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A Note on Portfolio Optimization with Quadratic Transaction Costs

1 Introduction

The general approach for introducing liquidity management in the mean-variance optimiza-
tion model of Markowitz (1952) is to assume fixed bid-ask spreads. We then obtain the linear
transaction cost model, which can be solved using an augmented quadratic programming
problem (Scherer, 2007). However, as shown by Lecesne and Roncoroni (2019a, 2019b), unit
transaction costs may be a linear function of the trading size, implying that a model with
quadratic transaction costs may be more appropriate. In this article, we investigate this
approach and show how linear and quadratic transaction costs modify the mean-variance
optimized framework. In particular, we do not obtain a standard QP problem when trans-
action costs are quadratic, because the budget constraint is no longer linear. In this case, we
obtain a quadratically constrained quadratic program (QCQP), which is an NP-hard prob-
lem. However, using the ADMM framework, we are able to derive an efficient algorithm
that solves this issue. Finally, we use this algorithm to illustrate the impact of transaction
costs on optimized portfolios and Markowitz efficient frontiers.

2 Introducing transaction costs into portfolio optimiza-
tion

2.1 Mean-variance optimization with transaction costs

We consider a universe of n assets. Let w = (w1, . . . , wn) be a portfolio. The return of
Portfolio w is given by:

R (w) =

n∑
i=1

wiRi = w>R

where R = (R1, . . . , Rn) is the random vector of asset returns. If we note µ and Σ the vector
of expected returns and the covariance matrix of asset returns, we deduce that the expected
return of Portfolio w is equal to:

µ (w) = E [R (w)] = w>µ

whereas its variance is given by:

σ2 (w) = E
[
(R (w)− µ (w))

2
]

= w>Σw

The mean-variance optimization framework of Markowitz (1952) consists in maximizing the
expected return µ (w) for a fixed value σ? of the volatility σ (w). This can be achieved by
maximizing the quadratic utility function:

U (w) = γµ (w)− 1

2
σ2 (w)

The mean-variance optimization framework can then be rewritten as a standard quadratic
programming (QP) problem:

w? = arg min
1

2
w>Σw − γw>µ (1)

s.t.

{
1>nw = 1
0n ≤ w ≤ 1n
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The budget constraint 1>nw = 1 (or
∑n

i=1 wi = 1) implies that the wealth is entirely invested,
whereas the second constraint indicates that Portfolio w is long-only1.

Let us now introduce transaction costs. We note w̃ the current portfolio and C (w | w̃)
the cost of rebalancing the current portfolio w̃ towards the portfolio w. We deduce that the
net return is equal to the gross return minus the transaction costs:

R (w | w̃) = R (w)− C (w | w̃)

It follows that:

µ (w | w̃) = E [R (w | w̃)]

= µ (w)− µC (w | w̃)

and:

σ2 (w | w̃) = E
[
(R (w | w̃)− µ (w | w̃))

2
]

= E
[
(R (w)− µ (w) + µC (w | w̃)− C (w | w̃))

2
]

= σ2 (w) + σ2
C (w | w̃)− 2ρC (w | w̃)σ (w)σC (w | w̃)

where µC (w | w̃) = E [C (w | w̃)] is the expected cost of rebalancing and σC (w | w̃) is the
standard deviation of C (w | w̃). The function ρC (w | w̃) is the correlation between the gross
return R (w) and the transaction cost C (w | w̃). Generally, we assume that ρC (w | w̃) ≈ 0.
We notice that transaction costs impact both the expected return and the volatility of the
portfolio. However, this is not the only effect. Indeed, we also have to finance the rebalancing
process since the wealth before and after is not the same. Therefore, the budget constraint
becomes:

1>nw + C (w | w̃) = 1

Here, we face an issue because the budget constraint is stochastic. This is why portfolio
managers assume that transaction costs are known and not random. In this case, the
optimization problem becomes:

w? = arg min
1

2
w>Σw − γ

(
w>µ− C (w | w̃)

)
(2)

s.t.

{
1>nw + C (w | w̃) = 1
0n ≤ w ≤ 1n

2.2 Specification of transaction costs

A first idea is to consider constant transaction costs. In this case, we have:

C (w | w̃) =

n∑
i=1

ci · |wi − w̃i|

where ci is the unit cost associated with Asset i. A better formulation is to distinguish bid
and ask prices. Following Scherer (2007), we have:

C (w | w̃) = C− (w | w̃) + C+ (w | w̃)

=

n∑
i=1

c−i ·max (w̃i − wi, 0) +

n∑
i=1

c+i ·max (wi − w̃i, 0)

1This constraint can be removed.
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where c−i and c+i are the bid and ask unit transaction costs. We deduce that the transaction
cost for Asset i satisfies:

Ci (w | w̃) =

 c−i · (w̃i − wi) if wi < w̃i

0 if wi = w̃i

c+i · (wi − w̃i) if wi > w̃i

(3)

In this approach, the unit transaction cost is fixed and does not depend on the rebalancing
weight:

ci (w | w̃) =
Ci (w | w̃)

|wi − w̃i|
=

 c−i if wi < w̃i

0 if wi = w̃i

c+i if wi > w̃i

We can also assume that the unit transaction cost is a linear function of the rebalancing
weight:

ci (w | w̃) =

 c−i + δ−i · (w̃i − wi) if wi < w̃i

0 if wi = w̃i

c+i + δ+
i · (wi − w̃i) if wi > w̃i

It follows that:

Ci (w | w̃) =

 c−i · (w̃i − wi) + δ−i · (w̃i − wi)
2

if wi < w̃i

0 if wi = w̃i

c+i · (wi − w̃i) + δ+
i · (wi − w̃i)

2
if wi > w̃i

(4)

In the academic literature, Specification (3) is known under the term ‘linear transaction
costs’, whereas Specification (4) corresponds to ‘quadratic transaction costs’. An example is
provided in Figure 1, where bid and ask transaction costs are different2. On the left side, we
have reported the linear case, whereas the quadratic case corresponds to the right side3. We
notice that introducing quadratic costs has a more adverse effect on the portfolio’s return.
By construction, the choice of one specification will impact portfolio optimization, especially
if the rebalancing is significant.

3 The case of linear transaction costs

3.1 The augmented QP solution

Since C (w | w̃) is a nonlinear function of w, Problem (2) is not a standard QP problem.
This is why Scherer (2007) suggested rewriting the transaction costs as follows:

C (w | w̃) = c−i ·∆w
−
i + c+i ·∆w

+
i

where ∆w−i = max (w̃i − wi, 0) and ∆w+
i = max (wi − w̃i, 0) represent the sale and purchase

of Asset i. By definition, we have ∆w−i ·∆w
+
i = 0 and:

wi = w̃i + ∆w+
i −∆w−i

2For instance, in the case of corporate bonds, there are some periods where it is easier to sell bonds than
buy bonds or the contrary.

3The parameters are the following: c−i = 1%, c+i = 2%, δ−i = 2% and δ+i = 3%. Moreover, we assume
that the current allocation w̃ is equal to 0.
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Figure 1: An example of linear and transaction costs (in %)
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We deduce that Problem (2) becomes:

w? = arg min
1

2
w>Σw − γ

(
n∑

i=1

wi · µi −
n∑

i=1

∆w−i · c
−
i −

n∑
i=1

∆w+
i · c

+
i

)
(5)

s.t.


∑n

i=1 wi +
∑n

i=1 ∆w−i · c
−
i +

∑n
i=1 ∆w+

i · c
+
i = 1

wi + ∆w−i −∆w+
i = w̃i

0n ≤ w ≤ 1n

We notice that we obtain a QP problem with respect to the variables x = (w,∆w−,∆w+).
Indeed, we have:

x? = arg min
1

2
x>Qx− x>R (6)

s.t.

{
Ax = B
x− ≤ x ≤ x+

where:

Q =

 Σ 0n,n 0n,n

0n,n 0n,n 0n,n

0n,n 0n,n 0n,n


and:

R = γ

 µ
−c−
−c+


For the equality constraint, we obtain:

A =

(
1>n (c−)

>
(c+)

>

In In −In

)
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and:

B =

(
1
w̃

)
For the bounds, we notice that:

0 ≤ wi ≤ 1 ⇔ 0 ≤ w̃i + ∆w+
i −∆w−i ≤ 1

⇔ −w̃i ≤ ∆w+
i −∆w−i ≤ 1− w̃i

⇔
{
−w̃i ≤ ∆w+

i ≤ 1− w̃i if ∆w−i = 0
w̃i − 1 ≤ ∆w−i ≤ w̃i if ∆w+

i = 0

However, we know that ∆w−i ≥ 0 and ∆w+
i ≥ 0. We deduce that x− = 03n and:

x+ =

 1n

w̃
1n − w̃


Problem (6) is called an augmented QP problem (Roncalli, 2013), because we have aug-
mented the number of variables in order to find the optimal solution w? which is given by
the following relationship:

w? =
(
In 0n,n 0n,n

)
x?

3.2 The efficient frontier with linear transaction costs

We consider an investment universe of 7 assets. Their expected return and volatility ex-
pressed as a % are equal to:

i 1 2 3 4 5 6 7
µi 1.00 2.00 3.00 4.00 5.00 7.50 10.00
σi 1.00 2.00 3.00 4.00 5.00 7.50 10.00

We also consider a constant correlation matrix of 25% between asset returns. The initial
portfolio is composed of 50% of Asset 1 and 50% of Asset 2.

By assuming fixed transaction costs c− = 20 bps and c+ = 10 bps, we obtain the
efficient frontier that is reported in Figure 2. Here, we face an issue because transaction
costs imply that

∑n
i=1 w

?
i < 1. Therefore, the efficient frontier cannot be represented by the

pair (σ (w?) , µ (w?)) because the net wealth
∑n

i=1 w
?
i depends on the values taken by c−

and c+. With no transaction costs, we retrieve the classical efficient frontier of Markowitz
(1952). However, in order to compare efficient frontiers, we have to normalize the optimized
portfolio:

w̄? =
w?

i∑n
i=1 w

?
i

Indeed, plotting (σ (w?) , µ (w?)) is misleading since we have paid transaction costs in order
to rebalance the portfolio. For instance, if the transaction costs are high, we have

∑n
i=1 w

?
i �

1 and we may obtain a very low volatility and some optimized portfolios may be on the left
of the Markowitz efficient frontier. The reason is that the portfolio is less risky on a nominal
basis because the portfolio notional is reduced. This is why it is better to consider the
expected return adjusted by the transaction costs (also called the ‘net expected return’),
which is equal to µnet (w̄?) = µ (w̄?) − C (w? | w̃). The efficient frontier with transaction
costs is then represented by the curve (σ (w̄?) , µnet (w̄?)). However, with c− = 20 bps and
c+ = 10 bps, Figure 2 gives the impression that transaction costs have little impact on the
efficient frontier.
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Figure 2: Efficient frontier (σ (w̄?) , µnet (w̄?)) with c− = 20 bps and c+ = 10 bps
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Figure 3: Efficient frontier (σ (w̄?) , µnet (w̄?)) with c− = 2% and c+ = 1%
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Figure 4: Transaction cost
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Let us now consider an unrealistic case: c− = 2% and c+ = 1%. We obtain Figure 3
and we notice the big impact of transaction costs on the expected return of the portfolio. In
Figure 4, we have reported the total amount of transaction costs with respect to portfolio
volatility. Since the case c− = 20 bps and c+ = 10 bps is more realistic, it may not reflect
the real impact on a trading strategy. Indeed, these transaction costs are paid at each
rebalancing date. The efficient frontier considers a yearly expected return, whereas the net
expected return assumes only one portfolio rebalancing in the year, and does not take into
account the total turnover of the portfolio. For example, if we assume that we rebalance
the portfolio 5 times in the year, we obtain the green curve that illustrates how cumulative
transaction costs can be damaging for portfolio performance.

4 Introducing quadratic transaction costs

4.1 The issue of the quadratic budget constraint

In the case of quadratic transaction costs, we can use the same approach by considering
augmented variables. We deduce that:

C (w | w̃) =

n∑
i=1

∆w−i
(
c−i + δ−i ∆w−i

)
+

n∑
i=1

∆w+
i

(
c+i + δ+

i ∆w+
i

)
= ∆w−>c− + ∆w−>∆−∆w− + ∆w+>c+ + ∆w+>∆+∆w+

13



A Note on Portfolio Optimization with Quadratic Transaction Costs

where ∆− = diag
(
δ−1 , . . . , δ

−
n

)
and ∆+ = diag

(
δ+
1 , . . . , δ

+
n

)
are two diagonal matrices. It

follows that the objective function of Problem (2) remains quadratic:

f
(
w,∆w−,∆w+

)
=

1

2
w>Σw − γ

(
w>µ− C (w | w̃)

)
=

1

2

(
w>Σw + ∆w−>

(
2γ∆−

)
∆w− + ∆w+> (2γ∆+

)
∆w+

)
−

γ
(
w>µ−∆w−>c− −∆w+>c+

)
but the budget constraint is no longer linear:

1>nw + ∆w−>c− + ∆w+>c+︸ ︷︷ ︸
Linear term

+ ∆w−>∆−∆w− + ∆w+>∆+∆w+︸ ︷︷ ︸
Quadratic term

= 1

Indeed, the budget constraint is composed of a linear term and a quadratic term.

Let x = (w,∆w−,∆w+) be the vector of original variables and augmented variables. We
obtain:

x? = arg min
1

2
x>Qx− x>R (7)

s.t.

 A1x+ x>C1x = B1

A2x = B2

x− ≤ x ≤ x+

where:

Q =

 Σ 0n,n 0n,n

0n,n 2γ∆− 0n,n

0n,n 0n,n 2γ∆+


and:

R = γ

 µ
−c−
−c+


For the equality constraints, we obtain:(

A1

A2

)
=

(
1>n (c−)

>
(c+)

>

In In −In

)
and: (

B1

B2

)
=

(
1
w̃

)
The matrix C1 is defined as follows:

C1 =

 0n,n 0n,n 0n,n

0n,n ∆− 0n,n

0n,n 0n,n ∆+


The bounds remain the same. We have x− = 03n and:

x+ =

 1n

w̃
1n − w̃


Again, the optimal solution w? is given by the following relationship:

w? =
(
In 0n,n 0n,n

)
x?
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4.2 The ADMM solution

Following Perrin and Roncalli (2019), we can use the alternating direction method of mul-
tipliers (ADMM) algorithm formulated by Gabay and Mercier (1976) to solve Problem (7)
and overcome the non linear constraint. To do this, we leave the objective function as well as
all the linear constraints in the x-update and put the non linear constraint in the y-update.
In this case, the x-update is easily solved using QP, but the y-update is an NP-hard problem
in the general case.

4.2.1 The ADMM formulation

Problem (7) is equivalent to:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y) (8)

s.t. x− y = 0n

where:

fx (x) =
1

2
x>Qx− x>R+ 1Ωx

(x)

and:
fy (y) = 1Ωy

(y)

The sets Ωx and Ωy are defined as follows:

Ωx (x) =
{
x ∈ [0, 1]

n
: A2x = B2, x

− ≤ x ≤ x+
}

and:
Ωy (y) =

{
y ∈ [0, 1]

n
: A1y + y>C1y = B1

}
The corresponding ADMM algorithm consists of the following three steps (Boyd et al., 2011;
Perrin and Roncalli, 2019):

1. The x-update is:

x(k+1) = arg min
x

{
fx (x) +

ϕ

2

∥∥∥x− y(k) + u(k)
∥∥∥2

2

}
(9)

2. The y-update is:

y(k+1) = arg min
y

{
fy (y) +

ϕ

2

∥∥∥x(k+1) − y + u(k)
∥∥∥2

2

}
(10)

3. The u-update is:
u(k+1) = u(k) + x(k+1) − y(k+1) (11)

As noted by Perrin and Roncalli (2019), the x-update is a QP problem:

x(k+1) = arg min
1

2
x> (Q+ ϕI3n)x− x>

(
R+ ϕ

(
y(k) − u(k)

))
(12)

s.t.

{
A2x = B2

x− ≤ x ≤ x+

There is no difficulty in finding the numerical solution x(k+1). In fact, the issue concerns
the calculation of y(k+1).
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4.2.2 The case δ−i = δ− and δ+
i = δ+

Generally, the y-update is easily solved by combining proximal operators and the Dykstra
algorithm. However, in our case, we cannot use such a decomposition because the constraint
is unusual. In fact, we have the following optimization problem:

y(k+1) = arg min
y

1

2

∥∥∥y − v(k+1)
y

∥∥∥2

2

s.t. y ∈ Ωy

where v
(k+1)
y = x(k+1) + u(k). We deduce that the Lagrange function is equal to:

L (y, λ) =
1

2

∥∥∥y − v(k+1)
y

∥∥∥2

2
+

λ

(
n∑

i=1

(
wi + ∆w−i

(
c−i + δ−i ∆w−i

)
+ ∆w+

i

(
c+i + δ+

i ∆w+
i

))
− 1

)

Using the similar partition v
(k+1)
y = (v,∆v−,∆v+) as y = (w,∆w−,∆w+), the KKT con-

ditions are: 
wi − vi + λ = 0
∆w−i −∆v−i + λ

(
c−i + 2δ−i ∆w−i

)
= 0

∆w+
i −∆v+

i + λ
(
c+i + 2δ+

i y
+
i

)
= 0∑n

i=1

(
wi + ∆w−i

(
c−i + δ−i ∆w−i

)
+ ∆w+

i

(
c+i + δ+

i ∆w+
i

))
= 1

We then get a nonlinear system of 3n+ 1 equations. We first consider the case δ−i = δ− and
δ+
i = δ+. In Appendix A.1 on page 21, we show that λ is the solution of a quintic equation:

α5λ
5 + α4λ

4 + α3λ
3 + α2λ

2 + α1λ+ α0 = 0

From this, we can conclude that there are as many solutions to the nonlinear system as
there are real roots to the last polynomial equation. Since we know that KKT conditions are
necessary, it is sufficient to compare the different solutions obtained for this system in order
to find the solution of our original program4. More general methods are available in order to
numerically solve the nonlinear system such as the Newton-Raphson algorithm. However,
for these methods, it is usually necessary to compute the inverse of a Hessian matrix at each
step of iteration which is very costly (around O

(
(3n+ 1)3

)
). By taking advantage of the

derivation of the y-update, we only need one step of cost O
(
53
)

to compute the roots of the
polynomial in order to solve the system.

4.2.3 The case δ−i 6= δ−j and δ+
i 6= δ+

j

The case δ−i 6= δ−j and δ+
i 6= δ+

j complicates the problem. Indeed, we obtain a polynomial
equation of degree 2n+ 1. Another solution is to rewrite the y-update problem in a matrix
form5:

y(k+1) = arg min
1

2

(
y − v(k+1)

y

)> (
y − v(k+1)

y

)
s.t. A1y + y>C1y −B1 = 0

4It is also possible that there are cases where we can get several solutions as we are projecting onto a
quadratic equation. For example, we would get an infinite number of solutions if we project a point onto a
circle, where this point is its center. However, in the general case, we avoid these critical points and find
only one single real root to the polynomial equation.

5ϕ is set to one because its value has no impact on the solution.
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We obtain a quadratically constrained quadratic program (QCQP). Since a quadratic equal-
ity is not convex, the optimization problem is not convex. More generally, a QCQP is an
NP-hard problem. A numerical solution is therefore to consider an interior-point algorithm
by specifying the gradient of the objective function, the gradient of the equality constraint
and the Hessian of the Lagrangian6. However, since we have only one constraint and the
objective function is simple, we can derive the numerical solution (Park and Boyd, 2017),
which is described in Appendix A.2 on page 23.

Remark 1. The ADMM formulation has allowed us to split the QCQP Problem (7) with two
inequality and two equality constraints into a QP problem (x-update) and a QCQP problem
with only one constraint (y-update). As explained by Park and Boyd (2017), solving QCQP
with one constraint is feasible and relatively easy. This is not always the case when there
are two or more constraints.

4.3 The efficient frontier with quadratic transaction costs

We consider our previous example. We assume that the current portfolio is the optimal
portfolio w̃ corresponding to volatility of 2%. In a second period, the portfolio manager
would increase portfolio risk and target volatility equal to 4%. Portfolio w?

MVO is the optimal
solution if we do not take into account transaction costs. However, this portfolio is not
realistic if we consider transaction costs. We set c− = 2%, c+ = 1%, δ− = 5% and δ+ = 5%.
The results are given in Table 1. In the case of linear transaction costs, we obtain Portfolio
w?

LC. We observe that the two solutions w?
MVO and w?

LC are very different. For instance, the
LC solution keeps a significant proportion of Asset 2 in order to pay less transaction costs.
Indeed, Portfolios w?

MVO and w?
LC pay respectively 1.58% and 0.98% of transaction costs. In

the case of quadratic transaction costs, the solution is Portfolio w?
QC. We notice that it has

a lower turnover than the two previous portfolios. Moreover, it selects assets with a high
return in order to compensate for the transaction costs. This is why we obtain a weight of
29.13% for Asset 7.

Table 1: Comparison of optimized portfolios with linear and quadratic costs

Asset w̃ w?
MVO w?

LC w?
QC w̄?

LC w̄?
QC

1 26.16 0.01 0.00 6.70 0.00 6.80
2 21.41 0.08 14.52 10.84 14.67 11.01
3 16.13 10.92 16.13 14.32 16.28 14.53
4 12.79 22.42 12.79 12.78 12.91 12.98
5 10.56 24.77 10.56 10.56 10.67 10.72
6 7.34 22.59 18.27 14.17 18.45 14.38
7 5.62 19.22 26.74 29.13 27.01 29.57

µ (w) 3.33 6.08 5.86 5.73 5.92 5.82
σ (w) 2.00 4.00 4.00 4.00 4.04 4.06

CLC (w | w̃) 1.58 0.98 0.94
CQC (w | w̃) 2.52 1.63 1.49
µLC (w | w̃) 3.33 4.50 4.88 4.79
µQC (w | w̃) 3.33 3.56 4.23 4.24

In Figure 5, we have reported the efficient frontier with the previous transaction costs.
We verify that it is below the unconstrained MVO efficient frontier. We also notice that

6They are respectively equal to y − v
(k+1)
y , A1 + 2C1y and In + 2λC1.
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Figure 5: Efficient frontier (σ (w̄?) , µnet (w̄?)) with quadratic transaction costs
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quadratic transaction costs have a significant adverse effect on the net expected return of
optimized portfolios. In our example, we rebalance a portfolio, which has low volatility. This
implies that it is inefficient to target an optimized portfolio with high volatility, because
we have to pay substantial transaction costs. For instance, it is impossible to target an
expected return greater than 4%, implying that having portfolio volatility higher than 5%
is not optimal.

Remark 2. We do not say that it is impossible to target volatility higher than 5%, but we
say that it is not optimal. Indeed, the ADMM algorithm stops before the optimized portfolio
reaches 5%. In order to match volatility σ? > 5%, we have to solve the strict σ-problem:

w? = arg max

n∑
i=1

wi · µi −
n∑

i=1

∆w−i
(
c−i + δ−i ∆w−i

)
−

n∑
i=1

∆w+
i

(
c+i + δ+

i ∆w+
i

)
(13)

s.t.


∑n

i=1 wi +
∑n

i=1 ∆w−i
(
c−i + δ−i ∆w−i

)
+
∑n

i=1 ∆w+
i

(
c+i + δ+

i ∆w+
i

)
= 1

wi + ∆w−i −∆w+
i = w̃i√

w>Σw = σ?

0n ≤ w ≤ 1n

This can be done by rewriting Problem (13) as a QCQP program7. In Figure 5, we verify
that QCQP optimized portfolios such that σ (w?) > 5% are in fact not optimal, because they
are dominated by portfolios with a higher expected return and lower volatility.

7See Appendix A.3 on page 24.
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5 Conclusion

In this short note, we study mean-variance optimized portfolios with linear and quadratic
transaction costs. We show how the problem can be solved using the techniques of quadratic
programming and alternating direction method of multipliers. We also illustrate how linear
and quadratic transaction costs can lead to different solutions and penalize the portfolio’s
return. Moreover, the introduction of quadratic transaction costs opens a new field of
research when we consider transition management, asset ramp-up or portfolio scaling.
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Appendix

A Mathematical results

A.1 Solution of the y-update in the case δ−i = δ− and δ+
i = δ+

We would like to solve the following nonlinear system of 3n+ 1 equations:


wi − vi + λ = 0
∆w−i −∆v−i + λ

(
c−i + 2δ−∆w−i

)
= 0

∆w+
i −∆v+

i + λ
(
c+i + 2δ+∆w+

i

)
= 0∑n

i=1

(
wi + ∆w−i

(
c−i + δ−∆w−i

)
+ ∆w+

i

(
c+i + δ+∆w+

i

))
= 1

The first 3n equations are equivalent to:


wi = vi − λ

∆w−i =
∆v−i − λc

−
i

λ−

∆w+
i =

∆v+
i − λc

+
i

λ+

where λ− = 1 + 2λδ− and λ+ = 1 + 2λδ+. The last equation then becomes:

(∗) ⇔
n∑

i=1

(vi − λ) +

n∑
i=1

(
∆v−i − λc

−
i

λ−

)(
c−i + δ−i

∆v−i − λc
−
i

λ−

)
+

n∑
i=1

(
∆v+

i − λc
+
i

λ+

)(
c+i + δ+

i

∆v+
i − λc

+
i

λ+

)
= 1

⇔ λ−
2

λ+2

(
n∑

i=1

vi − 1

)
− λλ−

2

λ+2

n+

λ−λ+2
n∑

i=1

c−i
(
∆v−i − λc

−
i

)
+ λ+2

δ−
n∑

i=1

(
∆v−i − λc

−
i

)2
+

λ−
2

λ+
n∑

i=1

c+i
(
∆v+

i − λc
+
i

)
+ λ−

2

δ+
n∑

i=1

(
∆v+

i − λc
+
i

)2
= 0

We have λ−
2

=
(

4δ−
2
)
λ2 + (4δ−)λ+ 1, λ+2

=
(

4δ+2
)
λ2 + (4δ+)λ+ 1 and:

λ−λ+2

=
(

8δ−δ+2
)
λ3 + 4δ+

(
2δ− + δ+

)
λ2 + 2

(
δ− + 2δ+

)
λ+ 1

λ−
2

λ+ =
(

8δ−
2

δ+
)
λ3 + 4δ−

(
δ− + 2δ+

)
λ2 + 2

(
2δ− + δ+

)
λ+ 1

λ−
2

λ+2

=
(

16δ−
2

δ+2
)
λ4 + 16δ−δ+

(
δ− + δ+

)
λ3 +

4
(
δ−

2

+ 4δ−δ+ + δ+2
)
λ2 + 4

(
δ− + δ+

)
λ+ 1
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We deduce that:

(∗) ⇔

(
n∑

i=1

vi − 1

)((
16δ−

2

δ+2
)
λ4 + 16δ−δ+

(
δ− + δ+

)
λ3 + 4

(
δ−

2

+ 4δ−δ+ + δ+2
)
λ2
)

+(
n∑

i=1

vi − 1

)(
4
(
δ− + δ+

)
λ+ 1

)
− n

((
16δ−

2

δ+2
)
λ5 + 16δ−δ+

(
δ− + δ+

)
λ4
)
−

n
(

4
(
δ−

2

+ 4δ−δ+ + δ+2
)
λ3 + 4

(
δ− + δ+

)
λ2 + λ

)
+(

n∑
i=1

c−i ∆v−i

)((
8δ−δ+2

)
λ3 + 4δ+

(
2δ− + δ+

)
λ2 + 2

(
δ− + 2δ+

)
λ+ 1

)
−(

n∑
i=1

c−
2

i

)((
8δ−δ+2

)
λ4 + 4δ+

(
2δ− + δ+

)
λ3 + 2

(
δ− + 2δ+

)
λ2 + λ

)
+(

δ−
n∑

i=1

∆v−
2

i

)((
4δ+2

)
λ2 +

(
4δ+

)
λ+ 1

)
−(

2δ−
n∑

i=1

∆v−i c
−
i

)((
4δ+2

)
λ3 +

(
4δ+

)
λ2 + λ

)
+(

δ−
n∑

i=1

c−
2

i

)((
4δ+2

)
λ4 +

(
4δ+

)
λ3 + λ2

)
+(

n∑
i=1

c+i ∆v+
i

)((
8δ−

2

δ+
)
λ3 + 4δ−

(
δ− + 2δ+

)
λ2 + 2

(
2δ− + δ+

)
λ+ 1

)
−(

n∑
i=1

c+
2

i

)((
8δ−

2

δ+
)
λ4 + 4δ−

(
δ− + 2δ+

)
λ3 + 2

(
2δ− + δ+

)
λ2 + λ

)
+(

δ+
n∑

i=1

∆v+2

i

)((
4δ−

2
)
λ2 +

(
4δ−

)
λ+ 1

)
−(

2δ+
n∑

i=1

∆v+
i c

+
i

)((
4δ−

2
)
λ3 +

(
4δ−

)
λ2 + λ

)
+(

δ+
n∑

i=1

c+
2

i

)((
4δ−

2
)
λ4 +

(
4δ−

)
λ3 + λ2

)
= 0

We obtain a quintic equation:

α5λ
5 + α4λ

4 + α3λ
3 + α2λ

2 + α1λ+ α0 = 0

where:
α5 = 16nδ−

2

δ+2

α4 =
(

16δ−
2

δ+2
)( n∑

i=1

vi − 1

)
− 16nδ−δ+

(
δ− + δ+

)
−

4δ−δ+

(
δ+

n∑
i=1

c−
2

i + δ−
n∑

i=1

c+
2

i

)
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α3 = 16δ−δ+
(
δ− + δ+

)( n∑
i=1

vi − 1

)
− 4n

(
δ−

2

+ 4δ−δ+ + δ+2
)
−

4
(
δ− + δ+

)(
δ+

n∑
i=1

c−
2

i + δ−
n∑

i=1

c+
2

i

)

α2 = 4
(
δ−

2

+ 4δ−δ+ + δ+2
)( n∑

i=1

vi − 1

)
− 4n

(
δ− + δ+

)
+

4

(
δ+2

n∑
i=1

c−i ∆v−i + δ−
2

n∑
i=1

c+i ∆v+
i

)
−
(
δ− + 4δ+

) n∑
i=1

c−
2

i −

(
4δ− + δ+

) n∑
i=1

c+
2

i + 4δ−δ+

(
δ+

n∑
i=1

∆v−
2

i + δ−
n∑

i=1

∆v+2

i

)

α1 = 4
(
δ− + δ+

)( n∑
i=1

vi − 1

)
− n+ 4

(
δ+

n∑
i=1

c−i ∆v−i + δ−
n∑

i=1

c+i ∆v+
i

)
−(

n∑
i=1

c−
2

i +

n∑
i=1

c+
2

i

)
+ 4δ−δ+

(
n∑

i=1

∆v−
2

i +

n∑
i=1

∆v+2

i

)

and:

α0 =

(
n∑

i=1

vi − 1

)
+

(
n∑

i=1

c−i ∆v−i +

n∑
i=1

c+i ∆v+
i

)
+

(
δ−

n∑
i=1

∆v−
2

i + δ+
n∑

i=1

∆v+2

i

)

A.2 Solution of the y-update in the case δ−i 6= δ−j and δ+
i 6= δ+

j

We consider the following optimization problem:

y(k+1) = arg min
1

2

(
y − v(k+1)

y

)> (
y − v(k+1)

y

)
s.t. A1y + y>C1y −B1 = 0

Following Park and Boyd (2017), the Lagrangian is given by:

L (y, λ) =
1

2

(
y − v(k+1)

y

)> (
y − v(k+1)

y

)
+ λ

(
A1y + y>C1y −B1

)
=

1

2
y> (I3n + 2λC1) y +

(
λA1 − v(k+1)>

y

)
y +(

1

2
v(k+1)>
y v(k+1)

y − λB1

)
The first order conditions are:{

(I3n + 2λC1) y + λA>1 − v
(k+1)
y = 03n

A1y + y>C1y −B1 = 0

Therefore, we have:

y = (I3n + 2λC1)
−1
(
v(k+1)
y − λA>1

)
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It follows that the equality constraint becomes:

A1 (I3n + 2λC1)
−1
(
v(k+1)
y − λA>1

)
+(

v(k+1)
y − λA>1

)>
(I3n + 2λC1)

−1
C1 (I3n + 2λC1)

−1
(
v(k+1)
y − λA>1

)
−B1 = 0

Since C1 is a diagonal matrix, (I3n + 2λC1)
−1

is also a diagonal matrix. It follows that the
previous equation is equivalent to:

3n∑
i=1

A1,i

(
v

(k+1)
y,i − λA1,i

)
1 + 2λ (C1)i,i

+

3n∑
i=1

(C1)i,i

(
v

(k+1)
y,i − λA1,i

)2

(
1 + 2λ (C1)i,i

)2 −B1 = 0

By replacing A1,i, B1, (C1)i,i and v
(k+1)
y,i by their values, we obtain the following nonlinear

equation:

n∑
i=1

(vi − λ) +

n∑
i=1

c−i
(
∆v−i − λc

−
i

)
1 + 2λδ−i

+

n∑
i=1

c+i
(
∆v+

i − λc
+
i

)
1 + 2λδ+

i

+

n∑
i=1

δ−i
(
∆v−i − λc

−
i

)2(
1 + 2λδ−i

)2 +

n∑
i=1

δ+
i

(
∆v+

i − λc
+
i

)2(
1 + 2λδ+

i

)2 − 1 = 0

Park and Boyd (2017) noticed that the derivative of the lefthand side is negative, meaning
that the function is decreasing and has a unique root. They then suggested to solve this
equation using the bisection method. Once the optimal value λ? is found, the solution y(k+1)

is given by: 
wi = vi − λ?

∆w−i =
∆v−i − λ?c

−
i

1 + 2λ?δ−i

∆w+
i =

∆v+
i − λ?c

+
i

1 + 2λ?δ+
i

A.3 QCQP formulation of the strict σ-problem

In the case of the strict σ-problem, the optimization problem becomes:

x? = arg min−x>R+ x>Qx

s.t.


A1x+ x>C1x = B1

A2x = B2

x>C3x = B3

x− ≤ x ≤ x+

where x = (w,∆w−,∆w+),

Q =

 0n,n 0n,n 0n,n

0n,n ∆− 0n,n

0n,n 0n,n ∆+


and:

R =

 µ
−c−
−c+


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For the equality constraints, we obtain:(
A1

A2

)
=

(
1>n (c−)

>
(c+)

>

In In −In

)
and:  B1

B2

B3

 =

 1
w̃
σ?2


where σ? is the targeted volatility of the portfolio. The matrices C1 and C3 are defined as
follows:

C1 =

 0n,n 0n,n 0n,n

0n,n ∆− 0n,n

0n,n 0n,n ∆+


and:

C3 =

 Σ 0n,n 0n,n

0n,n 0n,n 0n,n

0n,n 0n,n 0n,n


The bounds remain the same: x− = 03n and:

x+ =

 1n

w̃
1n − w̃


Again, the optimal solution w? is given by the following relationship:

w? =
(
In 0n,n 0n,n

)
x?
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