeds of past cyclones. We may for instance,
model the landfall wind with a normal distribution of parameters µv = 67m.s−1 and σv = 5
based on the expected wind speed observed on tropical cyclone of this category in IBTrACS.4

4The International Best Track Archive for Climate Stewardship (IBTrACS) database (Knapp et al., 2010)
is available at http://ibtracs.unca.edu/.
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Modeling Intensity: example of Normal Law for tropical cyclones

In the analysis of extreme meteorological phenomena, particularly cyclones within
categories 4 and 5, it is observed that the wind velocities range between 58 and 70 m/s
for category 4 and exceed 70 m/s for category 5 cyclones (c.f. IBtRACS). Moreover,
category 5 cyclones, which are significantly less frequent than category 4, seldom
manifest maximum speeds exceeding 280 km/h (approximately 77 m/s).

In light of this data, it is possible to model wind speeds using a normal distribution
with a mean of 67 m/s and a standard deviation of 5 m/s. This parametrization results
in the 5th and 95th percentiles of the distribution being approximately 59 m/s and 75
m/s, respectively.

Wind speed illustration (IBTrACS)
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It is important to note that alternative distributions, such as the Weibull or the Gen-
eralized Extreme Value (GEV) distribution, are credible alternatives for fits to the
observed data.

2.1.1 Local damage functions

In the context of physical risk assessment, we downscale the physical asset value of companies
on a grid consistent with hazard models and introduce damage functions. For the latter,
in the case of tropical cyclone, we may use the regional damage functions of CLIMADA
(Eberenz et al., 2021) - based on Emanuel (2011) generic damage function - introducing
temporality handling to account for co-occurrence of extreme events in the same calendar
year. Thus, if a second extreme event occurs shortly after a first event, it is likely to impact
less structures that have already suffered or are even partially or fully destroyed:

fr,t(V, vh(r)) =
(vn(V, vh(r)))3

1 + (vn(V, vh(r)))3
× (1t∈]0;T ]θt + 1(t=0)∪(t>T )) (4)

where fr,t is the fraction of the property value lost in the region r from a cyclone at time t, V
is the wind speed and θt ∈]0;T ] is a multiplier for a damage occurring between 0 excluded,
and T when the asset has been fully rebuilt. The second indicator function covers the other
cases: t = 0 means that no event has ever occurred, while t > T means that the structures
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have completely recovered from any previous event.

vn(V, vh(r)) =
max(V − vt(r),0)

vh(r) − vt(r)

where vt = 25.7 m/s and vh(r) is a parameter calibrated for each region r. Figure 1 illustrates
the sensitivity to vh and wind parameters. We might find specific scenarios where θt is greater
than 1, but in practice it is range-bound most of the time.

These damage functions generalize well in terms of asset or event types to other extreme
events (wildfire, drought, floods...). The damage functions fj (I) ∈ [0,1] are calibrated
using historical records as the fraction of loss of an asset depending on the event intensity
I. The appropriate intensity indicator is different for each event and all kinds of storms,
while damages are generally correlated to maximum wind speeds (m.s−1) with a threshold
or central pressure (hPa). For floods, flood depth (m) is commonly used (Huizinga et al.,
2017). Used indicators may vary for the different sectors and a single event: for instance,
for droughts, standard precipitation index and evaporation are likely to affect energy sectors
while the maximum number of consecutive frost/wet or dry days and diurnal temperature
among other agro-climatic indicators are more appropriate for the agriculture sector.

Figure 1: Fraction loss function in terms of the values of vh and V (Emanuel, 2011)
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2.1.2 Asset exposure

To measure the exposure of specific companies to natural hazards we must introduce geolo-
cated information about corporate facilities. A first estimate, that is relevant at the country
level, is the LitPop (Eberenz et al., 2020) dataset downscaling the GDP on a map. Other
sources, with thinner sectoral granularity are increasingly available (see Example Box). In
this paper, we do not introduce geolocated assets nor use sector geo-referenced activity, but
present the theoretical foundation of the method that rely on this data.5

5Our empirical illustration rely on the top-town approach presented section 2.2 implemented in a monte-
carlo (section 4).
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Definition of an exposure metric Let us introduce the density measure γkg and fraction
Γk
r that denotes respectively the probability of presence of a company in a tile, and its

fraction of revenue in a country. We thus make the assumption that the total physical asset
of a company is distributed similarly as its revenue split (Le Guenedal et al., 2023). For
each company k, summing over the grid within a country sums to the total revenue share
allocated in this country, ∑g∈r γrg = Γk

r and ∑r Γ
i
r = 1. The rational of this metric is to

construct a density map of the area to which the company k is sensitive to. This density
based approach can be modeled at the sector level or asset level depending on the data
source used. For example, using news data can help building density at the company level.
Some open-source datasets can be used to build sectoral densities.

Examples of construction of exposure indicators the power and commodities sectors
from open-source data

Example A. The Global Power Plant Database (GPPD) is a comprehensive and
open-source database of power plants worldwide. It serves as a centralized repository
of power plant data, making it easier to navigate, compare, and draw insights for
analysis. The database covers approximately 35,000 power plants from 167 countries,
including both thermal plants (such as coal, gas, oil, nuclear, biomass, waste, and
geothermal) and renewables (such as hydro, wind, and solar). Each power plant is
geolocated, and entries contain information on plant capacity, generation, ownership,
and fuel type.a

Normalized power sector capacity (per country) based on GPPD
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From this dataset, we illustrate the construction of a density measure γg,r that denotes
the probability of presence of an energy facility on the tile g and in the country r.

In this illustration, we compute the total production capacity (MW) of the power
plants in one country and normalize the capacity of each tile g by the total capacity
of the corresponding country. Then, we highlight the tiles where a large proportion
(γg > 20%) of the country’s capacity is located. These values represent the local
exposure of the energy sector worldwide. We can expend it including measures for
other sectors.
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Example B: Illustration of commodities from the Climate Trace (Tracking
Real-time Atmospheric Carbon Emissions) database represents an innovative approach
to monitoring greenhouse gas (GHG) emissions across various sectors worldwide. This
initiative is particularly important for understanding, managing, and reducing emis-
sions in a detailed and timely manner. The database leverages advanced technologies,
including artificial intelligence (AI), satellite imagery, and remote sensing data, to
provide an unprecedented level of transparency and accuracy in tracking emissions.
Here is a world map overlaid with various colored circles, each representing the con-
centration of different industrial sectors: Aluminum, Bauxite, Cement, Coal, Copper,
Iron, Petrochemical, Pulpl and Paper and Steel. The capacities are grouped on a five
degree grid (latitude and longitude) and the geolocated sources with missing capacity
are ignored in this visualization.

Normalized commodities capacity (per country) based on Climate Trace

Sectors
aluminum
bauxite-mining
cement
chemicals
coal-mining
copper-mining
iron-mining
petrochemicals
pulp-and-paper
steel

Activity Fraction
Low
Medium
High

The circles are concentrated in areas that are presumably major hubs for these indus-
tries. The size of the circles seems to indicate the level of activity of each sector. Large
circles indicate high activity fraction in that sector reported in climate trace databases
and small circles indicate lower reported activity. It reflects the global distribution of
various industrial sectors based on our understanding of these industries.

Concerning aluminum, China remains the largest producer of alumina and primary
aluminum, accounting for almost 60% of global production in 2022.b Aluminum pro-
duction is closely linked to the availability of bauxite ore, which is primarily found
in tropical and subtropical regions. The chart shows significant activity in regions
known for bauxite mining, such as Australia and South America. Steel production is
typically found in industrial regions with access to iron ore and coal. The map shows
high activity in traditional steel-producing regions such as China, Europe, and North
America.

Cement manufacturing is a widespread industry essential for construction, one can find
broadly in every country. The map indicates activity in various global locations, which
aligns with the widespread nature of the construction sector. The chemical industry
is diverse and can also be found worldwide due to the broad range of products it
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encompasses. It is often located near oil and gas reserves or in industrial hubs, as put
on evidence by the map.

It indicates high activity in regions known for coal reserves, such as parts of China, the
United States, and Australia, which are some of the world’s largest coal producers.
Global coal trade volumes hit record levels in 2023, but are expected to decline in
subsequent years. The market dynamics are largely influenced by Asia’s growing
presence, with China and India set to account for over 70% of global coal consumption
by 2026.

Significant copper mining activity is shown in areas known for copper resources, like
parts of South America (Chile and Peru) and Africa (the Democratic Republic of
Congo and Zambia). The map shows activity in regions renowned for iron ore pro-
duction, such as Western Australia, Brazil, and parts of China and Russia. The
petrochemical industry is often located near oil and gas fields or refineries. The map
reflects this with high activity indicated in the Middle East, the United States (Gulf
Coast), and parts of Asia. The Pulp and Paper industry is usually found in regions
with abundant forest resources, and the map shows activity in corresponding areas
like Northern Europe, North America, and parts of South America.

Overall, the distribution of sectors on the map aligns with known global patterns
of industrial activity. However, the exact relevance would also depend on the data
sources, date of the information, and accuracy of the representation. The map provides
a snapshot that could be useful for insights into global industrial patterns, resource
allocation, and potential environmental impacts.

aThe database will be continuously updated as new data becomes available. The methodology for
creating the dataset is detailed in the World Resources Institute publication ‘A Global Database of
Power Plants’.

bInformation about Aluminum can be found here: https://www.iea.org/energy-system/industry/
aluminium.

Total asset value losses Once the asset exposition maps have been constructed, we can
sum up the losses from the simulated event to compute future expected losses for company
i of total assets Ak:

Dk = Ak ×∑
g
∑
Ng

γkg × fr∋g(V̂ Ng , vh(r)) (5)

To compute the total loss at the sector × country level ξi, we must sum the losses over the
issuers. It follows that the sectoral shock writes:

ξi =∑
k∈i
Mk × Sk,t

Mi

(6)

whereMi,k are respectively the market capitalization of the sector i and company k (which
allow to account for company size in the transmission of the shock). Alternatively, enterprise
value could be used here, as there are cases where the company cash flows are being used
to cover the losses, all else being equal, and as the impacts on market capitalization of
an extreme event are often very uncertain. Assuming that this physical shock (on total
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physical assets) is transmitted proportionally to each financial asset, it allows to compute
direct physical shocks on an investment portfolio in a bottom-up fashion.

Note that we often illustrate the framework with tropical cyclones, but the approach
is generalizable to other disasters. Poisson laws (and drift) have to be generated for each
disaster, in each area. In this paper, we decided to rely on the top-down modeling of direct
shock, presented hereafter, thus we did not conducted the thorough calibration of generation
laws, climate sensitivity and damage functions for each type of extreme events and assets.

2.2 Top-down approach: stochastic shock matrix

2.2.1 Modeling occurrences of extreme events

We can express the number of extreme events in country r with a counting process:

dNr(t) = λr(t)dt + dPr(t)

The main difference is that the number of shocks is defined at the country level, while it was
specified locally in the previous section. We can even simplify:

Nr(t) ∼ P(λr)

where λr will be evaluated using historical events data. The time dependence will be pushed
in the shock rather than in the number of events per year, knowing that the model links
linearly the fraction loss and the number of events. To estimate the value of λr we count the
extreme events that have occurred in the world between 2000 and 2024 with the EM-DAT
data which classifies all the natural and technological disasters from 1900.6

In this paper, we account only for events with damage costs above 1$ Bn or representing
more than 1% of the GDP of the impacted country (from the World Bank Data7) since
2000. Furthermore, we focus on extreme events which frequency and intensity are directly
impacted by climate change. Thus, we include floods, storms (tropical and extra-tropical),
extreme temperatures / heatwaves, droughts or wildfires, still modeling the specific case of
tropical cyclones in this paper. We count overall 376 extreme events in the world. Those
disasters are distributed in the different regions as described in Table 1.8

2.2.2 Downscaling of the shocks

For each country, we decompose the losses at the sector-level. We also consider that multiple
countries may experience concurrent impacts within a single year. To take this into account,
we introduce stochastically the function of direct losses and for each time define the diagonal
sparse matrix (of same dimension than A the input-output matrix):

Sdiag =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ1r 0 ⋯ 0
0 ξ2r ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ ξnr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6available at: https://public.emdat.be/.
7available at: https://data.worldbank.org/.
8See Table 10 in Appendix for more details.
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Table 1: Statistics of damages and frequencies of extreme events per region

Number Freq λr per year Mean Total Dam ($Bn) Std of Total Damage ($Bn)
Africa 9 0.38 1.158 1.894
Americas 228 9.5 6.495 18.458
Asia 86 3.58 3.579 3.758
Europe 27 1.13 2.160 1.860
Oceania 26 1.08 1.145 1.224
Overall 376 15.67 5.019 14.630

where ξii are the damage functions (defined formally in the next paragraph),
Di,r

GDPi,r
are

the simulated damages for sectors i in country r at time t, CSSP−RCP is the mean coefficient
of increase of direct damages for each SSP-RCP scenarios. As in previous section, Di,r can be
adjusted depending on the proximity of occurrence of the event as regards previous events.

The increasing occurrence of extreme events with climate change must be calibrated
externally, globally or locally, ideally for each event type. In this exercise, we illustrate the
functioning of our framework with a simple linear parameter retrieved from the CATHERINA
model. Thus, we use the value for CSSP−RCP associated to the SSP 5-RCP 8.5 (without
growth in exposure). This would correspond approximately to an annual increase of 4%
between 2020 an 2070 (see Example Box bellow). Note that the increase of damages and
their occurrence through time can be extended to all kinds of extreme events. They however
require precise calibration and data, and are not the purpose of this paper.

Example of annualized regional damage increase modeling

In CATHERINA, Le Guenedal et al. (2022) introduce physical asset value from
Eberenz et al. (2019, 2020) and project it on the SSPs to simulate damage induced by
synthetic tracks.

Results from Le Guenedal et al. (2022)

Historical-ERA-5

SSP2-RCP26

SSP2-RCP45

SSP3-RCP26

SSP3-RCP45

SSP4-RCP26

SSP4-RCP45

SSP5-RCP26

SSP5-RCP45

SSP5-RCP85

S
ce

na
rio

s

0 50 100 150 200 250 300 350 400 450 500

Global mean annual damage in USD Billion

(0,0) No exposure growth
(0,1) Change of exposed population
 (1,0) Change of GDP per capita
(1,1) Projection without adaptation
(1/3, 1) Projection with adaptation
Historical simulations

 Adaptation assumptions ( 1, 2)

One can use directly the global output of this model to compute change in cyclone-
related damage exposure at the country level.a We reiterate the final results suggested
by the model (Le Guenedal et al., 2022). Above, the expected value of global annual
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damage (in USD billion) in different SSP-RCP and exposure projection hypothesis
configurations can be found. Adaptation assumptions have a huge impact on the rate
of growth of cyclone-related damages to the economy. For example the SSP 5-RCP 8.5
scenario under no exposure growth assumption (upper blue bar, 100 billion $ mean
annual damage) presents lower mean annual damages at the horizon 2070 than SS
2-RCP 2.6 with no adapation (lower purple bar, 150 billion $ mean annual damage).

It illustrates the estimation of annualized damage increase in the hottest scenario
(RCP 8.5) and the fossil-fueled development shared socioeconomic pathways (SSP 5)
while we only consider the increase of damages induced by global warming. It means
that we do not acknowledge for the rise of GDP per capita or population. With these
assumptions, the average damages is to be tripled by 2070/80b (Le Guenedal et al.,
2022). The evolution in time of extreme event intensity may be based on CATHERINA
model, and similar works, calibrating CSSP−RCP on the results.

Example of linearization of the damage growth suggested in Le Guenedal et al. (2022)

We may suppose that this increase is distributed linearly and independently of the
region, namely that each year we have the same rise of losses of approximately 4%.
Thus the mean coefficient of increase of damages of extreme events due to climate
change at annual step t̂ = t − 2020 be:

CSSP−RCP (t) = 0.04 × t̂

Note that an exponential rate of growth remains very credible.

aOther papers such as Meiler et al. (2023), also explore the changes in future exposure and eco-
nomic impact of tropical cyclones.

bUnder the assumption of no future adaptation, the RCP 2.6 scenario, consistent with the Paris
Agreement aiming to keep global warming below 2°C by 2100, forecasts a quadrupling (factor of 4.2)
of the expected global annual financial losses from tropical cyclones over the 2070-2100 period. Under
the conservative assumption of no exposure growth, for the RCP 8.5 scenario, ignoring changes in
GDP per capita and population, the expected damage would still grow by a factor of 2.8. Supposing
that the damages grow evenly per year we have the following rate of increase: 2.8−1

2070−2020
∼ 4%
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This approach requires to introduce hazard and country specific damage functions. In
line with remark 2.1.1, we reiterate that each hazard has a different measure of intensity
(flood depth (m), consecutive dry days without precipitation (days), wind speed (m/s), etc.)
and each country, sector, or even at a more granular level facility, has different damage
curves. In the context of global portfolio assessment, we choose to rely on an empirical
approach simulating directly the damages based on past observations.

2.2.3 Top-down damage function

To model the distribution of extreme event damages in terms of fraction of GDP, we use a log-
normal law9 approach as commonly used in statistical modeling to capture the positiveness
and right-skewness of losses, and introducing a representation of the reduction of damages
within relatively short successions of events, and a penalty coefficient to embody the different
sensitivities of each sector to the extreme event:

ξi,r,t = Nr ×LN (µr, σr) × (1 + CSSP−RCP (t))
t × (1t∈]0;T ]θt + 1(t=0)∪(t>T )) × ρi (7)

where µr and σr are parameters accounting for the intensity of damages calibrated using
historical data in the EMDAT database, θt ∈]0;T ] is a multiplier for a damage occurring
between 0 excluded, and T when the asset has been fully rebuilt. The second indicator
function covers the other cases: t=0 means that no event has ever occurred, while t > T
means that the structures have completely recovered from any previous event. Finally, ρi
is a multiplier of the damages related to industry i as we do not expect the damages to be
evenly distributed across sectors. It follows a β(αi,βi) law.

We first, compute the mean µe and standard deviation σe of the damages of the observed
extreme events in percent of GDP. We then use the following formulas between the log-
normal parameters and the expected mean and standard deviation:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

µ = ln(
µ2
e

√
µ2
e + σ

2
e

)

σ2 = ln(1 +
σ2
e

µ2
e

)

Table 10 shows that extreme events cause a loss of 5.21 $Bn in average between 2000 and
2017, with standard deviation of 12.54 $Bn. In terms of percent of GDP of the countries
affected it comes to 3.35% of mean damages and 0.144 of standard deviation. We calibrate µ
and σ2 according to the following table to take into account the disparities between countries.

These figures present the main countries that have been affected by extreme events over
the past 24 years, and the corresponding calibration of µ and σ for the log-normal law. These
parameters are used in the simulation procedure in section 4.

9The use of log-normal or power laws is discussed in Blackwell (2015) in the context of damages of
American hurricanes between 1900 and 2005
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Table 2: Regional calibration of µ and σ

Country µ σ

Australia -5.901 0.115
China Mainland -7.502 0.167
France -5.16 0.105
India -5.438 0.145
Japan -6.513 1.266
Mexico -4.397 0.128
United States of America -7.817 1.868

Calibration of sectoral damages: case of tropical cyclones

Using the empirical evidence from Debbie Tropical Cyclone (2017) brought by Lenzen
et al. (2019), we can determine the parameters µi,r and σi,r describing the fraction loss
in terms of the different sectors and regions. We reproduced in Annex Table 7 the
fraction losses for Australian sectors after Debbie. We also need to take into account
the vulnerability of each region. To do so we use a vulnerability parameter vh(r) which
describes the speed of wind that generates a fraction loss of 50% in the region r. This
parameter is cataloged in Table 13 using CLIMADA model from Eberenz et al. (2021).

Using the values of ξi,Aus from the Table 7 and the values of vh(r) in Table 13 we can
find the standard deviation of each country and sector. Let σ be the standard deviation
of all the non-null values of sectorial fraction loss from Debbie Tropical Cyclone, we
choose:

⎧⎪⎪
⎨
⎪⎪⎩

σi,r = σ = 0.093 for every region r, if sector i highly relies on physical assets

σi,r =
1
2 × σ for every region r, if sector i does not rely on physical assets

Indeed, averaging non zero damages for every region in Australia gives us that agricul-
ture related sectors (highly reliant on physical assets) lead the damages fraction with
about 17%, followed by accommodations (6.7%) and energy (6.2%), while transports,
trades, construction and health, although impacted, present lower coefficients. The
choice of coefficients presented by the authors is chosen so as to generalize as well as
possible to different kind of events.

As for µ we will be considering that it is null for non-affected sectors in all regions and
otherwise that it can be retrieved from the Equation (4) and that:

µi,r = fr(V, vh(r))

where V is the speed of the tropical cyclone and vh(r) the vulnerability parameter
of the region r. The evolution of the fraction loss (or µ) function is depicted in the
Figure 1.
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3 Modeling indirect effects of physical shocks

In this section, we provide a technical review of the literature summarizing approaches of
the diffusion models allowing to represent the propagation of shocks to the economy that
are based on input-output frameworks.

When an extreme event occurs, the immediate damage to each sector/country induces
damages to the sectors linked to the initial sector. For example, if a cyclone impacts the
United States with losses to the agriculture sector, it will impact its instantaneous production
and production capacity, which in turn will impact the production of the sectors dependent
on the agriculture sector, both regionally and internationally. Prices, demand, rebuilding
demand, employment and inventories are also likely to be significantly modified. The diffu-
sion coefficient to each economy is both based on the resilience of each sector (capacity to
overproduce) and the interconnection between the sectors (input-output tables).

Proper modeling is of highest concern for many actors of the economy as reported dam-
ages related to extreme events occurrence (and temporal dynamics) usually only concern
direct effects and a very small part of the indirect damages. We illustrate some case studies
with examples and corresponding computations.

3.1 Classical input-output diffusion through sector requirements

The physical damages could impact the value-added in a similar way to transition risks, as
described in Desnos et al. (2023). However, there is a key difference: we expect physical risk
to be more locally concentrated. We model this difference as a constant factor that modifies
the impact of physical damages. Considering a flexible price model:

pj =
n

∑
i=1Ai,jpi + vj + Sdirect (8)

where A = (Ai,j) is the input-output matrix, pj is the price of sector j, vj is the added-value
of the sector j and Sdirect is the direct shock rate vector. Thus:

p = (In −A
⊺)−1(v + Sdirect)

Ô⇒ ∆p = (In −A
⊺)−1Sdirect

(9)

Sindirect =∆p

= (In −A
⊺)−1Sdirect

The total shock on the different sectors is:

Stotal = Sdirect + Sindirect

= Sdirect + (In −A
⊺)−1Sdirect

(10)
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And we can then multiply by the global output to get the total loss on the economy:

Stotal loss = x⊙ (Sdirect + Sindirect) (11)

Here, there is a strong assumption that the price of the damage caused by the disaster
will be passed on the output prices. In practice, it may not be that simple for numerous
reasons: First, costs of damages may not have the same pass-through (if there is any) as a
carbon tax as it is presented in Desnos et al. (2023). Unlike a taxation like the carbon tax
that is supposed homogeneous in Desnos et al. (2023) — where the incidence falls relatively
uniformly across sectors and worldwide and thus does not perturb the relative competitive-
ness (in case of global carbon pricing) — the pass-through of idiosyncratic damages is more
uncertain.

A tax has the potential to be fully transmitted onto prices in a manner that is sector-
agnostic, preserving inter-sectoral competitive equilibrium. On the contrary, localized dam-
ages bring out an asymmetric shock to the cost structure of affected entities, which are
constrained by the elasticity of demand and the price-setting strategies of competitors. In
other terms, if a steel manufacturer loses physical capital, it may not be able to shift-up the
price of steel because competitors may not have faced extreme events. Therefore, while a
tax could theoretically result in a neutral shift in the supply curve across industries, disaster
damages may not. Affected firms are likely to face a competitive disutility if they attempt
to pass these costs onto consumers, given the heterogeneity of the shock and the competitive
ceiling on price increases. These heterogeneous conditions can lead to credit stress, as the
damaged sectors may not be able to adjust their prices proportionately without eroding their
market positions.

Conversely, a temporal concentration of extreme events — multiple incidents within a
narrow time frame, such as a single calendar year — could catalyze systemic economic stress.
This confluence can induce an anxiety-propelled escalation in the prices of key commodi-
ties, potentially exceeding the tangible costs of damages incurred. This inflationary effect
goes beyond the direct impact of the events to reflect the market’s response to perceived
scarcity, heightened risk aversion, and anticipatory behaviors associated with securing re-
sources against future disruptions. The resulting price inflation thus embodies not only the
actualized costs but also a behavioral risk premium born from collective market trepidation.

For extreme shocks on some particular strategic sectors that are not present in many
regions (e.g. semiconductor in Taiwan), the disruption of the supply-chain may have even
higher costs. This can be seen as well for businesses with a strong dependence. In gen-
eral, the sectors most impacted by extreme weather like tropical cyclones, are sectors with
strong reliance on physical infrastructures, for example, mining and materials, fossil fuel
and pipelines, manufactures and heavy industries, and utilities. These industries often ben-
efit from quasi-monopolistic status allowing them to pass most of the input costs into their
products.

Nevertheless, we make the reasonable assumption in this paper that direct physical losses
translate to output prices through common mechanisms. Therefore, we adapt Desnos et al.
(2023) to include a constant, multiplier of the losses. An alternative would be to impact
more strongly local markets via the adaptation of the pass-through rate.
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Example 1: Illustration of the direct shock diffusion

Let us introduce an example decomposing the Australian economy into four different
sectors: Energy, Agriculture, Industries and Services. Taking the following random
Input-Output matrix, value-added and output:

Sector A x
Energy 0.22 0.4 0.16 0.01 171
Agriculture 0.15 0.35 0.12 0.2 146
Industries 0.1 0.15 0.15 0.11 82
Services 0.45 0.1 0.25 0.1 171
Value added 35 12 20 50
Income 50 40 8 32

Thus, the Leontiev matrix can be expressed as:

L = (I4 −A
⊺)−1 =

⎛
⎜
⎜
⎜
⎝

1.8613 0.8889 0.5280 1.1761
1.3601 2.3358 0.7197 1.1395
0.6611 0.6770 1.4794 0.8167
0.4037 0.6117 0.3466 1.4772

⎞
⎟
⎟
⎟
⎠

and the production vector is:

x =

⎛
⎜
⎜
⎜
⎝

171
146
82
171

⎞
⎟
⎟
⎟
⎠

We also compute the vector v of value added ratios:

v =

⎛
⎜
⎜
⎜
⎝

35/171
12/146
20/82
50/171

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

0.21
0.08
0.24
0.29

⎞
⎟
⎟
⎟
⎠

First, we note that Lv = p− = 14, meaning that the prices pre-disaster are standardized
and equal to one.

In this framework, we can introduce a tropical cyclone (with similar consequences than
Debbie), causing direct losses of 30% of the agriculture sector, 10% of the industrial
sector, 20% of the energy sector and 10% of the services. It leads to the direct losses
vector:

Sdirect = x⊙

⎛
⎜
⎜
⎜
⎝

0.2
0.3
0.1
0.1

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

34
44
8
17

⎞
⎟
⎟
⎟
⎠
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Therefore, Equation (9) gives us post disaster prices:

p = L(v + SD)

=

⎛
⎜
⎜
⎜
⎝

1.8613 0.8889 0.5280 1.1761
1.3601 2.3358 0.7197 1.1395
0.6611 0.6770 1.4794 0.8167
0.4037 0.6117 0.3466 1.4772

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0.41
0.38
0.34
0.39

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

1.7375
2.1393
1.3563
1.0967

⎞
⎟
⎟
⎟
⎠

Indirect loss is: Sindirect = x⊙

⎛
⎜
⎜
⎜
⎝

0.74
1.14
0.36
0.10

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

126
166
29
17

⎞
⎟
⎟
⎟
⎠

Thus, the total shock is:

Stotal loss = Sdirect loss + Sindirect loss =

⎛
⎜
⎜
⎜
⎝

160
210
37
34

⎞
⎟
⎟
⎟
⎠

meaning that indirect shocks represent on average more than 70 % of the total shock
experienced due to the disaster. For example, as Debbie caused AUS 3.5 billion $ of
direct damages, this would imply additional damage of AUS 8.1 billion $. In practice,
total reported damage may also already account for a part of the indirect shocks.

To account for global diffusion of extreme event shocks, we introduce a multi-regional
input-output database and illustrate the impacts of applying a uniform direct shock rate
of 20% to the United States of America and Australia. This amount is well above any
historical record for these two countries and is used for illustrative purpose only to measure
the diffusion effect. The 20 internal and external sectors whose prices were most affected by
both disasters are illustrated in Figure 2 for the USA (and Figure 12 in the Appendix for
Australia).

We observe on the Figure 2 that the sectors most affected by the diffusion of a shock in the
US are located in Mexico and Canada for all but one and that those sectors are mostly vehicle
or transport equipment manufacturing, petroleum, chemicals, metal or other manufacturing
overall sectors. As a matter of fact, according to the United States Census Bureau10 the
first two locations of American exportation are Canada first and Mexico second, respectively
accounting for 17.6% and 16.6% of the US total exports. Furthermore, according to the
Sherbrooke University11 figures, in 2015, manufactured products represented 75% of the

10https://www.census.gov/, last visited in
11https://perspective.usherbrooke.ca/bilan/servlet/BMImportExportPays?codePays=USA, last visited in
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Figure 2: Illustration of price dynamics sector per sector after the American disaster
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CAN-Transport Equipment Manufacturing

CAN-Metal Fabrication

IRL-Chemical Manufacturing

MEX-Petroleum and Coke Production

MEX-Machinery Repair and Installation

MEX-Metal Fabrication

In the Rest of the World

exportations of the United States within mostly metals, chemicals, transport and machinery
equipments. Petroleum is also highly exported. Overall the sectors and regions affected
using this method both make sense. (See also Figure 13 for the links between Australia and
the 10 most affected countries).

Figure 12 shows that the most affected sectors by second round impact of tropical cy-
clones hitting Australia are located in Taiwan, Japan, India, Malta, Korea (South), China,
the Netherlands, Bulgaria or the United Kingdom and are mostly metal or metal manufac-
turing sectors such as ‘basic metal manufacturing’ and other kinds of manufacturing such as
machinery. It makes sense, indeed, according to the Observatory of Economic Complexity12,
the top exports of Australia are metal related sectors and industrial machinery and the most
places where it exports are China, Japan, South Korea and India. Thus, there is a clear link
between the top exportation sectors and countries and the countries and sectors where the
difference of price is the highest after a potential Australian disaster.

We then compare the internal and external diffusion for both the Australian and Amer-
ican disaster. To do so, we consider extreme cases (e.g. ‘worse case scenario’) with direct
damages in the US of 20% of the production (e.g. 0.2 ⋅x) and the indirect damages are ∆p ⋅x.
The direct damages in the rest of the world are null and the indirect damages are defined
similarly. This way, we are able to compute the value of indirect damages per sector and
country and also the value and distribution of direct and indirect damages internally to the

12https://oec.world/en/profile/country/aus, last visited in
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US. The following table compares the overall diffusion of the shock either in Australia or in
the US on the concerned country and on the rest of the world using the following metrics:

Amplification ratio =
Indirect Damages +Direct damages

Direct Damages
− 1

The results are illustrated Table 3. We note that a direct and indirect total shock in the
USA affecting 20% of the production would lead to impact up to 7 trillion $ with indirect
impact on the rest of the world of 1 trillion $. On the other hand, the same faction loss in
Australia would lead to a direct impact of 1 trillion $ for 217 billion $ of indirect losses.

Table 3: Diffusion of the direct shock in the USA and in Australia after a disaster

Total damages (USD billion) Amplification ratio

United States of America
Internal 7 204.3 67.4 %
ROW⋆ 1089.9 15.1 %

Australia
Internal 1 366.7 73.8 %
ROW 217.2 43.5 %

Notes: ⋆ Rest of the world is computed aggregating all the countries in Exiobase external to the
country impacted.

Pass-through rate Unlike for transition risk and carbon price diffusion, there is less
literature on the fraction of total physical damage and repair costs cascading in the supply-
chain. We can however intuit a similar mechanism (under certain competition assumptions)
and introduce a pass-through rate ϕ, which depicts how much of the direct losses suffered by
a sector will be passed onto the prices and thus impact other sectors. As discussed earlier, we
add a modifying constant c to this pass-through rate to take into account the more ”local”
diffusion of an extreme event in average. This variable ranges from 0%, meaning that there
is no diffusion and each industry bears the full losses, to 100% meaning that all the losses
are passed onto the prices. The general formula is as followed (Desnos et al., 2023):

ϕ =
dp

dτ
=

price sensitivity of supply

price sensitivity of supply - price sensitivity of demand
× c (12)

and for each sector i it can be simplified this way:

ϕi =
1

1 −
price-demand elasticity of sector i

price-supply elasticity of sector i

× c (13)

The pass-through rate is highly dependent on the economic situation of the sector we con-
sider; it can be lower than 50% only in perfect competition settings. Otherwise it is always
greater than 50% and can even be greater than 100% if the demand is highly convex (Desnos
et al., 2023), even if the situation is unlikely in practice. Knowing that the pass-through
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Figure 3: Standard probability distribution of pass-through rates from Desnos et al. (2023)
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rate exclusively depends on price elasticity, we can use the figures and modeling used for the
carbon tax pass-through rate from Desnos et al. (2023) modulo a constant c.

It is described in Desnos et al. (2023) that the pass-through rate follows a Beta law β(α,β)
whose parameters can be found either using a method of maximum likelihood or a method
of moment. The Table 9 which describes the probabilistic parameters of the law in function
of the four sector’s price elasticity can be found in annex as well as the distribution of the
different sectors to the different levels of elasticity (Table 8). The probability distribution of
those pass-through rates is found in Figure 3.

Replacing in 10, we get:

Stotal = Sdirect + Sindirect

= Sdirect + ϕ × (In −A
⊺)−1Sdirect

(14)

The modeling of pass-through rates using Beta laws allows us to introduce some non-linearity
in the relationship between output prices, shocks and value-added.

Remark 1 West and Jackson (2004) have introduced another non-linear representation of
input-output modeling with application to regional impacts of tourism on Australian economy.
The delta in prices is being introduced as:

∆p = (In −A
⊺)−1(∆Ŵ +∆Ô +∆M̂)(X̂−10 )i (15)

where W is the vector of household income flows by industry, O the vector of other value
added by industry (that could be integrated in our framework as idiosyncratic shocks to the
economy that are neither from direct nor indirect origin), and M the vector of competitive
imports by industry.
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3.2 Optimal production after extreme events

Steenge and Bočkarjova (2007) proposed an approach accounting for the labor. The model
starts from the standard economic open model stating that:

x = Ax + y

L = lx
(16)

where A is the matrix of input coefficients, l the row vector of direct labor input coefficients,
x the vector of total output, y the vector of final demand and L (scalar) total employment.
Posing:

h =
y

L
, M = (

A h
l 0
) , and q = (

x
L
)

We obtain the following Equation:
Mq = q (17)

it represents the economy’s potential to self-reproduce if sectoral capacities are at level q. If
SD = (ci)1≤i≤n+1 is the shock matrix, ci being the fraction of production capacity of industry
i destroyed by the disaster, the vector of remaining sectoral capacity can be expressed this
way:

Remg = (I − SD)q (18)

meaning that if we consider that Equation (17) represents the pre-event situation of full
employment and no idle capacity and that the matrix SD is not null then:

M(I − SD)q ≠ SDq (19)

unless SDq = cq and in that case the economy is shrinking and only replicates at 100(1 − c)
percent of its earlier level. In the other case, the same proportions cannot be replicated. In
this case let us note t the changed total available inputs after the disaster then:13

M(I − SD)q = t (20)

Example 2: Post-disaster production optimization

Using data from example 1, we suppose the sectors can be decomposed into Energy,
Agriculture, Industries and Services with the following input-output matrix:

Sector A

Energy 0.22 0.4 0.16 0.01
Agriculture 0.15 0.35 0.12 0.2
Industries 0.1 0.15 0.15 0.11
Services 0.45 0.1 0.25 0.1

13For more details, Steenge and Bočkarjova (2007) explain precisely the general case and the consequences.
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Then, taking l =

⎛
⎜
⎜
⎜
⎝

2.8
0.7
1.4
2.1

⎞
⎟
⎟
⎟
⎠

as the vector of labor input coefficients meaning that in the

energy sector, one unit of output needs the work of 2.8 people and in the agriculture

sector, one unit of output needs the work of 0.7 people. Finally, we set y =

⎛
⎜
⎜
⎜
⎝

60
25
12
42

⎞
⎟
⎟
⎟
⎠

the

vector of final demand (in Bn $ US). Using Equations (16), we can respectively find

the vector of total output: x =

⎛
⎜
⎜
⎜
⎝

171
146
82
171

⎞
⎟
⎟
⎟
⎠

and the total employment: L = 1053. Knowing

that, we pose:

h =
y

L
=

⎛
⎜
⎜
⎜
⎝

0.057
0.024
0.011
0.040

⎞
⎟
⎟
⎟
⎠

, M = (
A h
l 0
) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.22 0.4 0.16 0.01 0.057
0.15 0.35 0.120 0.2 0.024
0.1 0.15 0.15 0.11 0.011
0.45 0.1 0.25 0.1 0.04
2.8 0.7 1.4 2.1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

171
146
82
171
1053

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Doing so, we obtain a vector of demand ‘per capita’ h, an output vector extended to
labor and we create a matrix M allowing us to link both Equations (16). We then
can write the pre-disaster equilibrium both in terms of input-output and of labor, as
Equation (17) states:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.22 0.4 0.16 0.01 0.057
0.15 0.35 0.120 0.2 0.024
0.1 0.15 0.15 0.11 0.011
0.45 0.1 0.25 0.1 0.04
2.8 0.7 1.4 2,1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

171
146
82
171
1053

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

171
146
82
171
1053

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We suppose that the energy, agriculture, industries, services sectors and the employ-
ment experienced a loss of production capacity fraction after a natural disaster of 0.2,
0.3, 0.1, 0.1 and 0.15 meaning that:

I − SD =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8 0 0 0 0
0 0.7 0 0 0
0 0 0.9 0 0
0 0 0 0.9 0
0 0 0 0 0.85

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Equation (20) gives us:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.22 0.4 0.16 0.01 0.057
0.15 0.35 0.120 0.2 0.024
0.1 0.15 0.15 0.11 0.011
0.45 0.1 0.25 0.1 0.04
2.8 0.7 1.4 2,1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8 0 0 0 0
0 0.7 0 0 0
0 0 0.9 0 0
0 0 0 0.9 0
0 0 0 0 0.85

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

171
146
82
171
1053

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

135
117
67
141
880

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(21)

It shows that the economic equilibrium is perturbed because input and output-sides
of the Equation (21) do not match. We can extract the 4 first rows of the equation
corresponding to the input-output part without the influence of the sectoral interde-
pendence equilibrium labor and we end up with the following:

⎛
⎜
⎜
⎜
⎝

0.22 0.4 0.16 0.01
0.15 0.35 0.120 0.2
0.1 0.15 0.15 0.11
0.45 0.1 0.25 0.1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

136.5
101.9
73.8
153.8

⎞
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎝

51
21.3
10.2
35.7

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

135
117
67
141

⎞
⎟
⎟
⎟
⎠

as (I − SD)q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

136
102
74
154
895

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(22)

We need to raise an IO from the Equation (21) which will allow us to see what are the
post-disaster possibilities id est we need to find an equation such as:

Ax̃ + ỹ = x̃ where x̃ =

⎛
⎜
⎜
⎜
⎝

136
102
74
154

⎞
⎟
⎟
⎟
⎠

Hence, expected consumption in the post-disaster period is given by:

⎛
⎜
⎜
⎜
⎝

0.22 0.4 0.16 0.01
0.15 0.35 0.120 0.2
0.1 0.15 0.15 0.11
0.45 0.1 0.25 0.1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

136
102
74
154

⎞
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎝

52.3
6.1
16.9
48.4

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

136
102
74
154

⎞
⎟
⎟
⎟
⎠

(23)

Here, total demand y is adjusted. Equation (23) shows that the output from the energy
sector drops to 136 after the disaster decreasing by 20% and the output from the
agriculture sector drops to 101.9 decreasing by 30% compared to before the disaster.
It also points out that the final demand of the energy is 52.3 and has suffered a 13%
drop while the final demand of the agriculture is 6.1 and experienced a 76% drop.

Thus, using Equation (16), we can express L̃ such that L̃ = lx̃ corresponding to the
equilibrium employment that the State is capable to ensure without loss:

L̃ = (2.8 0.7 1.4 2.1)

⎛
⎜
⎜
⎜
⎝

136.5
101.9
73.8
153.8

⎞
⎟
⎟
⎟
⎠

= 880
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We can compare this figure with the last component of (I−SD)q found in the Equation
(22) which corresponds to the total employment available after the disaster and is equal
to 895. We notice that the total employment available post-disaster is larger than the

equilibrium employment meaning that the net output is not enough to satisfy the
demand of the surviving workforce. There seems to be a disproportion between the
losses in the economy and different sectors and the losses of workforce.

Lenzen et al. (2019) starts from Steenge and Bočkarjova (2007) method of determina-
tion of post-disaster possibilities but finds out that in some extreme cases it does not
make sens. Indeed, let us bring back the example explained right above but supposing
in this case that the sector 1 (Energy) has lost 80% of its production capacity. In this
case:

I − SD =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0.2 0 0 0 0
0 0.7 0 0 0
0 0 0.9 0 0
0 0 0 0.9 0
0 0 0 0 0.85

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Equation (22) thus becomes:

⎛⎜⎜⎜⎝
0.22 0.4 0.16 0.01
0.15 0.35 0.12 0.2
0.1 0.15 0.15 0.11
0.45 0.1 0.25 0.1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
34
102
74
154

⎞⎟⎟⎟⎠ +
⎛⎜⎜⎜⎝
51.2
21.3
10.2
35.7

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
113
102
57
95

⎞⎟⎟⎟⎠ (24)

leading to this post-disaster I-O equation:

⎛⎜⎜⎜⎝
0.22 0.4 0.16 0.01
0.15 0.35 0.12 0.2
0.1 0.15 0.15 0.11
0.45 0.1 0.25 0.1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
34
102
74
154

⎞⎟⎟⎟⎠ +
⎛⎜⎜⎜⎝
-27.5
21.5
27.1
94.4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
34
102
74
154

⎞⎟⎟⎟⎠ (25)

meaning that we find a negative post-disaster final demand which economically does
not make sens. We would want to find the maximum possible shock given an input-
output matrix that economically makes sense using Cholesky decomposition. It would
also be possible to correct an existing input-output matrix so that a reasonable shock
could lead to accurate final demand values.

To guarantee the existence of a non-negative output vector that solves the equilibrium
in the input-output model where final demand equals total output, the Hawkins-Simon
condition for (I-A)=B has to stand:

(i) There exists an x ≥ 0 such as B ⋅ x > 0

(ii) All the successive leading principal minors of B are positive, that is:

b11 ≥ 0, [
b11 b12
b21 b22

] > 0, . . . ,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11 b12 . . . b1n
b21 b22 . . . b2n
⋮ ⋮ ⋱ ⋮

bn1 bn2 . . . bnn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0

(26)
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The general method of Steenge and Bočkarjova (2007) is as follows: let x, y, A, L and l
be respectively the production, final demand, input-output matrix, global employment and
the vector describing the quantity of labor needed for one unit of output, all those before a
disaster. Supposing that the country we consider undergoes an event destroying the fraction
si of each industry i and e for the employment. We write:

SD =
⎛⎜⎜⎜⎝
s1 ... ... 0
... .. ... ...
... ... sn−1 0
... ... 0 sn

⎞⎟⎟⎟⎠ (27)

Therefore the post-disaster production and final demand are as follows:

⎧⎪⎪
⎨
⎪⎪⎩

x̃ = (I − SD) × x

ỹ = (I −A) × x̃
(28)

The difference with the cost-push Leontiev Input-Output method is that it addresses the issue
of employment and we find that there is a difference between the equilibrium employment
that the State is capable to ensure without loss after the extreme event being:

L̃ = lx̃ =
n

∑
i=1 li(1 − si)xi

and the total employment available after the disaster:

L̂ = (1 − e)L

Therefore, there can be a surge of unemployment after an extreme event because the work-
force available is greater than what the state and the private actors are capable to econom-
ically ensure. Lenzen et al. (2019) chose a more comprehensive approach to tackle those
issues that can be raised while looking for the most probable post-disaster consumption.
They actually try to find non-negative post-disaster consumption that maximizes the sum
of its coordinates while being solution of an Input-Output equation for which the output
named x1 will be actually smaller than the output x̃ found in the Steenge and Bočkarjova
(2007) method. They present the following mathematical input-output disaster analysis for-
mulation: the level of total economic output x0 of industry sectors 1, ...,N after a disaster
is given by:

x̃ = (I − SD) ⋅ x (29)

where SD is a diagonal matrix with diagonal elements s ∈ [0; 1] the direct consequences of
the disaster and I identity matrix. The post-disaster consumption y1 as the solution of the
linear problem:

max(1y1) s.t.

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y1 = (I −A)x1 (i)
x1 ≤ x̃ (ii)
y1 ≥ 0 (iii)

(30)
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where 1 is a line vector of ones and A = T x̄1
−1

is a matrix of input coefficients, while x1 is
the post disaster total economic input and T intermediate transaction matrix.14 A disaster
implies a decrease in consumption levels: y1 = y −∆y which causes losses of value added and
employment:

∆Q = q∆x = q(I −A)−1∆y = ∞∑
n=0 qA

n∆y (31)

where q holds value added and employment coefficients.

Example 3: Post-disaster production optimization

As an example we are going to solve the Lenzen et al. (2019) optimization problem
exposed earlier in this section. Continuing with previous example’s data we are going
to arbitrarily set the direct loss production matrix:

SD =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.2 0 0 0 0
0 0.3 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0
0 0 0 0 0.15

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, x =

⎛
⎜
⎜
⎜
⎝

171
146
82
171

⎞
⎟
⎟
⎟
⎠

and A =

⎛
⎜
⎜
⎜
⎝

0.22 0.4 0.16 0.01
0.15 0.35 0.12 0.2
0.1 0.15 0.15 0.11
0.45 0.1 0.25 0.1

⎞
⎟
⎟
⎟
⎠

To find post-disaster consumption, we need to solve the following optimization problem
(gathering Equations (25) and (30) together):

max(1y1) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = ⎛⎜⎜⎜⎝
0.78 0.6 0.84 0.99
0.85 0.65 0.88 0.8
0.9 0.85 0.85 0.89
0.55 0.9 0.75 0.9

⎞⎟⎟⎟⎠x
1

x1 ≤ ⎛⎜⎜⎜⎝
136
102
74
154

⎞⎟⎟⎟⎠
y1 ≥ 0

⇐⇒ max(1y1) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

0.51 −2.751 5.348 −3.403
−2.434 −0.9 2.108 1.392
−2.575 8.712 −7.57 2.573
4.268 −4.679 0.931 −0.346

⎞
⎟
⎟
⎟
⎠

y1 ≤

⎛
⎜
⎜
⎜
⎝

136
102
74
154

⎞
⎟
⎟
⎟
⎠

y1 ≥ 0

14The primary IO accounting relationship, designated as constraint (i) in Equation (30), implies that for
every economy, the sum of intermediate demand, denoted as T , and the final demand, represented by y, is
equal to the total output x. This is validated by the equation y1 = (I −A)x1 = x1 − T 1, thus T 1 + y1 = x1.
Constraint (ii) implies that in the immediate aftermath of a disaster, the total output cannot exceed the
total output prior to the disaster minus the losses due to the disaster. Constraint (iii) mandates that the
final demand, y, should always be greater than zero. This formulation, denoted as condition (i), deviates
from the method employed in Steenge and Bočkarjova (2007), since it is essential in our case to confirm that
the final demand, y, maintains a positive value (Lenzen et al., 2019).

37



Modeling Direct and Indirect Climate-related Physical Risks

Using the scipy.optimize library in Python, we find the following post-disaster final

demand: y1 ≈

⎛
⎜
⎜
⎜
⎝

0
21.49
27.11
94.44

⎞
⎟
⎟
⎟
⎠

and the post-disaster output: x1 ≈

⎛
⎜
⎜
⎜
⎝

85.27
126.31
88.30
186.13

⎞
⎟
⎟
⎟
⎠

In this case, we

observe that the final demand of the first sector drops from 60 to 0, meaning that the
first sector has no more demand while the second sector’s demand is relatively stable
from 21.3 to 21.49. The production of every sectors are widely negatively impacted:
first sector knows a huge drop of about 50% of its production (from 171 to 85.27) while
the second a moderate of about 13.5%. The fact that the first sector is on all sides
more affected than the second one is obviously to be linked to the fact that the first
sector is shocked up to 80% while the second one of only 30% which is almost equal
to the loss of production in both cases.

Remark 2 Equations 28 present a linear relationship between total output, final demand,
total employment and the direct losses of each sector. It allows to have an understandable
and practicable representation, not too sensitive to improper modeling. However, in practice,
the relationships between each of these variables might not be linear, as introduced in the
previous paragraph and from Sandberg (1973). From 18, we can adapt the equations of
Hallegatte (2008) to our extreme events representation, taking into account indirect shocks
to the economy. It is to be noted that the calibration of pass-through rates has to be adapted
to post-disaster production and final demand equilibrium.

x̃ = (I − SDI ⋅ [1 + ϕ × (In −A
⊺)−1] )×x

ỹ = (I −A) × x̃
(32)

3.3 Adaptive regional input-output (ARIO) model

Hallegatte (2008) introduces a framework accounting for input-output adaptation including a
temporal response. This model allows us to compute the output, demand, price and adapted
matrix of technical coefficients after a shock. It also introduces a temporal dimension, and
depicts the return to equilibrium of both coefficients and sectoral activities after the event
(i.e. original value of input-output matrix and output). The framework is illustrated with
the tropical cyclone Katrina (2005).

3.3.1 Seminal adaptive framework (Hallegatte, 2008)

Let xtmax,i be the maximum output vector of sector i, at time t. It represents the maximum
production this sector including potential overproduction capacities (e.g. construction sec-
tor). The process is illustrated in Figure 4 and Figure 14. For each time t, we follow next
steps to compute the output and final demand.
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1. At t = 0, we initialize our vectors and matrix all equal to the vectors pre-disaster
(At0 = Ab,...). The shocked final demand becomes :

yt0i = y
b
i +Di

denoting the final demand pre-disaster including additional reconstruction demand D
implied by the events.

2. We compute a first-guess output vector:

xt0 = (I −A)
−1y = yt0

3. Then, we address the production capacity of each industry, the production of each
sector cannot exceed its own production capacity xtmax,i. Thus:

xt1,i =min{xtmax,i, y
t
0,i} (33)

4. For each given industry i, we establish the volume of orders that it is mandated to
satisfy on behalf of other industries:

Ot
1,i =∑

j

At
i,jx

t
1,j

Either industry i possesses the capacity to adequately supply its commodities to all
other industries, thereby not exerting any influence on the operations of these indus-
tries, or industry i is incapable of fulfilling the demand for its commodities, conse-
quently imposing restrictions on the entirety of the other dependent industries. It
leads to the computation of a new output vector:

xt2,i =min{xt1,i, for all j:
xt1,j
Ot

1,j

xt1,i} (34)

5. We therefore have two options:

• if xt1 = x
t
2, there is no bottleneck and we can compute all our variables at time t:

xt = xt2, yt = (I −A)xt, for all industry i: pti = p
b
i(1 + γp

yti − x
t
i

xti
) (35)

• if xt1 ≠ x
t
2, there is a consistency problem ; we do not consider that each industry

that produces less will also ask for less to its suppliers. We then compute a new
total demand yt1 satisfying:

yt1,i = y
t
i +∑

j

At
i,jx

t
2,j (36)

6. we replace this value of total demand in the Equation (33) until we have convergence
of the value of total output (a decreasing sequence lower-bounded by 0 is guaranteed).
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Time dependence and return to normal For each industry j, the update of time-
depending variables follows:

• If xtj < y
t
j, the industry cannot produce enough to satisfy demand, then:

αt+1
j = α

t
j + (αmax,j − α

t
j)
ytj − x

t
j

ytj

∆t

τ

At+1
i,j = A

t
i,j −A

t
i,j

ytj − x
t
j

ytj

∆t

τ
if i ∈ Ilocal and j ∈ Jlocal

At+1
i,j = A

t
i,j −A

t
i,j

ytj − x
t
j

ytj

∆t

τ
if i ∈ Ilocal and j ∉ Jlocal (exports)

At+1
i,j = A

t
i,j +A

t
i,j

ytj − x
t
j

ytj

∆t

τ
if i ∉ Ilocal and j ∈ Jlocal (imports)

At+1
i,j = A

t
i,jif i ∉ Ilocal and j ∉ Jlocal

(37)

where αmax,j is the maximum capacity to overproduce and αt,j designs the level of
overproduction at t.

• If xtj > y
t
j, the industry is capable to meet the demand. The production will return to

normal (as before the disaster) and then:

αt+1
i = α

t
i + (α

b
i − α

t
i)
∆t

τ

At+1
j,i = A

t
j,i+(ϵ +

At
j,i

Ab
j,i

)(Ab
j,i −A

t
j,i)

∆t

τ
if i ∈ Ilocal and j ∈ Jlocal

At+1
j,i = A

t
j,i+(ϵ +

At
j,i

Ab
j,i

)(Ab
j,i −A

t
j,i)

∆t

τ
if i ∈ Ilocal and j ∉ Jlocal (exports)

At+1
j,i = A

t
j,i−(ϵ +

At
j,i

Ab
j,i

)(Ab
j,i −A

t
j,i)

∆t

τ
if i ∉ Ilocal and j ∈ Jlocal (imports)

At+1
i,j = A

t
i,jif i ∉ Ilocal and j ∉ Jlocal

(38)

With our new variables we can also update the production capacity (with vi the value
added of the industry i):

xtmax,i = x
t
i(1 −

Di

4vi
)αt

i

Subsequently, we can now compute our variables at time t + 1 and so on for all the time we
want to study the consequences of our disaster.

Figure (4) (and Figure (14) in annex for further explanations) present the breakdown of
the steps of Hallegatte (2008) method of finding the post-disaster consumption at time t+1.
Starting from the value of production at time t, we first calculate the first-guess production
required. Then, including maximum production capacity xtmax at time t (which acts as the
upper boundary), we may fix the value of xt1,i. From here, there are two possibilities, either
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(i) the production value is greater than the amount of orders that the industry is required to
fulfill by other industries thus there is no other industries impacted, or (ii) the production
is strictly smaller and then every other industry experiences a limitation.

Figure 4: Breakdown of the steps of Hallegatte (2008) at each time t

Finally, if the computed production is equal to the one before, we can say that there
is no bottleneck and that we actually have found the true production value. In the other
case, we take into consideration the change of total demand of the industries due to the
reduction of production. Then, we re-inject this value of total demand to the step where
we take into account the production capacity. A loop is established and we follow it up to
xk−1 = xk eventually happens and equilibrium production is found (see above for equations
and explanations of the different variables and a simple example). Thus, we set the value of
output at time t + 1 as xk = xt+1 and the total demand is yt+1 = (I −A)−1xt+1. From there
we update the values of α and of the matrix input-output A as it is explained in Equations
(37) or (38) depending on the situation.
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Example 4: Adaptive regional input-output model

Let us introduce the vector of total final demand, the Input-Output matrix and the
production capacity vectora:

y =

⎛
⎜
⎜
⎜
⎝

60
25
12
42

⎞
⎟
⎟
⎟
⎠

, A =

⎛
⎜
⎜
⎜
⎝

0.55 0.15 0.16 0.01
0.15 0.35 0.12 0.2
0.08 0.05 0.62 0.01
0.05 0.1 0.05 0.56

⎞
⎟
⎟
⎟
⎠

and xmax =

⎛
⎜
⎜
⎜
⎝

250
180
125
200

⎞
⎟
⎟
⎟
⎠

The first-guess production is calculated as follows:

x0 = (I −A)−1y =
⎛
⎜
⎜
⎜
⎝

229
163
106
171

⎞
⎟
⎟
⎟
⎠

= y0 (39)

Since x1i = min{xmax
i , y0i }, we therefore have: x1i = y

0
i . Then, we have the first-guess

amount of orders that the industry i requires being: O1
i = ∑j Ai,jx1j , as a result we

have:

O1 =

⎛
⎜
⎜
⎜
⎝

141
350
563
100

⎞
⎟
⎟
⎟
⎠

Therefore

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x1(1) ≥ O1(1)
x1(2) < O1(2)
x1(3) < O1(3)
x1(4) ≥ O1(4)

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2(1) = min{x1(1),∀j
x1(j)

O1(j)
x1(1)}

x2(2) = x1(2)
x2(3) = x1(3)

x2(4) = min{x1(4),∀j
x1(j)

O1(j)
x1(4)}

⇐⇒ x2 =

⎛
⎜
⎜
⎜
⎝

43
163
106
32

⎞
⎟
⎟
⎟
⎠

(40)
Hence the production x1 ≠ x2 so we have to adapt the total final demand to the

decrease of the production according to Equation (36): y1 =

⎛
⎜
⎜
⎜
⎝

97
159
92
66

⎞
⎟
⎟
⎟
⎠

. From there, we

re-inject the value of y1 into the Equation (33) which gives x3 = y3. This leads us to a
new amount of order that each industry has to satisfy:

O2 =

⎛
⎜
⎜
⎜
⎝

96
181
239
62

⎞
⎟
⎟
⎟
⎠

In the same way than Equation (40) we have:

x4 = x3
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we are able to find convergence of the value of production (and a fortiori convergence
of the total final demand), being in this example:

x∞ =
⎛
⎜
⎜
⎜
⎝

97
159
92
66

⎞
⎟
⎟
⎟
⎠

and y∞ = y3 =
⎛
⎜
⎜
⎜
⎝

145
155
82
92

⎞
⎟
⎟
⎟
⎠

We see an increase of the final demand of every sector, indeed the final demand of
sector 1 goes from 60 to 145 hence an increase of 141% and the one from from sector
2 from 25 to 155 thus an increase of more than 500%. The production is also strongly
affected by the disaster. The first sector’s production is decreased from 229 to 97
(57% is lost), while the second sector’s production stays relatively even from 163 to
159 partly thanks to its capacity to overproduce.

athe value of the production is here arbitrary but Hallegatte (2008) gives a method to calculate
it according to the damages vector, the annual value-added and the capacity to overproduce of the
sectors)

Remark 3 Hallegatte (2008) introduces a thorough approach, primarily focusing on the abil-
ity to observe and calculate the progression of key economic indicators over time following a
severe event. However, this process is quite complex, and many crucial endogenous variables
are either overly specific to the case of the Katrina Tropical Cyclone (2005) in Louisiana,
or are not explicitly included in the method. These missing variables include initial or peak
overproduction capacities, the temporal characteristics of variable increase and decrease, and
the additional demand placed on sectors due to the direct shock. We cannot arbitrarily assign
values to these variables as it would significantly influence the results of our method, leading
to inconsistent and unreliable predictions.

3.3.2 Implementing the ARIO approach (BoARIO, Hallegatte, 2013)

There has been significant improvement since (Hallegatte, 2008) seminal work. For instance,
the package BoARIO15 is a python implementation project of the Adaptive Regional Input
Output (ARIO) model described in Hallegatte (2013) with improvement from Guan et al.
(2020) including world input-output matrices available in pymrio from (Stadler, 2021). Thus,
internal exchanges and the aggregate imports / exports variable of the seminal Hallegatte
(2008) approach can be adapted to world input ouput tables (c.f. Table 5).

In simple terms, the model explains how shocks, or sudden changes, spread through the
economy day by day. When there is a mismatch between how much product is being made
by a given industry and how much intermediate and final demand are being required, the
model adapts the outputs. This might mean that some businesses may not get everything
they optimally require. Households also deal with not getting what they wanted in this

15Available at: https://spjuhel.github.io/BoARIO.
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Figure 5: From local to multi-regional input-output
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j

amount of goods i
used to produce goods j

representation without asking for it at a later stage. Businesses can use their stored supplies
to make up for what they did not get and might ask for more at the next time step. Rebuild-
ing sectors also have a limited latitude to increase their production and match rebuilding
demand to a greater extent. At each time step, businesses adapt how much they produce
and order based on what they need and what they have in stock.

The direct economic impact represents how much the initial shock affects the economy.
The total economic impact also includes the knock-on effects as the shock spreads out. We
can look at the total impact in two ways: (i) Unmet demand: when households can no
longer buy what they need because of the shock and (ii) Change in production: when busi-
nesses build more or less products than what they did before the shock. In the following,
the economy is modeled as a set of economic sectors and a set of regions. An industry is a
specific (sector, region) couple. Each economic sector has to produce and draws inputs from
an inventory and from other sectors. The total demand consists of a final demand (house-
hold consumption, public spending and private investments) coming from all the connected
regions (i.e. both local demand and exports), an intermediate demand (inventory resupply)
and a rebuilding demand (where each affected sector/region asks for products from itself
and other rebuilding sectors). An initial equilibrium state of the economy is built based on
MRIO tables.
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The process initial state is as follow:16

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x0 = Z ⋅ i + Y ⋅ i
A = Z ⋅ x̂−10
Ava = Z ⋅ x̂−10

Technology and transactions information is required at sector level, regardless of the region
of provenance. We compute the following17:

ZS = Isum.Z

ZShare = Z ⊘

⎛
⎜
⎜
⎜
⎜
⎝

ZS⊗

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
⋮

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

°
m-sized

⎞
⎟
⎟
⎟
⎟
⎠

(41)

18 Then the initial inventories matrix is:19

Ω(t0) = [s . . . s]⊙

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(0)
⋮

x(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n times

⊙AS =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

s1x1(0)a11 . . . s1xp(0)a1p
⋮

snx1(0)an1 . . . snxp(0)anp

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(42)

where wpi(0) = sp.xi(0).api is the exact amount of product p required by industry i to produce
xi(0) (i.e. initial equilibrium production of i) during si temporal unit, or, alternatively, that
i could (technically) produce during st temporal units without receiving input from any
industry producing p.
The order matrix O = Z at the initial state. Then, production is driven by demand, (each
sector cannot produce more than demand), while being constrained by the orders to required
industries. Introducing the vector of overproduction capacity α = (αi) and ∆i(t) the initial
or ’direct shock’ of production capacity of an industry i, the vector of equilibrium production
capacity becomes at each time step:

xcapi = αi(t)(1 −∆i(t))xi(t) (43)

16In this section, we present the functioning of the module available at https://spjuhel.github.io/BoARIO/
BoARIO-math.html.

17I is a row summation matrix of concatenated identity matrices of size r ∗ s
18⊘ is the Kronecker product which repeats each row of ZS m times.⊗ is the matrix element-wise division (including that if initial order to an industry was null, the share

ordered is also null).
19AS and ZS are aggregated technology and transition at the sector level.
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the realized actual production at each time follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DTot(t) = O(t) ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
⋮

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ Y ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
⋮

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ Γ × τREBUILD

xOpt(t) = (min (dTot
i , xCap

i ))

ΩCons(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

s11 . . . sp1
⋮ ⋱ ⋮

s1n ⋯ spn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊙

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xOpt(t)
⋮

xOpt(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊙AS ⋅ ψ

xa(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xOpt
i (t) if wi

p(t) > w
Cons,i
p (t)∀p

xOpt
i (t) ⋅minp∈S ( ws

p(t)
wCons,i

p (t)) if wi
p(t) < w

Cons,i
p (t)∀p

where each equation represents respectively:

- Total demand DTot

- Optimal production without inventory constraints for each industry xOpt

- Inventory constraint for each input ΩCons(t), as the share ψ of the quantity of stock
required to produce sip temporal unit of production at the level of previous step.

Then, distribution module defines how actual production is allocated towards demands from
other sectors. The following equation materializes that each client will receive a share of
their order as a proportional rationing scheme if the demand of industry i is greater than its
production.

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

OReceived(t) = (
oij(t)
dTot
i (t) ⋅ xai (t))i,j

Y received = (
yi

dTot
i (t) ⋅ xai (t))i

ΓRepair(t) = (
γi⋅τREBUILD

dTot
i (t) ⋅ xai (t))

i

Remark 4 logically, if the inventory of product p ∈ S of an industry i is lower than its
required level then i’s production is reduced ; an inventory reduction of x% leads to x%
reduction in production, everything else being equal.

where γi is the total rebuilding demand towards industry i and τREBUILD is the rebuild
characteristics time20. The inventory resupply can be modeled using the received orders, the
model describes the change in inventories through time with:

Ω(t + 1) = Ω(t) + (Isum ⋅O
Received(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
orders aggregated by inputs

−
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xa(t)
⋮

xa(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊙AS
⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
input used during production

(44)

20see notation section in appendix.
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During the recovery period we have:

ΓTot(t + 1) = ΓTot(t) − Γ
Repaired(t) (45)

After distribution, the model computes the orders made by each industry towards others to
resupply their inventories of inputs. They seek to restore their inventories to their initial
level with regards to the current equilibrium production level.

Ω∗(t) = sip ⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎣

xOpt(t)
⋮

xOpt(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊙AS Inventory goals

ΩGap(t) = (Ω∗(t) −Ω(t))≥0 Inventory gaps

OS(t) = 1
ΓInv
⋅ΩGap(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xa(t)
⋮

xa(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊙AS Intermediate demand total orders

O(t) =

⎛
⎜
⎜
⎜
⎜
⎝

OS(t)⊗

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
⋮

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

°
m-sized

⎞
⎟
⎟
⎟
⎟
⎠

⊙Z∗ Intermediate demand orders

(46)

In Inventory goals, we compute orders based on optimal production. In Inventory gaps
(A−B)≥0 is used. In Intermediate total demand orders, total orders for intermediate demand
are being aggregated. Finally, in Intermediate demand orders, the actual order matrix is
being calculated.

The model has two variants based on the value of Z∗ which drive possible substitution
between suppliers:

A. Initial transaction shares are used: Z∗(t) = ZShare and in this case there is no possible
substitution among suppliers.

B. The model uses initial transaction share, but now weighted by suppliers current pro-
duction level relative to their initial production. Both occurrences of Z in (37) now
follow:

Z ⊙

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(t)
x1(0) . . .

xp(t)
xp(0)

⋮ ⋱ ⋮
x1(t)
x1(0) ⋯ xp(t)

xp(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(47)

In ARIO, industries also have the possibility to temporarily increase their production
capacity as defined previously via an overproduction mechanism. BoARIO uses a scarcity
index:
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ζ(t) =
dTot
i (t)−xa

i (t)
dTot
i (t)

αi(t + 1) = {
αi(t) + (αmax − αi(t)) ⋅ ζ(t) ⋅

1
Γα

ifζ(t) > 0

αi(t) + (αb − αi(t)) ⋅
1
Γα

ifζ(t) ≤ 0

(48)

Currently, the model allows representing the impact of an event via three effects:

1. A decrease of the production capacity of the impacted industries (destruction of pro-
ductive capital)

2. An additional final demand towards rebuilding sectors.

3. An arbitrary reduction of the production capacity for a given period.

The production capacity decrease is modeled assuming that en event happens at t = E,
causing ΓTot damages to the different industries. Defining ∆i(t = E) the initial (when an
event occurs) loss of production capacity of industry i, as the fraction of capital destroyed
over its capital stock:

∆i(t = E) =
γi(t = E)

ki
(49)

We update ∆i during every step with remaining damage:

∆i(t) =
γi(t)

ki
(50)

Figure 6 provides a systemic representation of the response of a production-distribution
model to an exogenous shock that induces capital loss in the form of a flow graph. The initial
perturbation results in a reduction of the system’s production capacity. This change then
propagates through the system, leading to a deviation from expected production outputs.

A disruptive event occurs (0), then the production-distribution system experiences capital
loss, causing a decrease of production capacity labeled as (1). This decrease subsequently
constrains the actual production output (3). As time passes, the distribution (4) endeavors
to replenish input inventories, thereby stabilizing the system in the wake of the shock.

Total demand and orders (2), are being continually adapted to account for the prevailing
trade constraints. This adaptation is influenced by the reduced actual production and the
system’s attempt to re-calibrate itself within the new constraints imposed by the capital loss.
The discrepancy between the supply capabilities and market demand gives rise to a notional
final demand (4.1), which is under continuous review as the system seeks equilibrium.

Concurrently, a feedback loop stemming from overproduction (6), leads to an increase in
production capacity. This paradoxical response may create a surplus, further complicating
the system’s return to a balanced state. The feedback and adaptive processes in the system
are critical for managing orders (5) and demand in the face of unexpected disruptions, as
they attempt to reach a simplified state of the economy that matches reality.
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Figure 6: Breakdown of the steps of (Hallegatte, 2013) from disaster to final production and
demands
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3.4 Comparison of diffusion approaches

We compare in this paper several methods of diffusion of physical risks to estimate the
indirect costs of extreme events using the example of tropical cyclones and we propose with
a Monte-Carlo simulation an approximate forecast of the surge of costs of extreme events
from now to 2100. To do so, we use a Multi Regional Input-Output model working with the
Exiobase3 database. The characteristics of each method we have used is compiled in Table
4.

Table 4: Characteristics of each method

Cost-push Optimization Adaptive
Time dependency - - +
Optimization - + +
Labor account - + -
Generalizable ++ + -
Time efficiency + - -

The cost-push method is the simplest method of the three. Even though the Optimization
method allows us to take into account the labor, it is computationally more demanding. As
for the Adaptive method, it brings the interesting time dependency but it has originally
been built on the specific case of the Katrina cyclone occurring in the US in 2005 and a lot
of parameters need a very precise calibration with a real challenge to generalize properly to
every event.

The BoARIO method presents a nuanced approach to assessing the temporal impacts of
a specific event on a production-distribution system. This approach is commendable for its
ability to detail the sequential repercussions of capital loss on production capacity, actual
output, and the subsequent demand response. It captures the intricate dynamics of the
system’s adaptive behavior and feedback mechanisms in real-time, thus providing a granular
understanding of the event’s immediate and downstream effects.

However, when integrating this model within a Monte Carlo framework (c.f. section
4) for the evaluation of annual risks, one must consider the method’s alignment with the
probabilistic nature of such simulations. In the context of annual basis assessment, the
model’s intricate real-time responses are likely to be averaged out or ’smoothed’ over time,
diluting the granularity of the temporal response.

Given this temporal smoothing effect, a simplified model that focuses on the cost-push
cascading effects may indeed prove more efficient for the purposes of a Monte Carlo as-
sessment. This streamlined approach would emphasize the propagation of indirect costs
resulting from physical risks, capturing the broader financial implications without the de-
tailed temporal resolution unnecessary for long-term risk assessments. Such a model, though
less detailed in the immediate aftermath of a risk event, would effectively quantify the cumu-
lative financial impact over the annual period, which aligns with the objectives of a Monte
Carlo risk analysis. It allows for a computationally less intensive and more strategically
focused estimation of risk exposure, providing a macroeconomic perspective on potential
financial vulnerabilities induced by physical risk events.
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4 Physical Value-at-Risk and Empirical Applications

In this section, we show how to introduce physical risk in the transition risk framework
defined in Desnos et al. (2023), adapting it for the physical risks case. For simplicity, and
because of the considerations listed in Section 3.4, we use a classic Leontief diffusion in the
model. We also illustrate some case studies of the implementation of the Boario framework,
particularly relevant for specific event analysis. As a reminder, current paper focuses on
tropical cyclones example and gives hints as to how to generalize the methodology to other
climate change related extreme events.

4.1 Monte Carlo algorithm for direct damages

Based on the subsection (2.2), we can implement a Monte-Carlo algorithm to calculate a
sample of direct damages due to tropical cyclones between 2025 and 2070.

Figure 7: Method for the simulation of direct damages

Time t between 
2025 and 2070

All regions r

!! : Number
F!  : Intensity

All sectors i 4*#!+,-
9:3;:3./00

Diffusion 
method ? 4#2*#!+,- 4-/-3.

Indirect DamagesDirect Damages

The damages are calculated as described in the Section 2.2. We introduce historical
frequency and intensity from historical data and an illustrative climate induced increase of
the damage (e.g. representing extreme event frequency and severity) of 4%.

However, we know that different sectors of a country which undergoes an extreme event
may not suffer the same consequences. Indeed, sectors which rely highly on physical assets
(Construction, Agriculture, Mining...) will be more affected than sectors that do not (Lenzen
et al., 2019). For this reason, we suppose that sectors that do not rely on physical assets
will not suffer any direct damages and that all of the losses revolve around the physical
assets relying sectors, except for the insurance sector. Furthermore, for a single extreme
event, the losses of the different sectors cannot be independent so we add a correlation of
80% between the variables describing the losses of each sector for a single event. In these
illustrative simulations, a country cannot lose more than its GDP.
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Algorithm 1 Monte Carlo algorithm for direct damages

Inputs
λr feature of number of cyclone per region
σr global standard deviation of damages
µr global mean of damages N number of simulations

for N do
for t between 2025 and 2070 do

for all region r do
Nr ← P(λr) ▷ the number of extreme events in the region
for all sector relying on physical assets i do

ξi,r ← Nr × logN (µr, σr) × (0.04t − 79.8)

× (1t∈]0;1a]0.3 + 1(t=0)∪(t>1a))
▷ fraction loss of this sector

end for
for all sector not relying on physical assets i do

ξi,r ← 0 ▷ No losses
end for

end for
Sdirect ← diag(ξi,r)
Output loss = Sdirect × x

end for
end for

4.2 Results and Operational Implication

Physical Value-at-Risk Combining the Monte Carlo algorithm for direct damages and
the input-output diffusion, we are able to achieve initial outcomes. We explore 2 pass-through
settings, with 5 000 simulations and compute the indirect losses for both cases. The first
one supposes that all the losses are passed onto prices meaning that we put a pass-through
being equal to 100% for all the sectors (teal and blue dots in Figure 8). The second is the
implementation of the pass-through described in the paragraph 3.1, with a penalty of 0.428
calibrated using indirect losses from regional cyclones from the literature. (red and purple
dots in Figure 8).

Logically, we observe a similar linear increase of 4% of direct damages per year, as well
as a similar global increase of around 200% of indirect shocks for both cases. Obviously,
indirect damages are always higher when we suppose that all losses are passed onto prices,
but what is interesting there is that indirect damages with no pass through are even greater
than total damages with pass through. When we have ϕ = 100% for all sectors, indirect
damages grow from around 350 billion $ to 1200 billion $ on average per year, whereas when
the pass-through depends on the sector’s price elasticity with the constant c, the indirect
damages equal to around 110 billion $ at the beginning and end at around 370 billion $.
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Figure 8: Stochastic ϕ, linear CSSP−RCP with pass-through using 5,000 iterations

The indirect damages triple the direct losses if there is a 100% pass-through while it is
multiplied by about 1.5 if we implement a sector-dependent pass-through. The more sectors
and industries are impacted in the world the more sectors are likely to pass their losses onto
their prices. In our highly connected economies, such scenario appear very likely.

For instance, in a competitive market, if only one energy industry is affected, it cannot
significantly increase its prices as customers may switch to a cheaper alternative. For this
reason, we can consider an evolution of the pass-through throughout the years. The number
and magnitude of damages caused by extreme events will increase, impacting a higher number
of industries in the physical assets dependent sectors. Thus, the losses will be more and more
passed onto prices. We can therefore imagine that the pass-through rates will evolve through
time to converge to 100%.

Consequently, we can see that direct and indirect damages could amount to about 1.8
trillion $ yearly damages within the end of the century to be compared to about 300 billion
$ today, still presenting the worst case VaR 95% scenario. If we compute the average
yearly direct losses from tropical cyclones since 2000, which amounts to about 85 billion
$, the norm could be 600 billion $ of losses within the end of the century if no proper
action is taken to handle better extreme events, with a rate of return divided by almost 9.
Recent examples, Katrina (2005), Harvey, Maria (2017), Hagibis (2019) illustrate the need
of important adaptations to address cyclone and more broadly physical risk related extreme
events, both at company and government level. We also count 94 storms since 2000 with
damages of more than 1% of the gdp of the country since 2000 with countries as big as New
Zealand, and we could see this number increase dramatically.

53



Modeling Direct and Indirect Climate-related Physical Risks

Figure 9: Example of direct shocks distribution - 50 000 iterations with 5 years steps top-
down fashion, from 2025 to 2100.

In Figure 9, we have extracted 3 representative years (2025, 2045 and 2080), showing
the density of the damages from cyclones of more than 1 billion $ and more than 1% of gdp
and the function and associated calibration introduced in 2.2.3 for chosen countries. The
distributions exhibit fat tails with a positive skewness characteristic of the log-normal law,
and the frequency of extreme events country by country is visible from each distribution.
We can point out the VaR 95% of 207 billion $ of losses for the USA, which could reach more
than half a billion $ loss within 2080 and the selected assumptions. We can note small peaks
of higher values for countries that do not present frequent extreme events (France, Australia,
India, and Mexico), matching several events occurring within a same year. The VaR 95 %
for the US represents an astonishing 2.2 % shock for the US economy within 2080 with no
increase of gdp, given that the trajectories of future cyclones remain relatively equivalent to
what they have been in the recent past.
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Figure 10: Example of indirect shocks distribution - 50 000 iterations with 5 years steps
top-down fashion.

Figure 10 shows the indirect shocks pendant to the direct shocks presented Figure 9. For
every country presented here, except the USA, we notice two peaks indicating a bi-modal
distribution. For some countries (India, France), the two peaks have about the same height,
while for the others, the peak corresponding to higher values is far more pronounced than the
other one. The higher part of the bi-modal distribution might be correlated to direct shocks
to the country’s economy, while the lower part may show correlation to indirect shocks from
other economies. The diffusion coefficients are likely to be higher between the sectors of
a given country than of extraterritorial origin. For the United States of America, extreme
events of large magnitude are frequent, so we would expect less impacts from outside events.
We are going to challenge these assumptions in the following figure and analysis.
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Statistical testing to identify indirect shocks origin

Relationship between direct shocks and indirect shocks for France.

We notice in this graph that France inherits indirect shocks from direct shocks from
other countries (dots matching 0 Direct Loss FRA). Intuitively using this graph, bigger
indirect loss values match bigger direct loss values. More than 85% of values are strictly
positive, while direct shocks from extreme events (cyclone related) occur globally only
9% of the time.

To confirm and generalize this graphical assumption, we run a significance test at
the 99% level using Pearson’s correlation coefficient between direct losses from other
countries and local direct losses of each country:

rdl,dlo =
∑(x − µx)(y − µy)

√
∑(x − µx)

2∑(y − µy)
2

(51)

where xdl,dlo contains direct losses from the country (dl) and from the other countries
(dlo) while y contains indirect losses. We obtain r ; Pearson correlation coefficient
for each distribution. We then apply a Fisher z-transformation to each coefficient to
estimate properly confidence intervals even when the sample correlation coefficient is
near -1 or 1:

zdl,dlo =
1

2
× ln

1 + r

1 − r
(52)

Where z is the inverse hyperbolic tangent function.
We then compute the Z-test, suitable for large distributions, the following way:
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Ztest =
zdl − zdlo
√

2
n−3

(53)

Here, the Ztest statistic equals -495, far bellow the critical value of -2.33, meaning that
the hypothesis that the correlation coefficients between the direct losses of the country,
and from other countries, and its indirect losses are similar is rejected with highest
confidence. We indeed find a 96% correlation between the direct losses of each country
in average and its indirect losses and barely 9% correlation between the direct losses
of the other countries and its indirect losses.

Event specific analysis with Hallegatte (2013) Figures 11a to 11c present results
from Hallegatte (2013) BoARIO simulations.

Figure 11a presents the evolution of the realized production of each sector normalized to
a starting point of 1. At time 0, a shock of 500 billion USD occurs and impacts a fictive
economy. 2 sectors are being affected directly (manufactoring, mining), and 2 sectors are
being requested for rebuilding the economy (construction, manufactoring). The shock is
proportional to the GDP of the 2 sectors. The most impacted sectors are the ones that
suffer direct impacts logically, while construction (with the highest rebuild coefficient of
0.55) is immediately ordered to rebuild and sees its realized production increase to a pick of
almost 25 basis points above the starting point. It can cover the rebuilding demand thanks
to its capacity to overproduce. The other sectors recover progressively from the shock over
the 2-years window of the event.

In Figure 11b we simulate a shock twice as large as the previous one. 5 sectors are being
impacted directly (construction, manufactoring, mining, trade and transport), and the same
sectors participate to the reconstruction except that, this time, manufactoring contributes
up to 60%. Finally, we increase slightly the rebuild factor to 1.1, the rebuild tau to 180
days, and the duration of the event to 8 days. We can observe logically a small plateau with
decreased outputs before the economy starts rebuilding itsel. Construction that presents a
far smaller output than manufactoring is highly boosted by the initial event to around 30
basis points above its starting point.

Finally on Figure 11c, we simulate, using BoARIO framework, the impact of a shock
matching the 95% VaR of cyclone related direct damages to the US economy. This shock
of 207 billion USD is in line with the adjusted damages from Katrina and Harvey that the
USA have suffered in recent years. We define affected sectors (NACE) and how each of them
has been impacted by the event, and rebuilding sectors and how each of them contributes
to the reconstruction of the economy. We also adjust productive capital to value added
ratios thanks to figures from the Federal Reserve, the FAO and the European Commission
that provides data for economies all around the world. We proxy non available sectors by
the global productive capital to value added ratio in the US as of 2022 (3.21). The event
lastes 8 days, global rebuild tau is 360 and rebuilding factor is 1. Overproduction capacity
is constant and equal to 1.25.

We choose the 12 biggest sectors by gdp (output greater than 2 500 billion $) and plot
the evolution of their realized production for 2 years on a readable graph. We notice that the
financial sector suffers the highest impact of about 60 basis points at national level, due to
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Figure 11: Various simulations using the BoARIO framework

(a) Fictive extreme event (b) Adjusted endogenous parameters

(c) Realistic event: simulation of a VaR95% level shock on the US economy.a

aFood: Accommodation and food service activities. Info: Computer programming, consultancy and related activities,
information services. Cons: Construction; Finance: Financial service activities, except insurance and pension funding. Human:
Human health and social work activities. Man: Manufacture of food products, beverages and tobacco products. Otherp:
Other professional, scientific and technical activities; veterinary activities. Others: Other service activities. Public: Public
administration and defense, compulsory social security. Real: Real estate activities. Telec: Telecommunications. Whole:
Wholesale trade, except of motor vehicles and motorcycles.
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a contagion effect from the insured part of the extreme event. Insurance sector (not shown
on the figure for clarity) assumes 40% of the shock with 121 billion $ of direct and indirect
damages. Other sectors in this representation are more resilient with manufacture of food
products, beverages and tobacco losing about 5 basis points. Among the sectors affected to
rebuilding, construction and wholesale are the ones that benefit the most from this ”new
activity” (with 21 and 7 basis points respectively), while they also battle for recovery, with
wholesale initially losing more than 20 basis points. The recovery of each sector is harder to
model and is sector and even firm dependent. Finance should recover pretty quickly while
physical assets dependent sectors might take years to recover.
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5 Conclusion

The first part of the paper presents a theoretical framework to model physical risk using a
bottom-up approach, specifically tailored for use in analyzing physical infrastructure portfo-
lios. 21 This method hinges on detailed parameters, including vulnerability curves for each
type of extreme event, as outlined in Remark 2.1.1. It is particularly useful for assessing
the direct risk exposure of physical assets within portfolios, notably in sectors such as pri-
vate equity, infrastructure, and businesses heavily dependent on energy or utilities that rely
intensively on their physical facilities. Our regional calibration also allows to integrate the
important disparities between regions. According to Emdat, Africa and Asia have suffered
221 and 1 022 damage inducing storms since 2000 respectively. But only 9, and 86 of them
have provoked extreme losses. In the Americas (mainly in the US), 29% turn out to be
extreme events. Less exposed regions today might change in the future with the increase of
the population, among other factors.

We have modeled in this paper direct and indirect damages from extreme cyclones world-
wide using a 5-years scale from 2025 to 2080, with regional calibration of the damages and a
conservative 4% linear annual rise, highlighting 95% VaR. Thus, an extreme event occurring
once every 20 years could come back every 4 years within 2050. Our choice of a RCP-SSP
with constant GDP aims at improving the readability of our studies. It is also interest-
ing to point out the different distributions of the indirect losses among countries, reflecting
specific input/output table structures and direct shocks magnitudes. Finally, with the help
of BoARIO framework, we have been able to simulate the rebuilding of the US economy
following an extreme event through time, and how every sector behave.

Moreover, our research introduces a technique for disseminating economic shocks caused
by disasters at the country level across various sectors and activities. This not only broadens
the impact assessment to an international scope but also marks a significant methodological
leap. While we base our approach on certain parametric assumptions for the sake of illustra-
tion, the framework is designed to be easily adaptable for a more comprehensive application
in managing physical risks. Employing a stochastic pass-through rate following beta laws as
proposed by Desnos et al. (2023), and considering a conservative annual growth rate of 4%
of damages specifically calibrated for Tropical Cyclones (TC), we estimate that the average
annual economic shocks could surpass 380 billion dollars by 2050, with 70 extreme events
per year around the world, 1 every 4 days. Beyond the results of this first experiment, this
paper is a methodological contribution to the field of physical risk assessment, proposing
an algorithm with relatively low computing cost to estimate the direct and indirect costs of
increasing natural disasters on the economies.

It is important to insist on the very parametric and adaptable dimension of this frame-
work. Note that the regional frequency, magnitude, pass-through rates, and increase through
time in climate scenarios are all parameters that can be adapted with real time observations.
For instance, some countries will face faster increase in flood frequencies than others (coun-
tries with low average sea elevation like Bangladesh, Netherlands and China, or countries
that face challenges due to excessive drain of groundwater like Mexico or Indonesia), with
different responses depending on the capability of answering these challenges (Netherlands

21We do not perform the empirical application of this framework in this paper.
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have been used to fight flooding for centuries). The population dimension has not been
integrated in the simulation, neither for work force modeling and post disaster potential
unemployment, or for migration. We could model that a fraction of the population that
suffered the extreme event will try to relocate, and thus use this VaR model to simulate the
change in migration flux.

With the help of the BoARIO framework, we have been able to go one step further
and give deeper sectoral representation, modeling how an economy rebuilds itself following
an extreme event occurring once every 20 years in average. Advanced relationships from
Hallegatte (2013) related to sectors contributing to the rebuilding of the economy, capacity
to overproduce, event duration and precise planning through time are being introduced. To
go deeper in the representation, a better share between households and impacted sectors
should be the priority. It would also be interesting to consider losses of jobs, interruption
of the export industry, tourism industry, oil production and supply, and tax collection as
additional financial impacts.

According to CDP’s Messenger et al. (2023), whenever adaptation plans are in place,
they are often costly and present additional risks for publishing companies. According to
the World Economic Forum’s Global Risk Report for 2023, the failure of climate change
adaptation ranks as the second greatest risk for companies over the next 10 years, short only
of the failure to mitigate climate change. It also ranks 7 over as short of a period as the next
2 years.

These insights highlight the urgent need for effective adaptation strategies. Given that
mitigation efforts are unlikely to substantially change the course of climate change by 2050,
it becomes imperative for both corporations and governments to formulate and implement
robust adaptation plans to mitigate these risks. This study not only contributes to our
understanding of physical risk assessment but also emphasizes the critical need for proactive
adaptation in the face of escalating climate threats.
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A Notation

Table 5: Summary table of the notations

Notation Description
Subscripts

k company(i, j) couple sector-country
i industry in BoARIO
g geographic tiles (bottom-up method)
r region/country
.− variable in question before the disaster
t time (in years)

Variables
S Direct shockA Total assets of a company kD Damages caused by extreme events
Ng Number of events (Poisson) in tile g
λg Intensity of Poisson law for event generation
µg Positive drift characteristic of the change of probability of occurrence of extreme event

µr, σr Mean and standard deviation for the log-normal law of damages representation
vh(r) Vulnerability parameter
V Wind (m.s−1)

fr, vn(V, vh(r)) Function generating the fraction lost and instrumental variable
θ Damages modifier for events occurring shortly after another one
ρ Damages modifier for events impacting different sectors, following a β law
ξi Sectoral shockMi,k Market capitalization of sector i and company k

A, Ai,j Matrix input-output and its technical coefficients
xi Production/supply of the sector i

xmax Maximum production capacity
yi Final demand of the sector i

γk
g , Γ

k
r Density of asset in tile, fraction of revenue in a country

γi, ΓREBUILD Total rebuilding demand, rebuild characteristics time in BoARIO
li Labor input coefficient of the sector i

(the amount of labor needed to produce one unit of commodity from sector i)
L Total labor (employment)
ϕ Pass-through rate, proportion of the direct losses passed onto prices and other sectors
c Multiplying constant to convert transition pass-through rate to physical pass-through rate
β Law for the modeling of the pass-through rate
I Matrix of imports

SD = (ci)1≤i≤n Direct shock matrix or fraction of production lost by the industries after a disaster
t Total input available after the disaster
Ei Exportation of sector i

HDi Reconstruction demands of households toward the sector i
Di,j Reconstruction demands of each industry i toward each industry j
pi Price of the commodity proposed by the sector i / Product built by industry i
Πi Profit of sector i
Oi Amount of orders that industry i is requested to fulfill by other industries
Ω Inventories/Inputs stock matrix

ΓTot Per industry capital lost due to event(s) (destroyed or unavailable)
psi Inventories heterogeneity parameter
τα Overproduction increase/decrease characteristic time

τINV Characteristic time of inventory restoration
τREBUILD Characteristic time of rebuilding

αmax
i Maximum capacity of industry i to overproduce

αb
i Base capacity of industry i to overproduce

vi Total primary input of sector i / value added ratios
wi Exact amount of product p required by industry i to produce xi

Z Global transaction matrix in BoARIO
δi Initial or direct shock of production capacity of an industry i
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B Complementary materials

Table 6: Regional vulnerability parameters (in m ⋅ s−1)
Region v∗hTDR

v∗hRMSF
v̂h (chosen)

Caribbean and Mexico 58.8 59.6 59
China Mainland 101.5 80.2 90
USA and Canada 80.5 86 83
North Indian 63.7 58.7 60
South East Asia 60.7 56.7 58
North West Pacific 169.6 135.6 150
Philippines 167.5 84.7 130
Oceania 56.8 49.7 53
South Indian 48.5 46.8 47
Global 98.9 73.4 85

Figure 12: Difference in price sector per sector after the Australian disaster
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Table 7: Debbie cyclone table of direct shock (Lenzen et al., 2019)

NSW
(Rest)

NSW-
RT

VIC QLD-
B

QLD-
WBB

QLD-
DD

QLD-
SW

QLD-
F

QLD-
CW

QLD-
M

QLD-
N

QLD-
FN

QLD-
NW

SA WA TAS ACT NT

Sheep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Grains 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Beef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dairy and pigs 0 0 0 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Other agriculture 0 0.07 0 0 0 0 0 0 0.186 0.53 0 0 0 0 0 0 0 0
Sugar cane 0 0 0 0 0 0 0 0.035 0 0.263 0.112 0 0 0 0 0 0 0
Forestry and fishing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Coal, oil and gas 0 0 0 0 0 0 0 0.056 0 0.053 0.078 0 0 0 0 0 0 0
Non-ferrous metal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Other mining 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Food manufacturing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Textiles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Wood and paper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chemicals, petroleum and coal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Non-metallic mineral 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Metals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Machinery appliances and equipment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Other manufacturing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Electricity, gas and water 0 0.004 0 0.001 0 0 0 0.003 0 0.02 0.001 0 0 0 0 0 0 0
Construction (residential) 0 0.016 0 0 0 0 0 0.015 0 0.02 0.013 0 0 0 0 0 0 0
Other construction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trade 0 0.042 0 0.002 0 0 0 0.017 0 0.013 0.01 0 0 0 0 0 0 0
Accommodation, cafes and restaurants 0 0.22 0 0.005 0 0 0 0.005 0 0.1 0.005 0 0 0 0 0 0 0
Road transport 0 0.016 0 0.002 0 0 0 0.051 0 0.082 0.009 0 0 0 0 0 0 0
Rail and pipeline transport 0 0 0 0 0 0 0 0.014 0 0 0 0 0 0 0 0 0 0
Other transport 0 0 0 0 0 0 0 0.006 0 0 0 0 0 0 0 0 0 0
Communication 0 0 0 0 0 0 0 0.011 0 0.032 0.001 0 0 0 0 0 0 0
Finance, property and business 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ownership of dwellings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Government administration and defense 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Education 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Health and community 0 0.007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cultural and recreational 0 0.021 0 0.002 0 0 0 0.056 0 0.097 0.006 0 0 0 0 0 0 0
Personal and other services 0 0 0 0 0 0 0 0.055 0 0 0 0 0 0 0 0 0 0
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Figure 13: Mean difference prices for the 10 most affected countries after a supposed disaster
in Australia calculated via simple diffusion and the WIOD

Consequences of an Australian disaster on the prices amongst the 10 most affected countries
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Table 8: Classification of sectors into pass-through types

Type Sector

highly-elastic

Air transport
Agriculture
Chemicals
Non-metallic minerals
Paper products
Water transport

high-elastic

Accommodation and food services
Pharmaceuticals
Food and beverages
Furniture and manufacturing
Textiles and apparel
Retail trade

medium-elastic

Financial and insurance services
Administrative and support services
Advertising and market research
Engineering and analysis
Information services
Construction
Financial services
Forestry and logging
Legal and accounting services
Electronics
Electrical equipment
Fabricated metal products
Machinery and equipment
Transportation equipment
Rubber and plastic products
Wood and cork products
Media production and broadcasting
Professional and technical services
Postal and courier services
Printing and reproduction
Publishing
Machinery and equipment repair
Research and development
Telecommunications
Warehousing and transportation support
Water supply
Wholesale trade

low-elastic

Extraterritorial organizations
Household activities
Education
Energy supply
Fishing and aquaculture
Healthcare and social work
Insurance and pensions
Land transport
Basic metals
Petroleum products
Mining and quarrying
Other services
Public administration and defense
Real estate
Waste management
Motor vehicle trade and repair

Table 9: Probabilistic characterization of the four pass-through types

Highly-elastic High-elastic Medium-elastic Low-elastic

Parameters
α 3.0 4.0 14.0 12.0
β 12.0 6.0 6.0 0.6
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Table 10: Number of events damaging either more than 1US$ Bn or 1% of the country’s
GDP and their respective total damages in US$ Bn (adjusted) per region and kind of disaster
since 2000

Count Total Damage (Mean) Freq (λ) 95th Percentile
Drought 63 3.305 2.63 18.536
Africa 4 1.215 0.17 1.684
Americas 20 6.147 0.83 26.474
Asia 22 2.624 0.92 12.800
Europe 13 1.307 0.54 4.173
Oceania 4 1.423 0.17 2.976
Extreme temperature 14 4.546 0.58 24.513
Americas 3 1.949 0.13 2.932
Asia 4 7.964 0.17 27.035
Europe 7 3.705 0.29 16.228
Flood 208 3.808 8.67 37.534
Africa 15 0.793 0.63 4.357
Americas 46 2.478 1.92 16.240
Asia 93 4.908 3.88 47.218
Europe 40 4.512 1.67 32.804
Oceania 14 2.082 0.58 8.754
Storm 376 5.019 15.67 97.794
Africa 9 1.158 0.38 5.461
Americas 228 6.495 9.50 234.079
Asia 86 3.579 3.58 28.628
Europe 27 2.160 1.13 8.605
Oceania 26 1.145 1.08 4.383
Wildfire 29 4.080 1.22 18.563
Americas 21 4.754 0.88 21.471
Asia 1 1.235 0.04 1.235
Europe 5 2.637 0.21 5.126
Oceania 2 2.031 0.08 2.264
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Algorithm 2 Illustration of the seminal adaptive approach (Hallegatte, 2008)

Inputs

yb the initial final demand vector
Ab the initial input output matrix
S fraction shock of the disaster vector
D additional demand for the industries due to the disaster vector
αb initial overproduction capacities
αmax maximum overproduction capacities
τ ↓A, τ ↓α respectively the characteristic times of the decrease of A and α
τ ↑A, τ ↑α respectively the characteristic times of the increase of A and α
Ilocal, Jlocal respectively

yt ← yb +D
A← Ab

α ← αb

for all ∆t do
xt ← (I −A)−1yt ▷ first-guess production (Leontiev)
for all industry i do

xmax
i ← xti ∗ (1 − Si) ∗ αt

i ▷ production capacity
xti ←min{xti;x

max
i }

Ot
i ← ∑j Ai,jxti ▷ intermediate consumption

xti ←min{xti;∀j,
xt
j

Ot
j
xti}

if xti stays unchanged ∀i then
STOP

else
yti ← ybi +∑j Ai,jxtj

end if
end for
for all industry j do

if ytj > x
t
j id est if production of industry j not enough to satisfy demand then

αt
j ← αt

j + (α
max
j − αt

j) ∗
ytj−xt

j

ytj
∗ ∆t

τ ↓α

for all industry i do
if i ∈ Ilocal and j ∈ Jlocal or i ∈ Ilocal and j ∉ Jlocal then

Ai,j ← Ai,j −
ytj−xt

j

ytj
∗Ai,j

∆t

τ ↓A
else if i ∉ Ilocal and j ∈ Jlocal then

Ai,j ← Ai,j +
ytj−xt

j

ytj
∗Ai,j

∆t

τ ↓A
else

Ai,j ← Ai,j

end if
end for

else ▷ id est when production satisfy demand
αt
j ← αt

j + (α
b
j − α

t
j) ∗

∆t

τ ↑α
for all industry i do
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if i ∈ Ilocal and j ∈ Jlocal or i ∈ Ilocal and j ∉ Jlocal then

Ai,j ← Ai,j + (ϵ +
Ai,j

Ab
i,j
)(Ab

i,j −Ai,j)
∆t

τ ↑A
else if i ∉ Ilocal and j ∈ Jlocal then

Ai,j ← Ai,j − (ϵ +
Ai,j

Ab
i,j
)(Ab

i,j −Ai,j)
∆t

τ ↑A
else

Ai,j ← Ai,j

end if
end for

end if
end for

end for

72



Modeling Direct and Indirect Climate-related Physical Risks

Figure 14: Diagram of the adaptive methodology (Hallegatte, 2008) for each time t

Total final demand: yt0i

first guess production
xt0 = (1 −A)−1yt0i = yt0

xt1,i =min{xtmax,i, y
t
0,i}

xt2,i =min{xt1,i; for all j, xt1,jOt
1,j

xt1,i}

xt2 = xt1yt1,i = yt0i +∑j A
t
i,jx

t
2,j

no bottleneck!

xt+1 = xt2 and yt+1 = (I −A)−1xt+1

Disaster

replace y0 by y1
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Table 11: BoARIO package events, main inputs and parameters

Parameter Description

Events

Recovery Destroyed capital regained without rebuilding demand and sectors (1)
Rebuild Destroyed capital is being rebuild through time (2)

Arbitrary production The production capacity is arbitrarily decreased for a set of industries (3)

Inputs

t A time t (in days) to model the evolution of the system following the event (1)(2)(3)
linear, concave, convex The shape of the recovery function (1)

occurence Number of events in case multiple events occur simultaneously (1)(2)(3)
duration In days, before the start of the recovery (1)(2)(3)
rebuild τ Duration for the rebuilding in days (1)(2)

participation Proportion of participation of each sector in the reconstruction (2)
rebuilding factor Lower or greater than 1 rebuilding demand (2)

Parameters

order type ”alt” if the model uses intermediate order mechanism (no possible substitution) or
”classic”

αbase Base overproduction (default 1)
αmax Maximum overproduction (default 1.25)
ατ Overproduction characteristic time (default 365)

rebuild tau Rebuilding or recovery characteristic time for events (default 60)
main inv dur Default initial/goal inventory duration in temporal unit for all sectors if inventory

dict is not given (default 90)
infinite inventory sect List of inputs to never constrain production on

monetary factor Equal to the monetary factor of the MRIO used (default 106 USD)
productive capital to V A dict A dictionary of sector:ratio format, where the ratio is an estimate of Capital Stock

over Value Added ratio (used to estimate the capital stock of each sector)
productive capital vector Directly sets the capital stock for all industries (overrides Kapital to VA dict)

74



Modeling Direct and Indirect Climate-related Physical Risks

Table 12: BoARIO VaR95% magnitude event - Affected sectors and weights

Sector Weight

Activities auxiliary to financial services and insurance activities 5.4%
Air transport 1.3%
Construction 1.7%
Crop and animal production, hunting and related service activities 3.2%
Electricity, gas, steam and air conditioning supply 5.3%
Financial service activities, except insurance and pension funding 1.4%
Human health and social work activities 2.1%
Insurance, reinsurance and pension funding, except compulsory social security 35.4%
Land transport and transport via pipelines 3.9%
Mining and quarrying 15%
Other service activities 3.5%
Public administration and defense, compulsory social security 6.3%
Real estate activities 4.8%
Telecommunications 4.3%
Water collection, treatment and supply 1.1%
Water transport 2.1%
Wholesale and retail trade and repair of motor vehicles and motorcycles 2.1%
Wholesale trade, except of motor vehicles and motorcycles 1.1%

Table 13: BoARIO VaR95% magnitude event - Main rebuilding sectors and weights

Sector Weight

Construction 25%
Manufacture of machinery and equipment n.e.c. 10%
Manufacture of computer, electronic and optical products 10%
Manufacture of chemicals and chemical products 5%
Manufacture of fabricated metal products, except machinery and equipment 5%
Manufacture of motor vehicles, trailers and semi-trailers 5%
Wholesale and retail trade and repair of motor vehicles and motorcycles 5%

75



Chief Editor

Monica DEFEND
Head of Amundi Investment Institute

Editors

Marie BRIÈRE
Head of Investors’ Intelligence & Academic Partnership

Thierry RONCALLI
Head of Quant Portfolio Strategy



Find out more about 
Amundi Investment Institute Publications

research-center.amundi.com

Important Information

This document is solely for informational purposes.

This document does not constitute an offer to sell, a solicitation of an offer to buy, or a recommendation of any security 
or any other product or service. Any securities, products, or services referenced may not be registered for sale with the 
relevant authority in your jurisdiction and may not be regulated or supervised by any governmental or similar authority in 
your jurisdiction.

Any information contained in this document may only be used for your internal use, may not be reproduced or redisseminated 
in any form and may not be used as a basis for or a component of any financial instruments or products or indices.

Furthermore, nothing in this document is intended to provide tax, legal, or investment advice.

Unless otherwise stated, all information contained in this document is from Amundi Asset Management SAS. Diversification 
does not guarantee a profit or protect against a loss. This document is provided on an “as is” basis and the user of this 
information assumes the entire risk of any use made of this information. Historical data and analysis should not be taken 
as an indication or guarantee of any future performance analysis, forecast or prediction. The views expressed regarding 
market and economic trends are those of the author and not necessarily Amundi Asset Management SAS and are subject to 
change at any time based on market and other conditions, and there can be no assurance that countries, markets or sectors 
will perform as expected. These views should not be relied upon as investment advice, a security recommendation, or as an 
indication of trading for any Amundi product. Investment involves risks, including market, political, liquidity and currency 
risks.

Furthermore, in no event shall any person involved in the production of this document have any liability for any direct, 
indirect, special, incidental, punitive, consequential (including, without limitation, lost profits) or any other damages.

Date of first use:  02 May 2024.

Document issued by Amundi Asset Management, “société par actions simplifiée”- SAS with a capital of €1,143,615,555 - 
Portfolio manager regulated by the AMF under number GP04000036 – Head office: 91-93 boulevard Pasteur – 75015 Paris 
– France – 437 574 452 RCS Paris – www.amundi.com

Photo credit: iStock by Getty Images - monsitj

Working Paper
May 2024


	physical_VaR_amundi_wp.pdf
	Introduction
	Direct damage modeling
	Bottom-up approach: Case of tropical cyclones
	Local damage functions
	Asset exposure

	Top-down approach: stochastic shock matrix
	Modeling occurrences of extreme events
	Downscaling of the shocks
	Top-down damage function


	Modeling indirect effects of physical shocks
	Classical input-output diffusion through sector requirements
	Optimal production after extreme events
	Adaptive regional input-output (ARIO) model
	Seminal adaptive framework hallegatte2008adaptive
	Implementing the ARIO approach (BoARIO, hallegatte2014modeling)

	Comparison of diffusion approaches

	Physical Value-at-Risk and Empirical Applications
	Monte Carlo algorithm for direct damages
	Results and Operational Implication

	Conclusion
	Notation
	Complementary materials

	Template Working Paper.pdf

