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Traditional pension systems based on pay-as-you-go 
(PAYG) have become more difficult to sustain in developed 
countries as a result of continued population ageing, fewer 
children in the family and weak economic growth. Over the 
past decades, pension systems have gradually shifted from 
defined-benefit (DB) plan to defined-contribution (DC) plan. 
In DC pension schemes, there is no guarantee of pension 
payments after retirement, so it is important to develop 
appropriate decumulation strategies to efficiently convert 
wealth into income. The first part of this working paper 
systematically reviews two types of decumulation strategies: 
safe withdrawal rate methods and optimal control theory-
based methods. The second part presents simulations of 
these strategies. In addition, we investigate the robustness 
of these strategies by simulating non-normally distributed 
returns of risky assets, such as Student’s t distribution and 
skew normal distribution. Finally, we test these strategies 
with forward-looking financial data simulated by Amundi 
Cascade Asset Simulation Model.
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Optimal Decumulation Strategies for Retirement Solutions

1 Introduction
A pension plan is a long-term savings plan designed to protect retirees from the risk of
poverty in old age by transferring a portion of their working income to retirement and
is an effective means of ensuring financial stability and security after retirement. It is an
important element of social security that is widely practiced in the vast majority of developed
countries countries and in many developing countries around the world. A complete pension
scheme consists of two parts: an accumulation phase in which people build up reserves
through regular cash savings (often called contributions) during their working lives and a
decumulation phase in which people receive payment to support their retirement lives.

In terms of the way in which pension schemes are financed, we can distinguish two types
of pension systems:

• Pay as you go (PAYG): This system implies that active workers’ contributions
are shared by retirees and is notable for the absence of individual bank accounts.
The regular contributions paid by the workers are transferred directly to the retirees
for the payment of pensions. Since contributions are not accumulated or invested
in the market, this system amounts to an inter-generational contract in which the
pensions paid by the current generation are used to support the previous generation
of retired workers. The sustainability of such systems therefore depends on the ratio
of the number of workers to the number of retirees and is particularly affected by
demographic changes, such as increasing life expectancy and declining fertility.

• Fully funded: In this system, the contributions of active employees are deposited
into individual accounts. These reserves are invested in the financial markets to obtain
more value and are retained until retirement. Due to the lack of mutual assistance, this
system is not subject to demographic changes but is highly vulnerable to financial risks
such as market risk, inflation risk, etc. Such systems are more suitable for countries
with ageing societies and highly developed and regulated financial markets.

In terms of how pension schemes are paid out, we can divide the pension system into
two categories:

• Defined-benefit (DB): Under this system, pension expenses and income are so-
cial pooling accounts. The pension provider (e.g., employer or government) promises
retirees a determined income for life, and the amount is based on factors such as the re-
tiree’s pre-retirement salary and years of service. Defined benefit pensions can be very
difficult to manage, especially in the context of an ageing population where increasing
numbers of retirees lead to an imbalance between pension income and expenses. To
maintain the program, the government has to make financial subsidies, which will also
lead to inter-generational inequality.

• Defined-contribution (DC): Under this system, each individual has his or her own
account and invests in the financial market to generate income. The individual is
responsible for contributing to the pension and selecting the investments offered by
the pension scheme. As a result, the value of the pension can go up or down, depending
on the performance of the investments. The most famous defined contribution plan is
the 401(k) plan in the US.
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Table 1: Comparison of DB and DC pension schemes

Defined-benefit Defined-contribution

Characteristics The employer1 undertakes to pay
the worker a guaranteed defined
benefit upon retirement.

The employer and the employee con-
tribute a fixed percentage of salary to
the employee’s pension account on a
regular basis to fund the pension.

Payment risk The employer bears all the pay-
ment risk.

The employee bears all the payment
risk.

Payment amount Payments are based on a prede-
fined formula.

Payments are dependent on the fund’s
investment performance.

Advantages
Guaranteed payment;

No investment risk for employees

Potential for higher investment returns;

Flexibility

Disadvantages
Low average retirement payments;

Lack of flexibility

Uncertainty of payments;

Employees have investment risks

Source: Amundi Investment Institute

Defined-benefit schemes are generally financed on a PAYG pension system or a partially
fully funded system. Defined-contribution pension systems are, by definition, fully funded.
Table 1 shows the main differences between DB and DC pension schemes. The sustainability
of DB schemes depends on the balance between the contributions of employees and employ-
ers and the pensions drawn by retirees, i.e., the demographic structure. In the late 1970s
and early 1980s, developed countries’ pension systems have been affected by factors such
as continued population ageing, fewer children in families, and sluggish economic growth.
The statutory pensions, which were mainly financed on a PAYG basis, generally fell into the
predicament of not being able to cover their expenses. Over the past few decades, there has
been a gradual shift from DB to DC plans. The responsibility for preparing for retirement
is shifting from governments and employers to individuals. Since the 1980s, countries have
initiated reforms and chosen a similar path of reform: in addition to reducing public pen-
sions under PAYG systems, a three-pillar pension system was formed by introducing fund
accumulation, replacing the previous system of sole state funding with a system in which the
state, companies, and individuals are responsible for pensions. This three-pillar system has
been actively promoted by the World Bank. In their policy research report (World Bank,
1994), the World Bank describes the different objectives of each pillar.

• The first pillar aims to ensure a basic cost-of-living allowance for seniors. This would
be a mandatory, publicly administered PAYG system, usually with a DB plan, funded
through contributions to wages and government budgets. The first pillar is redistribu-
tive and inclusive in nature and is designed to ensure that retirees receive a pension
equal to 50% − 60% of their pre-retirement salary.

1In this table, the term “employer” refers not only to companies but also to governments.
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• The second pillar is a privately managed mandatory savings system designed to sup-
plement the pension benefits of the first pillar, primarily through defined-contribution
plans. It consists of occupational pension plans with mandatory enrollment.

• The third pillar refers to private retirement savings options. In contrast with the
first two pillars, this pillar is voluntary. In this type of savings plan, individuals are
responsible for deciding how much they will contribute and how they will invest their
savings. In order to encourage individuals to save on their own, the government often
offers different forms of tax advantage for certain specific savings, such as deducting
contributions from taxable income, tax-free withdrawals, or partial capital gains tax.

In most countries, the second pillar usually refers to the actions of companies, which are
responsible for establishing an annuity system for their employees. Therefore, in practice, the
three-pillar pension model, in a narrow sense, involves public pensions, company annuities,
and personal pension savings. Especially after the global financial crisis in 2008 and the
sovereign debt crisis in Europe in 2010, countries have stepped up their reform efforts as a
result of rising levels of public debt. Reform measures in many developed countries include:

• extension of contribution years and the statutory retirement age;
• raising the level of contributions;
• institutional reforms to reduce management costs;
• tax benefits for second and third pillar pension solutions.

At the end of 2005, the World Bank published another important report “Old Age Income
Security in the 21st Century - An International Comparison of Pension System Reforms”
(Holzmann and Hinz, 2005). The book extends the three-pillar idea and then puts forward
the concept and proposal of five pillars: Non-contributory Pillar 0, which provides a mini-
mum level of coverage to the poor; contributory Pillar 1, which is a public pension scheme
on a PAYG basis to provide basic needs; mandatory or voluntary Pillar 2, which is a pri-
vate occupational pension scheme to supplement Pillar 1; voluntary Pillar 3, which involves
individual savings to provide for future withdrawals or annuities in various forms and the
so-called Pillar 4, which establishes informal forms of coverage among family members or
between generations.

In DC pension plans, where payments are not guaranteed during retirement, it is im-
portant to develop an appropriate decumulation strategy that effectively converts wealth
into income. Designing such a decumulation strategy is a difficult challenge, and the control
variables available to decision-makers include not only investment decisions but also with-
drawal decisions. First, we need to consider a range of relevant market risk factors, such as
investment risk, interest rate risk, inflation risk, and personal risk factors, such as longevity
risk. Secondly, we should decide how to allocate the remaining funds to ensure a stable and
sustainable income stream throughout the retirement period. Finally, we have to consider
retirees’ preferences, such as bequests, family circumstances, health conditions, spending
habits, etc. Therefore, an appropriate decumulation strategy takes into account three as-
pects: sources of uncertainty, decision-making processes, and preferences. Thus, many
authors claimed that the decumulation strategy is a very hard problem in finance, such as
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Sharpe (2017) and Thaler (2019). In our paper, we analyze two broad classes of decumula-
tion strategies: the safe withdrawal rate method derived from experience, such as the most
popular 4% rule, proposed by Bengen (1994, 1996, 1997) and optimal control theory-based
methods, which explicitly model consumers’ preferences by means of a utility function. In the
second category, we first review the method of maximizing the expected discounted utility
of lifetime consumption, which is also known as Merton’s optimal investment-consumption
problem. This problem, formulated and solved by Merton (1969), consists of deciding how
much to consume and how to allocate their remaining wealth between stocks and a risk-free
asset to maximize the expected discounted utility of life-time consumption. By choosing
some forms of utility functions, such as the constant relative risk aversion (CARA) utility
functions, and solving the associated Hamilton-Jacobi-Bellman (HJB) equation, we can find
a closed-form solution where optimal consumption is proportional to the value of the invest-
ment fund. However, this approach is at odds with real-world situations in which retirees
want a steady stream of payments to avoid unexpected changes, such as cutting or freezing
withdrawals, which may occur when applying Merton’s problem to a decumulation strategy.
To address this problem, we consider in our paper another approach based on optimal con-
trol theory, from which we draw inspiration from the ruin time stochastic control problem.
In our framework, we assume that all future consumption is known, i.e. decided by retirees
according to their personal preferences, and then the stochastic control problem consists
of deciding on the optimal allocation of the remaining funds between equities and risk-free
assets in order to maximize expected utility of the ruin date of the fund. This approach is
more in line with the goal of the decumulation strategy. Although we cannot find an explicit
solution for the finite investment horizon case in this framework, we can still solve the HJB
equation using numerical methods such as finite difference methods. We then use Monte
Carlo simulations to investigate the performance of these three methods and compare them
using different metrics, such as average success rate, average total consumption, etc. We
also test the robustness of these approaches to non-normally distributed returns on risky
assets. Finally, we test and compare the safe withdrawal rate (SWR) and the ruin date
utility maximization (RDUM) methods with more realistic forward-looking financial data
simulated by Amundi Cascade Asset Simulation Model (CASM).

This paper is organized as follows. In Section Two, we provide an overview of decumu-
lation strategies and detail three common methods for decumulation strategies. In Section
Three, we test different methods in the case of simulated data. In this section, we also test
the robustness of these methods with non-normally distributed returns. In Section Four, we
use Amundi internal model CASM to simulate forward-looking data. Finally, Section Five
offers some concluding remarks.

2 Decumulation strategies

Upon reaching retirement, an individual, having diligently worked and invested over the
years, finds himself in possession of a certain amount of accumulated wealth, denoted as X0.
This initial wealth serves as the starting point for his or her retirement period, during which
we suppose that he lacks an additional source of income. To cover their living expenses,
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the retiree makes frequent withdrawals from his or her fund. The remaining wealth is then
allocated for investment in the financial market. Consequently, the retiree is confronted with
the challenge of determining the optimal investment amount to allocate in the financial
market in order to minimize the risk of outliving their financial resources. By carefully
managing their investment decisions, retirees aim to strike a balance between meeting their
current consumption needs and preserving their wealth to sustain their expenses throughout
the retirement period.

2.1 Accumulation and decumulation
As shown in Figure 1, a complete pension scheme consists of two parts: pre-retirement accu-
mulation and post-retirement decumulation. The accumulation phase describes the period
in a person’s life when savings and long-term efficient investments are made to accumulate
funds for retirement. In contrast, the decumulation phase refers to the process by which
investors convert their retirement savings into income withdrawals to meet their retirement
needs and continue to invest their remaining funds. During this phase, there is a regular
outflow of cash from the reserve. For less fortunate retirees, the appreciation of their savings
invested in the financial market will not be able to meet their basic needs after retirement,
and they will therefore need to spend down the principal. As a result, investment strategies
during the retirement stage usually focus more on capital preservation to ensure a stable
and sustainable income stream throughout the retirement period.

Figure 1: Accumulation and decumulation

35 36 ... ... ... ... 62 63 64 65 66 ... ... ... . Bequest

Stocks Bonds Cash Bequest

Accumulation

Consumption
Consumption

Consumption

Decumulation

Age

Source: Amundi Investment Institute

People have different goals during periods of accumulation and decumulation. Almost
all savers in the accumulation phase are focused on asset growth and have maximizing
investment returns as their primary objective. However, as retirees’ circumstances differ,
decumulation goals also vary widely among them, depending on their needs, aspirations,
and risk aversion. Guyton and Klinger (2006) reported that most retirees have the following
goals for income withdrawal from their investment:

• maximize income withdrawals;
• minimize the possibility of running out of funds within the target time frame;

11



Optimal Decumulation Strategies for Retirement Solutions

• protect purchasing power from inflation;
• have a steady stream of income and avoid undesired changes such as cutting or freezing

withdrawals.

Meeting all four goals simultaneously is a very difficult task and, in addition, preferences
for bequests vary considerably from country to country based on different cultures and tax
policies. When we consider a decumulation investment strategy, we focus on three main
objectives: address liquidity needs for unforeseen expenses, secure basic consumption needs
until death, and transfer capital to bequests.

In addition, we face different risks during the accumulation and decumulation phases. As
saving patterns in the accumulation phase follow a dollar-cost averaging strategy (Graham,
2006), savers are more resistant to short-term price (market) risk. During the accumulation
phase, we usually save a fixed amount of money regularly and invest it in stocks, bonds,
mutual funds, and other assets. When financial markets fall, we can invest in these financial
instruments at cheaper prices, which means we can buy more shares with the same amount
of savings. This strategy allows savers to invest at a lower overall cost over the long term
and keeps their money working consistently, which is a key factor in long-term investment
growth. However, during the decumulation phase, we have a regular income withdrawal
which results in a permanent loss of capital when financial markets fall. It is therefore a very
difficult task for portfolio managers to find the right balance between income withdrawals
and investment strategies that meet the needs of retirees and protect capital from market
volatility. When applying the decumulation investment strategy, retirees are exposed to a
variety of risks, including:

• Longevity risk
Longevity risk, as often used by the insurance industry, refers to the risk that life
expectancy exceeds pricing assumptions, resulting in increased cash flow requirements
for the insurance company or pension fund. By analogy, longevity risk in decumulation
investment strategies refers to the risk of retirees living beyond their current expecta-
tions and not having enough money to sustain themselves in later life. However, the
decumulation investment strategies are not mutual, which means that retirees have
their own accounts and are exposed to their own longevity risk rather than sharing
longevity risk with others, as is the case with annuities or tontines. This risk can be
assessed by retirees based on their health status, and they can change their investment
horizon and the amount they spend during the decumulation phase.

• Sequencing risk
Sequential risk is the risk that the timing of withdrawals from retirement accounts is
unfavorable, resulting in a reduction in their retirement funds. During the retirement
phase, we need to determine the allocation of different assets so that the portfolio is
well diversified. However, any type of investment strategy is exposed to market risk.
Financial markets can go down at any time, but retirees prefer the stability of income
withdrawals. Hence, there is a mismatch between market risk and income withdrawal.
In this case, the timing of market risk will significantly affect retirees’ portfolios. For
example, when retirees’ withdrawals are continuous and fixed in amount, a market
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decline that occurs early in retirement will have a greater impact than a decline of the
same level that occurs later. For some retirees, they will have to draw regular income
from their pension portfolios to meet their living needs, regardless of the performance
of the underlying investments. In such cases, the sequencing risk is even more acute.

• Inflation risk
As described previously in this section, one of the primary objectives for most retirees
is to protect their purchasing power from inflation. Inflation risk is often defined as
higher-than-expected increases in the price of goods and services. It is worth noting
that retirees spend differently from employees in that they spend more on certain
goods and services, such as travel in early retirement, luxury items, and health care
at the end of life. In contrast, they do not need to spend as much on housing and
education. Therefore, we need to use appropriate methodologies to properly measure
the inflation risk of retirees.

2.2 Overview of decumulation strategies
At retirement, retirees need to develop a long-term plan to gradually spend down their assets
and have generally three options to deal with their savings:

• withdraw all savings at once;
• purchase a life annuity2 and receive regular payments until death;
• continue to invest savings in the financial market while allowing to draw from savings

at any time.

Following the third option, the decumulation investment strategy is a strategic way to con-
vert retirees’ pension savings into retirement income to ensure regular payments for the rest
of their lives. As described in Bernhardt and Donnelly (2018), the process of decumulation
consists of income withdrawal and investment strategies:

• How much can be withdrawn on a regular basis to meet the basic expen-
diture needs of retirees?
Deciding the amount of income withdrawal is a very challenging task for retirees, re-
quiring comprehensive consideration of long-term risks such as inflation, increased life
expectancy, and health risks. The consumption needs of retirees may also vary due to
differences in financial situations and pre-retirement spending levels. For simplicity,
they can set the consumption demand as a constant or consider the level of inflation.
In addition, they can further customize the consumption demand, as shown in the
famous U-shaped diagram in Figure 2: in the early stages of retirement, they spend
more because they are more active and keen to travel. After that, they enter a phase
of low spending, yet in later years, spending increases significantly again due to the
cost of a health care.

• How do we invest the remaining funds?
A decumulation investment strategy can be a one-off decision taken at the point of
retirement or it could also be a sequence of actions taken over time. For example,

2For a more detailed explanation of life annuities and tontines, see Appendix A.2 and A.3.
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Figure 2: Spending needs in retirement
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Source: Amundi Investment Institute

retirees may choose a constant mix of 60% stocks and 40% bonds or rebalance their
portfolio based on market conditions, their remaining wealth, and income withdrawal
needs.

Both life annuities and decumulation strategies are designed to draw down capital gradu-
ally during retirement. In addition, decumulation strategies have three other advantages:
flexibility, especially to recover capital in the event of unforeseen expenses; allowing to be-
queath capital; continuing to invest in risky assets in financial markets to achieve portfolio
appreciation. However, unlike life annuities, retirees can not share the risk with others when
using a decumulation strategy. They will continue to withdraw their pension from the fund
until it runs out. They thereby run the risk of using up all of their money before they die.
Thus, we need to find an appropriate amount that will allow retirees to withdraw funds from
their portfolios without emptying them prematurely, and we need to find the right balance
between utilizing risky assets for portfolio appreciation and avoiding the risk of running out
of funds within the target time frame. In addition to that, we also need to consider several
constraints, such as the retiree’s risk profile, e.g., the retiree’s risk appetite for the maxi-
mum allocation of risky assets, and bequests. As described in Fullmer (2008), the opinions
of retirees on bequests vary. Some may cut costs and preserve assets for future generations,
while others are dismissive of bequests. In summary, the decumulation strategy is a very
complex problem because it requires a long-term perspective that takes into account factors
such as the time value of money, inflation, personal health, potential care costs, willingness
to bequeath, taxes, unpredictable expenses, and market risk.

2.3 The safe withdrawal rate method
Planning for retirement income withdrawal is a critical aspect of financial management in
retirement. However, the task is far from straightforward, and the advice offered to retirees
often relies on simplistic rules. In the subsequent section, we quickly introduce the evolution
of these approaches within the financial advisor community.

A simplistic approach to managing retirement wealth involves dividing the total sum
into equal portions and withdrawing one portion annually. The primary drawback of this
strategy lies in the fact that the remaining wealth is not actively invested in the financial
markets to capitalize on compound interest and potential risk premiums, which can sig-
nificantly augment the overall wealth. Conversely, the strategy’s advantage lies in its ease
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of comprehension and the retiree’s ability to independently execute it. Building upon this
basic strategy, a better approach can be considered. The retiree withdraws a fixed amount
annually and invests the remainder in the financial market. As explained in Section 2.2,
retirees face two crucial decisions. Firstly, they must determine how to allocate their wealth,
including which assets to invest in and the allocation amounts for each asset. Secondly, they
need to decide on the annual withdrawal amount, with the key objective of ensuring that
his savings are sufficient to support his financial needs throughout retirement.

One of the earliest and most influential contributions to this field came from Bengen
(1994, 1996, 1997). His work is an extension of the previous work of Bierwirth (1994),
which introduced the concept of evaluating retirement plans based on historical scenarios
rather than relying solely on long-term averages. Bengen’s research methodology involved
employing bootstrap simulations utilizing empirical data from the United States spanning
the period from 1927 to 1994. Initially, the author assessed the survivability of payments
within a simple 50/50 portfolio of stocks and bonds over a 35-year horizon to determine
the maximum safe withdrawal rate (SWR), accounting for inflation. The results of the
simulation led Bengen to conclude that an inflation-adjusted withdrawal rate of 4% relative
to the initial wealth could be considered a prudent and safe choice. Furthermore, Bengen
extended his investigation to various constant mixed portfolios. His findings indicated that
an excessive allocation to either too many or too few risky assets could adversely impact the
portfolio’s long-term viability. Consequently, Bengen recommended asset allocations within
the range of 50% to 75% in favor of equity holdings.

This particular rule, now widely recognized within the financial advisor community as
the 4% rule, should be noted for its nomenclature. The number 4% within the rule is not
an absolute indicator but rather a guideline based on the financial advisor’s assessment and
future projections of market conditions, encompassing financial and macroeconomic factors
such as interest rates, risk premiums, inflation, and more. For example, Table 2 shows the
SWR based on Morningstar’s 30-year expectation of stock-bond constant mixed portfolio as
of December 2022. The figures in this table represent a prudent choice of the safe withdrawal
rate under each investment horizon and each constant-mix allocation to ensure that the fund
does not run out of money prematurely.

Table 2: 30-year starting safe withdrawal % by asset allocation for 90% success rate

equity weighting 10 years 20 years 30 years 40 years
100 8.5 4.7 3.5 3.1
80 8.9 4.9 3.7 3.1
60 9.3 5.2 3.8 3.2
40 9.6 5.3 3.8 3.2
20 9.7 5.2 3.7 3.0
0 9.4 4.8 3.3 2.6

Source: Morningstar (2022)

Bengen’s work serves as a foundational basis for subsequent studies in the field. Cooley
et al. (1998) adopted a similar methodology in their studies and largely confirmed Bengen’s
findings. Their research underscores the significance of maintaining a moderate to high level
of exposure to risk within portfolios, as well as the prudence of implementing a cautious
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withdrawal rate typically falling within the range of 3% to 4% for the sustainability of
the retirement income strategy. Building on this finding, researchers such as Pfau (2010)
conducted a global analysis of 17 developed countries. Their study revealed that nations
with a history of lower equity returns experienced safe withdrawal rates below the commonly
cited 4% benchmark. Notably, countries like Germany and Japan exhibited safe withdrawal
rates as low as 1.14% and 0.47%, respectively, during the period spanning from 1926 to
2008.

Another research path focuses on tailoring retirement strategies to accommodate indi-
vidual client preferences. For instance, Bengen (1996) explores the concept of time-based
risk-averse utility for retirees by introducing a gradual transition to bonds over time as
clients age. The findings suggest that, for a 30-year payment horizon, a 4% rule with an
initial exposure to risk assets ranging from 50% to 70% could still be deemed safe. In a
subsequent study of Bengen (2001), more flexible payment strategies are introduced. These
include the “prosperous retirement” approach, which entails varying consumption levels in
different periods, and the “performance-adjusted withdrawal”, where the withdrawal amount
depends upon the fund’s performance. The latter approach aligns with the work of Merton
(1969), which will be discussed in more detail in Section 2.4.2. Zolt (2013) modifies the
SWR rule by incorporating withdrawals below the inflation-adjusted rate. This strategy
alleviates the pressure on payment liabilities, thereby allowing retirees to increase their ini-
tial withdrawal rates. Other withdrawal strategies are also introduced in Blanchett et al.
(2012) or Morningstar (2022). It is important to highlight that the objective of these more
flexible payment strategies extends beyond accommodating client preferences. They also
aim to enhance the overall sustainability of the retirement strategy and the total income of
the retiree.

The second facet of the SWR is asset allocation, with various strategies compared to
constant-mix allocation being studied. One such strategy, introduced by Bengen (1996),
involves a gradual transition towards bonds over time. Additionally, in Blanchett (2007), a
comprehensive examination of different glide paths, including constant-mix, constant piece-
wise, linear decreasing, convex and concave decreasing, was undertaken. The result rein-
forces the effectiveness of a constant allocation strategy as the alternative strategies hardly
surpass its performance. Consequently, the author recommended a balanced portfolio, such
as a 60/40 allocation, as the most prudent choice. In Estrada (2016), encompassing 19
developed countries with data spanning from 1900 to 2009, similarly advocated for a 60/40
allocation as a viable solution. However, in a later study conducted, Pfau and Kitces (2014)
stumbled upon a surprising and counter-intuitive result. Their results showed that glide
paths involving an increasing exposure to risky assets over time improved the survivability
of retirement income strategies. In this study, we will provide a clearer elucidation of this
phenomenon.

Overall, the literature on retirement strategy has evolved from Bengen’s pioneering work
in the early 1990s to a large body of practical research that addresses diverse aspects of
retirement income planning, emphasizing the significance of asset allocation, withdrawal rate
strategies, and the importance of adapting to changing circumstances throughout retirement.
These studies collectively serve as a main guideline for financial advisors to help clients
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secure and prosperous retirements. Readers can find a more comprehensive review of the
SWR rule and a recommendation of the rules for practitioners in Kitces (2014). In summary,
the safe withdrawal rate rule, often referred to as the 4% rule, entails utilizing a conventional
constant-mix portfolio of stock and bond (with a balance to moderate allocation risky assets
like 50/50, 60/40, 70/30) along with an initial withdrawal rate of x%. This withdrawal rate
can be adjusted dynamically throughout the retirement period to enhance the strategy’s
sustainability.

2.4 Optimal control theory and Hamilton-Jacobi-Bellman equation

From a mathematical point of view, the investment-consumption problem for one retiree
during the decumulation phase can be considered as an optimal control problem, i.e., to find
the best way to control a dynamic system over a certain period [0, T ] in order to optimize an
objective function. In our case, this dynamic system refers to the retiree’s portfolio’s wealth
Xt, which invests in different types of financial assets in the financial market, and the control
vector ut at each time t includes all decision variables, such as the consumption and the
allocation of the portfolio. We also need to introduce a utility function U to represent the
retiree’s preferences or risk aversion. By convention, we want to maximize our objective
function, which is usually in the form of an integral as follows:∫ T

0

U (Xt, ut, t)dt

where ut is the control vector at time t and Xt is the system state vector at time t. Then,
we define the value function V (Xt, t) as follows:

V (Xt, t) = max
u

{∫ T

t

U (Xt, ut, t)dt+ Ũ (XT , T )

}
(1)

where Ũ (XT , T ) gives the bequest value of the utility function at the final state. Then, the
optimal control problem consists of finding optimal controls ut for each time t and this prob-
lem can be solved by applying Bellman’s principle of optimality in the theory of dynamic
programming. The basic idea of this approach is to consider a family of optimal control prob-
lems with different initial times and states and to determine the relationship between these
problems using a non-linear partial differential equation, the so-called Hamilton-Jacobi-
Bellman (HJB) equation. If the HJB equation can be solved analytically or numerically,
then we can obtain solutions to the entire family of problems with different initial times and
states, and thus the solution of the original problem. In addition, we can also generalize
deterministic optimal control problems to stochastic optimal control problems:

V (Xt, t) = max
u

E

[∫ T

t

U (Xt, ut, t)dt+ Ũ (XT , T )

]
(2)

In particular, the HJB equation involves a first-order PDE in the deterministic case and a
second-order PDE in the stochastic case. According to Bernhardt and Donnelly (2018), the
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terminal time T could be a random time of death or a fixed time, depending on the problem
considered. In our case, since we are considering a separate decumulation strategy for each
individual, we do not need to consider the life expectancy of the retirees. Each retiree has his
or her own retirement savings account and can set different investment horizons T according
to their circumstances. Furthermore, the above problem assumes that the retiree derives
some utility from the remaining wealth at the terminal date T . If he or she doesn’t want
to leave some bequest at the end of the investment horizon, we can also remove the term
Ũ (XT , T ) from the objective function, then the optimal consumption and investment plan
will end up with exactly zero final wealth.

2.4.1 Financial market models

As we explained in the previous section, an optimal control problem is a dynamic system
that needs to be modeled. To simplify the simulation, we usually consider that the retiree’s
portfolio is invested in two financial assets: a risk-less asset with a constant instantaneous
rate of return r ≥ 0, and a risky asset whose price follows a geometric Brownian motion
with constant volatility σ > 0 and drift µ. Therefore, the price Bt of the risk-free financial
asset at time t with the deterministic interest rate rt is described as follows:

dBt

Bt
= rt dt Bt = B0e

∫ t
0
rs ds

When the interest rate is constant, we have rt = r, ∀t, then

Bt = B0e
rt (3)

And we suppose that the price St of the risky asset at time t satisfies the following stochastic
differential equation (SDE):

dSt

St
= µt dt+ σt dWt

When the drift µt and the volatility σt are constant, we have µt = µ and σt = σ, ∀t, then

St = S0e
(µ−σ2/2)t+σWt (4)

We suppose that retirees may invest a proportion αt of their wealth in the risky asset at
time t and the rest 1−αt in the risk-free asset. Therefore, the dynamics of the fund wealth
Xt is described by the following equation:

dXt = Xt

(
αt

dSt

St
+ (1− αt)

dBt

Bt

)
− ct dt

= [(r + αt (µ− r))Xt − ct]dt+ αtσXt dWt

(5)

where ct dt is the amount withdrawn by retirees between t and t+ dt.
In addition, Equation 5 can be extended to a multi-variate case, i.e., retirees may invest

in n correlated risky assets and each follows the following dynamic process:

dSi
t = µiS

i
t dt+ σiS

i
t dW i

t
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where the Brownian motions {W i
t }ni=1 are correlated such that E

(
dW i

t dW
j
t

)
= ρi,j dt and

ρi,i = 1. Then, the wealth of the fund evolves as:

dXt = Xt

(
α⊤
t (diag (St))

−1 dSt +
(
1− α⊤

t 1n

) dBt

Bt

)
− ct dt

=
[(
r + α⊤

t (µ− r1n)
)
Xt − ct

]
dt+ α⊤

t σXt dWt

(6)

where dWt =
(
dW 1

t , · · · ,dWn
t

)
and 1n = (1, · · · , 1).

2.4.2 Maximizing the expected discounted utility of lifetime consumption

One way of determining a retiree’s consumption and investment strategy during retirement
is to maximize the expected discounted utility of future lifetime consumption, which is also
known as Merton’s optimal investment-consumption problem in continuous-time finance.
Merton (1969) proposed a classical framework to deal with the investment-consumption
problem during the decumulation phase, where retirees need to decide how much to consume
and how to allocate their remaining wealth between stocks and a risk-free asset in order
to maximize the expected discounted utility of all future consumption. One of the main
features of his formulation is that time is continuous, which implies that the evolution
of the portfolio’s wealth follows a continuous stochastic process and that controls such as
consumption and asset allocation are also time-continuous.

Let us consider a retiree over a fixed time interval [0, T ], where the time 0 refers to
his or her date of retirement and the time T is a given investment horizon, e.g., 30 years.
We denote by X0 the savings of the retiree during the accumulation phase and by Xt the
portfolio’s wealth at time t. We assume that this retiree withdraws consumption ct at time
t and has two assets to invest in the financial market for the remaining wealth: a risk-free
asset Bt and a risky asset St, the dynamics of which are described by Equations 3 and 4,
respectively. Then, the decumulation problem for this retiree is to decide the amount of
consumption ct and the proportion of wealth αt for the risky asset at each time t. The
portfolio is fully invested, which means that a proportion αt of his wealth is invested in the
risky asset, and the rest 1−αt is invested in the risk-free asset. As we have explained in
the previous section, the dynamics of the portfolio’s wealth Xt is described by the following
equation:

dXt = [(r + (µ− r)αt)Xt − ct]dt+ σαtXt dWt (7)

where r, µ and σ are constants. It is worth noting an important constraint that consumption
cannot be negative, but αt is unrestricted, i.e. borrowing or short selling is allowed. Thus,
we have ct ≥ 0,∀t ≥ 0.

Based on economic theory, we need to introduce the concept of “utility” to evaluate the
retiree’s investment-consumption strategies. The goal of the retiree is to choose an optimal
strategy that maximizes the expected total discounted utility of consumption over [0, T ],
which is described by the following formula:

E

[∫ T

0

e−ρtF (t, ct)dt+ e−ρTG (XT ) |X0 = x0

]
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where F (t, ct) is the utility function of consumption and G (XT ) is the utility function of
the remaining money at the terminal date T . These utility functions F and G represent the
retiree’s consumption preference or risk aversion and should satisfy some standard properties,
such as increasing and concave.

Theoretically, an individual’s utility for current consumption is higher than their utility
for future consumption, so we need to introduce a discount rate e−ρt for the utility functions
F (t, ct) and G (XT ). As explained in Rao and Jelvis (2022), we can consider the fund wealth
Xt as a dynamic system, and the continuous-time Markov decision process for this system
is defined by Equation 5. The state of this dynamic system is described by (t,Xt), and at
each time t, we can take action ct and αt to decide the consumption and how to invest the
rest money. These actions update the state of the system, then we decide on new actions
based on the new state, and so on. Our goal is to find the Policy: (t,Xt) → (ct, αt) that
maximize the expected discount utility of lifetime consumption, which includes the rest of
the money at the terminal date T . In our case, the retiree’s decumulation problem can be
described as a classical stochastic optimal control problem as follows:

max
ct,αt

E

[∫ T

0

e−ρtF (t, ct)dt+ e−ρTG (XT ) |X0 = x

]
dXt = [(r + (µ− r)αt)Xt − ct]dt+ σαtXt dWt

ct ≥ 0, ∀t ≥ 0

(8)

As detailed by Björk (2020), the idea of solving Problem 8 is to embed our original
stochastic control problems into a larger class of problems, all of which can then be described
by the Hamilton-Jacobi-Bellman equation. To simplify the notation, we rewrite the dynamic
of Xt as follows:

dXt = µ̃ (t,Xt, ct, αt)dt+ σ̃ (t,Xt, ct, αt)dWt

= µ̃dt+ σ̃dWt

and we define the value function V (t,Xt) at time t:

V (t,Xt) = E

[∫ T

t

e−ρ(s−t)F (s, cs)ds+ e−ρ(T−t)G (XT ) |Xt

]

= Et

[∫ T

t

e−ρ(s−t)F (s, cs)ds+ e−ρ(T−t)G (XT )

]

Thus, the optimal value function V ∗ (t,Xt) is:

V ∗ (t,Xt) = max
ct,αt

V (t,Xt)

Using the principle of dynamic programming, we can obtain the HJB equation3 associated

3The detailed mathematical derivation can be found on page 52 and is included in the Appendix A.4 for
the sake of completeness.
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with our stochastic optimal control problem (Problem 8):

∂V ∗

∂t
+ max

ct,αt

[
F (t, ct) + µ̃

∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= ρV ∗ (9)

Equation 9 is a non-linear second-order partial differential equation and solving the retiree’s
utility maximization problem (Problem 8) is equivalent to solving this partial differential
equation. In particular, we have:{

µ̃ = µ̃ (t,Xt, αt, ct) = (r + (µ− r)αt)Xt − ct

σ̃ = σ̃ (t,Xt, αt) = σαtXt

(10)

and the terminal condition is:

V ∗ (T,XT ) = G (XT ) (11)

One of the common choices of the utility functions for F (t, ct) is the constant relative
risk aversion (CRRA) form:

U (c) =
c1−γ

1− γ
, for 0 < γ ̸= 1 and c ≥ 0

where the constant γ refers to the investor’s risk aversion, i.e., the tendency to prefer out-
comes with low uncertainty to those with high uncertainty, even if the average outcome
of the latter is equal to or higher than that of the outcome with high certainty. Thus,
the higher the gamma, the more risk-averse the retiree will be, the more cautious he or
she will be in taking risks and may be reluctant to own risky assets. In addition, we have
γ = −c · U ′′(c)

U ′(c) , where −U ′′(c)
U ′(c) is the Arrow-Pratt measure of relative risk aversion. For the

special case γ = 1, U (c) = log (c). For the utility function G (XT ) at the terminal date T ,
we can also consider a CRRA form with a parameter ϵγ , which reflects the desired level of
bequest XT . In practice, we can set ϵ to a small positive value, i.e. 0 < ϵ ≪ 1 to reflect
the “no desired bequest” case. According to Rao and Jelvis (2022), this ϵ−formulation is
necessary for technical reasons. Thus, we have:

F (t, ct) =
c1−γ
t

1− γ

G (XT ) = ϵγ
X1−γ

T

1− γ

(12)

Analytical solution To find the analytical solution to Equation 9 in the case where
utility functions are defined as Equation 12, we follow the mathematical derivation of Rao
and Jelvis (2022). For the sake of simplicity, we let αt be unconstrained and we will see that
this simplification will not change the final solution. We note:

Φ(t,Xt, αt, ct) = F (t, ct) + µ̃ (t,Xt, αt, ct)
∂V ∗

∂x
+

1

2
σ̃ (t,Xt, αt)

2 ∂2V ∗

∂x2
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We have
∂V ∗

∂t
+ max

ct,αt

Φ(t,Xt, αt, ct) = ρV ∗ (13)

We can then find the optimal values of c⋆t , α
⋆
t by taking the partial derivatives of Φ with

respect to ct and αt, and equating them to 0 to satisfy the first-order optimality condition:

• Partial derivative of Φ with respect to ct:

∂Φ

∂ct
=

∂F

∂ct
+

∂µ̃

∂ct

∂V ∗

∂x

• Partial derivative of Φ with respect to αt:

∂Φ

∂αt
=

∂µ̃

∂αt

∂V ∗

∂x
+ σ̃

∂σ̃

∂αt

∂2V ∗

∂x2

In our case,

F (t, ct) =
c1−γ
t

1− γ

µ̃ (t,Xt, αt, ct) = (r + (µ− r)αt)Xt − ct

σ̃ (t,Xt, αt) = σαtXt

Then, we have:
c∗t

−γ − ∂V ∗

∂x
= 0

⇒ c∗t =

(
∂V ∗

∂x

)− 1
γ

and
(µ− r)

∂V ∗

∂x
+ σ2α∗

tXt
∂2V ∗

∂x2
= 0

⇒ α∗
t =

−(µ− r)∂V
∗

∂x

σ2Xt
∂2V ∗

∂x2

We replace the term c∗t and α∗
t in Equation 9 and derive the expression:

∂V ∗

∂t
− (µ− r)2

2σ2

(
∂V ∗

∂x

)2
∂2V ∗

∂x2

+ rXt
∂V ∗

∂x
+

γ

1− γ

(
∂V ∗

∂x

) γ−1
γ

= ρV ∗ (14)

and the terminal condition for this partial differential equation is:

V ∗ (T,XT ) = ϵγ
X1−γ

T

1− γ

We can surmise with a guess solution in terms of a deterministic function f of time:

V ∗ (t,Xt) = f (t)
γ X1−γ

t

1− γ
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Substituting the guess solution into Equation 14, we obtain a simple ordinary differential
equation:

f ′(t) =
ρ− (1− γ) ·

(
(µ−r)2

2σ2γ + r
)

γ
f(t)− 1 (15)

Using the ϵ-formulation provides a simple boundary condition for Equation 15:

f (T ) = ϵ

Then, we deduce that:

f(t) =

{
1+(νϵ−1)e−ν(T−t)

ν for ν ̸= 0

T − t+ ϵ for ν = 0

where

ν =
ρ− (1− γ) ·

(
(µ−r)2

2σ2γ + r
)

γ

Finally4,
α∗
t =

µ− r

σ2γ
(16)

c∗t =

 νXt

1+(νϵ−1)e−ν(T−t) for ν ̸= 0

Xt

T−t+ϵ for ν = 0
(17)

Equation 16 shows that the optimal investment α∗
t is a constant-mix portfolio allocation in

the Merton framework, and Equation 17 shows that the optimal consumption c∗t is propor-
tional to Xt. In other words, it raises consumption when the portfolio performs well and
lowers it when the portfolio underperforms. The advantage of this type of strategy is that
the funds never run out, but the consumption is unstable.

Impact of risk aversion parameters In this section, we want to assess the impact of the
risk aversion parameter on the optimal policy. To this end, we simulate 1 000 scenarios for
the risky asset with performance µ and volatility σ of 5% and 15% respectively, and we set
both the risk-free rate r and the discount factor ρ to 1%. For simplicity, we assume that the
initial wealth of the portfolio is 1 and we set the investment horizon at 30 years. According
to Equation 16, the use of different risk aversion parameters γ implies the choice of different
constant portfolio investment strategies. If we take γ = 3, 4, 5, 10, then the corresponding
risky asset allocation is αt = 59.3%, 44.4%, 35.6%, 17.8%. As shown in Figure 3a, when γ is
large, the investor prefers a low-return and low-risk decision. Nevertheless, as can be seen in
Figures 3a and 3b, the effect of the risk aversion parameter is not significant. For different
values of γ, while there is a significant effect on the optimal constant-mix allocation, there is
little effect on consumption, which is more influenced by the value of portfolio wealth. The
distribution and first moments of total wealth are shown in Figure 4 and Table 3.

4The detailed mathematical derivation can be found on page 53 and is included in the Appendix A.5 for
the sake of completeness.
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Figure 3: Impact of risk aversion parameter γ
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Figure 4: Impact of risk aversion parameter γ (Finite investment horizon)
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As shown in Figure 4, the impact of the risk aversion parameter is smaller in the case of a
finite investment horizon.

Table 3: Characteristics of the total wealth distribution based on 1 000 simulations

γ = 3 γ = 4 γ = 5 γ = 10

Mean: 1.66 1.67 1.68 1.70
Median: 1.40 1.41 1.41 1.43
Standard deviation: 0.95 0.96 0.98 1.01
Skewness: 1.88 1.90 1.91 1.96
Kurtosis: 5.01 5.13 5.22 5.48

Source: Amundi Investment Institute

From Equations 16 and 17, we get the solution to Merton’s portfolio problem and we
notice that α∗

t is a constant that is independent of the time t, the investment horizon T

and the value of the portfolio’s wealth Xt. This reflects the fact that retirees should always
follow a constant-mix strategy to invest between risk-free and risky assets, no matter what
the wealth of the portfolio is or how close we are to the investment horizon. This conclusion
remains the same for the case of n risky assets. However, the consumption c∗t is a function
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of the value of the remaining wealth Xt and how far we are from the terminal date T − t,
meaning that the withdrawal of income is hardly stable and cannot be planned. Optimal
consumption may vary considerably from one period to another, as it depends on the level
of remaining wealth in the portfolio, which in turn is strongly influenced by the economic
situation in that period. As explained in Section 2.2, one of the key objectives of retirees is
to have a steady stream of income and to avoid undesired changes such as cutting or freezing
withdrawals. Their affordability to adjust consumption in difficult times is limited, especially
for some retirees who need a certain amount of payment to meet their most basic needs.
Therefore, designing a decumulation strategy by maximizing the expected discounted utility
of lifetime consumption can provide a simple analytical solution to the dilemma between
consumption and investment, but this approach is not suitable for practical situations. One
way to address this problem is a subsistence level c̃ for the consumption, i.e. ct ≥ c̃ in
order to meet the basic needs of retirees. Gong and Li (2006) offers some important insights
in this regard. They have studied the role of index bonds in the optimal consumption
and portfolio selection problem with CRRA utility function and a subsistence consumption
constraint. Another solution is to introduce habit formation in the objective function to
limit fluctuations in consumption over time:

U (ct, ht) =
(ct − ht)

1−γ

1− γ

where the habit level ht, which represents the standard of living of a retiree, is defined as:

ht = e−ath0 + b

∫ t

0

ea(s−t)cs ds (18)

where h0, a and b are non-negative constants. h0 is the initial habit level, a and b are
persistence and scaling parameters, respectively. As shown in Equation 18, ht is an expo-
nentially weighted average of past consumption, which implies a higher weighting of recent
consumption. Then, the value function to maximize can be written as:

E

[∫ T

0

e−ρtU (ct, ht)dt+ e−ρTG (XT ) |X0 = x0

]
(19)

Next, we solve the associated HJB equation to solve Equation 19. Both of these two methods
are more difficult to find analytical solutions than in the case where there are no consumption
restrictions, and we need to introduce more parameters into the model. In practice, using
more parameters in the model means that there is more estimation risk and that the model
is less robust to assumption errors.

From the framework of Merton’s portfolio problem, we can recognize that a retirement
strategy means that at each point in time, we need to find a balance between the consump-
tion we can enjoy now and the risks we will take in the financial markets in the future.
When the portfolio performs well, the retiree may have two choices: to get more consump-
tion immediately or to move to safer investments, which implies lower expected returns
but more protection. The analytical solution to Merton’s problem follows the first choice
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and shows that the optimal investment strategy under this framework is the constant-mix
strategy, which implies that we always take the same proportion of weight between risky
and risk-free assets. In other words, we will take the same level of relative risk whether the
portfolio’s wealth appreciates or depreciates, and adjust our spending based on market con-
ditions. In addition to this, we can design our investment strategy according to the second
choice, i.e., fixing our consumption so that when the portfolio performs well, we move to
safer investments, and when the portfolio performs poorly, we allocate more risky assets in
our portfolios in the expectation of recovering losses. This mechanism has a profit-taking
behavior. One way to achieve this is to design our decumulation strategy by considering the
expected discounted utility at the ruin date, rather than maximizing the expected discounted
utility of lifetime consumption. In this type of strategy, our consumption is determined and
we can use an investment strategy that varies with market conditions. We will discuss this
strategy in more detail in the next section.

2.4.3 Maximizing the expected utility of the ruin date

As explained in Section 2.2, retirees prefer to have a regular flow of income and avoid
undesirable changes. If we use Merton’s portfolio optimization framework, the consumption
ct is a dynamic variable, which depends on portfolio wealth Xt and time t. This is not what
retirees expect. We can therefore assume that consumption c̄t is deterministic or planned
at time 0 for any time t, and we need to consider another type of utility function that does
not involve consumption but some other dynamic variables in order to calculate expected
utility, such as the probability of ruin or the ruin date. Then, we follow the same routine of
the stochastic control framework in Section 2.4.2 and solve the associated HJB equation.

In this section, we need to first introduce the concept of the ruin date, which represents
the stopping time when the wealth value Xt falls below a given threshold h ≥ 0:

τh (t, x) = inf {s ≥ 0 : Xt+s = h|Xt = x}

where the value of h can be set to 0, or a higher value based on the retiree’s preference.
Our objective is to delay the occurrence of the ruin date τh for as long as possible, by
controlling the proportion of allocation to risky assets αt at time t. To achieve this, we have
two approaches:

• We can directly minimize the probability of ruin. The problem consists of minimizing
the probability of ruin before a horizon, which can be a fixed value T , the infinity +∞,
or the random time of death of an individual τd in order to incorporate mortality.

• The infinity
P [τh < ∞ | Xt = h]

• A fixed horizon
P [τh < T | Xt = h, T > t]

• The random time of death

P [τh < τd | Xt = h, τd > t]
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• We can introduce an utility function U for the ruin date τh and then maximize the
expected utility:

V ∗ (t,Xt) = sup
αt

E [U(τh (t, x)) | Xt]

The problem consists of maximizing the expected utility of the ruin date. Unlike the
utility function of consumption in Section 2.4.2, we don’t need an integral that sums
total utility up to terminal date T .

The first approach is straightforward, but it is difficult to obtain closed-form solutions. In
contrast, we can choose the appropriate utility function in the second approach to help us
obtain an easier solution. Therefore, we use the second method in this paper, where our
goal is to delay the ruin time τh as long as possible. To do this, we need to introduce in
our stochastic optimal control problem a utility function U (τh) that depends only on the
destruction date, not on consumption. In particular, U (τh) is a monotonically increasing
function of τh, which means that the later the fund ruin, the better, and U (+∞) is finite.
Therefore, the problem of minimizing the probability of ruin can be described as follows:

max
αt

E [U(τh (t,Xt))|Xt]

dXt = [(r + (µ− r)αt)Xt − c̄t]dt+ σαtXt dWt

c̄t ≥ 0,∀t ≥ 0

(20)

where c̄t is the consumption at any time t predetermined at time 0. We define the value
function V (t,Xt) at time t:

V (t,Xt) = E [U(τh)|Xt]

= Et [U(τh)]

Thus, the optimal value function V ∗ (t,Xt) is:

V ∗ (t,Xt) = max
αt

V (t,Xt)

Following the same steps in Section 2.4.2, we can obtain the following HJB equation5:

∂V ∗

∂t
+ max

αt

[
µ̃
∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= 0

Let
Φ(t,Xt, αt) = µ̃

∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

Partial derivative of Φ(t, x, αt) with respect to αt:

∂Φ(t, x, αt)

∂αt
= 0

⇒ α∗
t =

−(µ− r)∂V
∗

∂x

σ2Xt
∂2V ∗

∂x2

5The detailed mathematical derivation can be found in the Appendix A.7
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Finally, we have the HJB equation for this problem:

∂V ∗

∂t
− (µ− r)2

2σ2

(
∂V ∗

∂x

)2
∂2V ∗

∂x2

+ (rXt − c̄t)
∂V ∗

∂x
= 0 (21)

One of the common choices of the utility function for the ruin date is the exponential
utility function:

U(τ) = − exp
(
− τ

λ

)
where λ represents the risk appetite of the investor (i.e. inverse of the risk aversion). The
exponential utility is a type of constant absolute risk aversion (CARA) utility function, i.e.,
its absolute risk aversion coefficient −U ′′(τ)

U ′(τ) is a constant:

−U ′′ (τ)

U ′ (τ)
= − 1

λ

When the value of λ is small, people tend to prefer outcomes with low uncertainty to those
with high uncertainty. In addition, this particular family of utility functions possesses a
desirable property, that is crucial for ensuring the time stationary of the problem with an
infinite horizon, meaning that the control does not depend on time t. In this case, the
stochastic optimal control problem is invariant by translation on the temporal axis. In other
words, if we start the problem θ years later with the same wealth of fund, then the ruin time
will happen θ years later:

τh (t+ θ, x) = inf {s ≥ t+ θ : Xs = h|Xt+θ = x}
= inf {s ≥ t : Xs = h|Xt = x}+ θ

= τh (t, x) + θ

V ∗ (t+ θ, x) = max
αt

E [U (τh (t+ θ, x)) |Xt+θ = x]

= max
αt

E [U (τh (t, x) + θ) |Xt = x]

= max
αt

E
[
− exp

(
−τh (t, x) + θ

λ

)
|Xt = x

]
= exp

(
− θ

λ

)
max
αt

E
[
− exp

(
−τh (t, x)

λ

)
|Xt = x

]
= exp

(
− θ

λ

)
V ∗ (t, x)

We differentiate the relation above with respect to θ to obtain:

∂V ∗

∂t
(t+ θ, x) = lim

θ→0

V ∗ (t+ θ, x)− V ∗ (t, x)

θ
=

(
lim
θ→0

exp
(
− θ

λ

)
− 1

θ

)
V ∗ (t, x)

= − 1

λ
V ∗(t, x)

Therefore we can replace the term ∂V ∗

∂t in the HJB Equation 21. In this case, V ∗ is inde-
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pendent of time t and is a function that depends only on the portfolio’s wealth Xt. Then,
we obtain the ordinary differential equation:

− 1

λ
V ∗ + max

αt

[
µ̃
∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= 0 (22)

Wealth objective In our problem, since consumption is constant or predetermined, there
exists a value of wealth that ensures infinite payments at each date t, which means τh = +∞.
In other words, regardless of whether the investment horizon is infinite or finite, if the wealth
of our portfolio exceeds a certain threshold H, after that, we can ensure all future payments
simply by investing the portfolio entirely in risk-free assets or buying an annuity. For
example, let us consider the case of an infinite investment horizon where we want an annual
coupon c = 5000€ for consumption, and the risk-free rate is assumed to be r = 1%. In this
case, when the wealth of the portfolio reaches H = c

r = 500 000€, we only need to invest
in risk-free assets to ensure future payments. As the wealth of the portfolio moves away
from the threshold, the optimal control invests heavily in risky assets in the expectation of
approaching the threshold more quickly. Similarly, the closer the wealth of the portfolio is
to the critical value, the smaller the allocation to risky assets. Introducing a finite horizon
may introduce a more attainable take-profit behavior. In this case, the threshold varies over
time. Given an horizon T , the maximum wealth objective at t is:

H =

∫ T

t

c exp(−r(s− t))ds

= c

∫ T−t

0

exp(−rs)ds

= − c

r
[exp(−rs)]T−t

0

=
c

r
(1− exp(−r (T − t)))

It is not difficult to conclude that for each date t, the threshold in the case of an infinite
investment horizon is much higher than that in the case of a finite investment horizon, as
shown in Figure 5. For example, with an interest rate of 1% and a coupon objective of 5 000€,
the wealth needed at time 0 to ensure a 30-year payment is c

r

(
1− exp−rT

)
≈ 129 591€, which

is more attainable.

Numerical solution In the general case, the HJB equation that solves the problem of
maximizing the expected utility of the ruin date is:

∂V ∗

∂t
+ max

αt

[
µ̃
∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= 0 (23)

where µ̃ = [(r + (µ− r)αt)Xt − c̄t] and σ̃ = σαtXt. To solve Equation 23, we need to
introduce the boundary condition in case of the ruin date, i.e. when Xt reaches the threshold
h:

V ∗ (t, h) = U (t)
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Figure 5: Comparison of thresholds in the case of infinite and finite investment horizon (30
Y)
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and the boundary condition in case of the portfolio’s wealth reaches the upper bound H to
ensure all future payments without investing in risky assets:

V ∗ (t,H) = U (T )

We also need a terminal condition for the time horizon T , where T can be infinite or finite:

V ∗ (T, x) = U (T )

Then, we can use an iterative algorithm to solve Equation 23. First, we choose an arbitrary
value for all αt. Then, we solve the differential equation using the finite difference method
to get the value of V ∗ (t, x) for any t and x. We numerically compute the values of ∂V ∗

∂x and
∂2V ∗

∂x2 and then find the values of αt that maximizes
[
µ̃∂V ∗

∂x + 1
2 σ̃

2 ∂2V ∗

∂x2

]
. We repeat these

steps until convergence.

In the case of the infinity investment horizon, V ∗(t, x) has time homogeneity, which
means that the translation of the optimal control problem on the time axis is invariant.
Then, we have the following relation:

− 1

λ
V ∗ + max

αt

[
µ̃
∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= 0 (24)

At each iterative step, given αt, we just need to solve an ordinary differential equation
with respect to x. However, if we choose a fixed investment horizon T , the utility function
becomes U (min (τh, Tmax)), then V ∗(t, x) does not have time homogeneity. In this case, at
each iterative step, we need to solve a partial differential equation with respect to t and x.

In practice, since we have some constraints such as no short selling and no borrowing,
we assume that αt is bounded by 0 and αmax (i.e. 0 < αt < αmax), then using the same
arguments as above leads to the optimal allocation:

α∗
t = min

{
−(µ− r)∂V

∗

∂x

σ2Xt
∂2V ∗

∂x2

, αmax

}
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In this case, The HJB equation can be written as:

∂V ∗

∂t
+min

1

2
α2

maxσ
2X2

t

∂2V ∗

∂x2
+ αmax(µ− r)

∂V ∗

∂x
,− (µ− r)2

2σ2

(
∂V ∗

∂x

)2
∂2V ∗

∂x2

+(rXt − ct)
∂V ∗

∂x
= 0

(25)
To solve Equation 25, we use the same iterative algorithm described earlier. With an
infinite investment horizon, the optimal control αt is independent of time t and, due to
time homogeneity, it is only affected by the value of portfolio wealth Xt. As a result, we
have a common investment strategy for any time t. In contrast, with a finite investment
horizon, the optimal control αt is a function of time t and the portfolio wealth Xt. In other
words, there are different investment strategies for different dates. As the date gets closer to
the investment horizon, the threshold for ensuring on-time payments becomes smaller, and
then the shape of the function of the optimal control becomes more compact, as shown in
Figure 6. Therefore, this method has obvious take-profit features and involves a glide-path
investment strategy in which the allocation of risky assets decreases based on the value of
the portfolio.

Figure 6: Comparison of optimal control in the case of infinite and finite investment horizon
(30 Y)
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Impact of risk aversion parameter We simulate 1 000 scenarios for the risky asset
with performance µ and volatility σ of 5% and 15% respectively, and we keep the risk-free
interest rate at 1%. For simplicity, we assume that the initial wealth of the portfolio is
1. We set consumption at 4% per year with an investment horizon of 30 years. As shown
in Figures 7a and 8a, when λ is small, the utility value increases rapidly according to the
ruin date, which means that the investor prefers low-return and low-risk decisions, and the
distribution of the total wealth is centred and the distribution of the survival time is closer
to the horizon 30 years.
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Figure 7: Impact of risk aversion values λ
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(b) Optimal investment strategy
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Figure 8: Impact of risk aversion values λ (Infinite investment horizon)
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Table 4: Average results of 1 000 simulations (Infinite investment horizon)

λ = 5 λ = 15 λ = 35 λ = 50

Consumption 1.18 1.16 1.14 1.14
Wealth 1.51 1.89 2.10 2.20
Survival time (years) 29.83 29.21 28.84 28.71
Probability of sustaining 30 years 88.2% 84.7% 82.2% 80.9%
Bequest 0.33 0.73 0.96 1.06

Source: Amundi Investment Institute
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Table 4 shows the average results of 1 000 simulations for the case of the infinite invest-
ment horizon. In this case, a small value for the risk aversion parameter will result in a
longer average survival time and, therefore, a higher total consumption. However, this is
not the case for the probability of success. When λ takes on a small value, in most scenarios,
the portfolio will be conservative and run out of money as we approach the 30-year horizon
because we don’t take as much risk to generate performance. This is also evidenced by the
fact that the smaller the risk aversion parameter, the lower the average wealth. In practice,
we can set the risk aversion parameter to the value of the investment horizon.

3 Simulation
In this section, we want to assess the added value of the optimal policies compared to a
standard safe withdrawal rate method, such as the well-known 4% rule. To this end, we
consider three decumulation strategies:

• The standard safe withdrawal rate (SWR) method, whereby the equivalent of 4% of
initial wealth is withdrawn annually. We consider 3 different constant-mix allocations
between a risky asset and a risk-free asset: 50/50, 60/40, and 70/30.

• The consumption utility maximization (CUM) method, which follows the framework of
Merton’s portfolio problem described in Section 2.4.2. The choice of the risk aversion
parameter follows Equation 16, which aims to match the different allocations used in
the SWR method.

• The ruin date utility maximization (RDUM) method, which follows the framework in
Section 2.4.3 to maximize the expected utility of the ruin date of the portfolio. In
this strategy, we fix the consumption at the level of the standard safe withdrawal rate
method, i.e., 4% of the initial wealth, and find the optimal allocation between risky
and risk-free assets at each time t. We cap the allocation of risky asset αmax at 50%,
60% and 70%.

3.1 Simulation
In this section, we model the returns of the risky and risk-free assets according to Equations
3 and 4. Then, the portfolio follows the following dynamic process:

dXt = [(r + αt (µ− r))Xt − ct]dt+ αtσXt dWt (26)

We set the performance µ and the volatility σ of the risky asset to 5% and 15% respectively.
We consider a conservative basic scenario that sets the interest rate on the risk-free asset r

at 1%. In addition, if we set the interest rate too high, which would make all decumulation
strategies easy to achieve, it would be difficult to see the difference between the different
methods. For simplicity, we assume that the initial wealth of the portfolio is 1 and we
set the investment horizon at 30 years. The annual consumption c is fixed to 4% for the
SWR method and the RDUM method. We simulate 1 000 scenarios in order to gauge the
feasibility of each approach. Then, we consider two cases: a low-interest rate environment
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with r = 0.5% and a high annual consumption with c = 4.5%. These simulations will help
us better understand the characteristics of these decumulation strategies.

3.1.1 Normal conditions

In this case, we have µ = 5%, σ = 15%, r = 1% and c = 4%. We consider 3 different
constant-mix allocations for the SWR method: 50/50, 60/40, and 70/30 and the simulation
results are shown in Table 5. It is obvious that this type of strategy is wasteful, i.e., it has

Table 5: Simulation results of the SWR method under normal conditions

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.169 1.163 1.157
Average bequest 0.575 0.764 0.982
Average total wealth 1.744 1.927 2.139
Average survival time 29.274 29.124 28.966
Probability of success 83.4% 83.0% 82.3%

Source: Amundi Investment Institute

a lower probability of success but at the same time generates more returns when it survives
successfully. In addition, we note that this approach generates large bequests, especially
when compared to total consumption during the past 30 years. Therefore, this approach is
not suitable for retirees who do not want to leave a bequest or take on too much risk.

In the CUM approach, since consumption is proportional to the wealth of the portfolio,
this means that when the portfolio underperforms, we consume less and then the strategy will
never default. As a result, the average survival time is 30 years and the probability of success
is 100%. Therefore, the measure of the strategy can only be built around consumption, as
shown in Table 6. Simulation results show clearly the instability of consumption of this
method and regardless of the optimal allocation, there is always a probability of roughly
37% that the total consumption is less than the total amount of a fixed payment 4% over
30 years.

Table 6: Simulation results of the CUM method under normal conditions

γ 3.56 2.96 2.54
Optimal allocation6 50/50 60/40 70/30
Average consumption 1.661 1.655 1.650
Standard deviation consumption 0.958 0.948 0.941
10% Quantile consumption 0.782 0.784 0.785
30% Quantile consumption 1.090 1.088 1.087
Median consumption 1.408 1.404 1.401
70% Quantile consumption 1.857 1.848 1.843
90% Quantile consumption 2.911 2.883 2.863
Probability of success 100% 100% 100%
Probability that the total amount paid is less than 30×4% 37.5% 37.7% 37.6%

Source: Amundi Investment Institute

6The choice of the risk aversion parameter follows Equation 16, which aims to match the different allo-
cations used in the SWR method.
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Table 7 shows simulation results for the RDUM method. In this method, we have a fixed
annual consumption to pay and the investment is proportional to the wealth of the portfolio.
This method has a take-profit profile: the better the performance of the portfolio, the less
risk we will take in the future. Compared to the SWR method shown in Table 5, the RDUM
method has a higher probability of success and longer average survival time, but on average
generates lower total wealth. This means that we sacrifice the possible reward for risk, i.e.,
bequests, in exchange for a higher success rate.

Table 7: Simulation results of the RDUM method under normal conditions

Max allocation7 50/50 60/40 70/30
Average consumption 1.193 1.194 1.194
Average bequest 0.005 0.006 0.006
Average wealth 1.199 1.200 1.200
Average survival time 29.856 29.870 29.877
Probability of success 93.4% 94.9% 95.0%

Source: Amundi Investment Institute

In conclusion, although the CUM method is based on economic theory and has an an-
alytical solution, it does not meet the real needs of retirees, who aspire to a stable source
of income after retirement. Therefore, we prefer the SWR method and the RDUM method,
whose main difference lies in the balance between the total return and the probability of
success of the strategy. In the following simulations, we will compare only these two strate-
gies and examine their performance in different environments, such as low-interest rate and
high consumption.

3.1.2 Low-interest rate environment

We consider a low-interest rate environment with r = 0.5%. In this case, decumulation
strategies are a little more difficult to succeed. The SWR method has a roughly 80%
probability of success, and the RDUM method can improve this probability to 86%.

Table 8: Simulation results of the SWR method in a low-interest rate environment

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.162 1.157 1.153
Average bequest 0.484 0.678 0.906
Average wealth 1.646 1.835 2.059
Average survival time 29.092 28.986 28.866
Probability of success 80.1% 80.8% 80.9%

Source: Amundi Investment Institute

Figure 9 shows the quantiles of the survival time for the SWR method and the RDUM
method. For a given percentage, we find that the quantile of the RDUM method is always
higher than that of the SWR method, which suggests that the RDUM method outperforms
the SWR method in terms of survival time, and therefore it will have a higher probability
of success.

7We cap the allocation of risky asset αmax at 50%, 60% and 70%.
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Table 9: Simulation results of the RDUM method in a low-interest rate environment

Max allocation 50/50 60/40 70/30
Average consumption 1.179 1.18 1.181
Average bequest 0.005 0.005 0.005
Average wealth 1.183 1.185 1.187
Average survival time 29.511 29.530 29.569
Probability of success 86.2% 86.3% 88.5%

Source: Amundi Investment Institute

Figure 9: Comparison of quantiles of the survival time for the SWR method and the RDUM
method (low-interest rate environment)
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3.1.3 High consumption

In this section, we consider an even harder situation where the fixed annual consumption is
4.5%. As shown in Tables 10 and 11, this amount of consumption will largely reduce the
probability of success for both decumulation strategies. Nevertheless, the RDUM method
generally outperforms the SWR method in terms of survival time.

Table 10: Simulation results of the SWR method in the case of high consumption

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.272 1.268 1.263
Average bequest 0.383 0.554 0.755
Average wealth 1.655 1.822 2.017
Average survival time 28.356 28.261 28.140
Probability of success 66.6% 68.6% 70.1%

Source: Amundi Investment Institute

3.2 Robustness
The main challenge in using mathematical models to solve real problems in finance lies in the
gap between simple assumptions and complex reality. Therefore, the decumulation strategies
we design need to be robust to assumption errors. The SWR method always uses a constant-
mix investment strategy without any assumption, while the RDUM method assumes that
the returns on risky assets follow a normal distribution with constant expected return and
volatility over time. In this section, we simulate different scenarios where the distribution
of actual returns does not follow a normal distribution and investigate the robustness of the
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Table 11: Simulation results of the RDUM method in the case of high consumption

Max allocation 50/50 60/40 70/30
Average consumption 1.295 1.298 1.301
Average bequest 0.004 0.004 0.005
Average wealth 1.300 1.303 1.305
Average survival time 28.858 28.914 28.965
Probability of success 74.9% 76.6% 79.0%

Source: Amundi Investment Institute

Figure 10: Comparison of quantiles of the survival time of the SWR method and the RDUM
method (high consumption)
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RDUM method. In order to better assess the impact of the different scenarios, we set the
fixed annual consumption to 4.5%, which makes it a little more difficult for the decumulation
strategy to be successful over a 30-year investment horizon.

3.2.1 Bad estimation

We start with a simple case where the distribution of actual returns still follows a normal dis-
tribution, but the expected return is overestimated. The decumulation strategy is designed
by using µ = 5%, while the actual returns of the risky asset are simulated with µ = 4%.
Tables 12 and 13 show the simulation results for the SWR and the RDUM methods. Com-
paring with Tables 10 and 11 in the previous section, it is easy to see that an error in the
estimation of µ leads to a reduction in the probability of success by about 10% for both
methods, but the magnitude of the effect is not significantly different between them.

Table 12: Simulation results of the SWR method in the case of bad estimation

Constant-Mix allocation 50/50 60/40 70/30
Average consumption 1.237 1.231 1.223
Average bequest 0.250 0.360 0.485
Average wealth 1.487 1.591 1.708
Average survival time 27.602 27.462 27.282
Probability of success 54.6% 57.2% 58.6%

Source: Amundi Investment Institute

37



Optimal Decumulation Strategies for Retirement Solutions

Table 13: Simulation results of the RDUM method in the case of bad estimation

Max allocation 50/50 60/40 70/30
Average consumption 1.267 1.272 1.275
Average bequest 0.004 0.004 0.004
Average wealth 1.270 1.276 1.279
Average survival time 28.254 28.361 28.427
Probability of success 62.8% 65.8% 69.8%

Source: Amundi Investment Institute

3.2.2 Student’s t distribution

Student’s t-distribution is a continuous probability distribution that generalizes the standard
normal distribution, which is also symmetric around zero and bell-shaped. However, the
shape of the t distribution is related to the degree of freedom ν. Compared with the standard
normal distribution, the smaller the degree of freedom ν is, the flatter the t distribution curve
is, i.e., the lower the middle of the curve is and the fatter the tail of the curve is, and the
larger the degree of freedom ν is, the closer the t distribution is to the normal distribution.
When ν → +∞, the t distribution becomes the standard normal distribution N (0, 1). In
particular, the standard deviation of the t distribution is defined as ν

ν−2 and the excess
kurtosis is 6

ν−4 . In this section, we set the degree of freedom ν to 5 and want to use the t

distribution to model the case where the volatility of the actual returns on the risky asset
is greater than assumed. The first moments and the distribution are shown in Table 14
and Figure 11a. Tables 15 and 16 show the simulation results for the SWR and the RDUM
methods. In the case of the SWR method, both the probability of success and the average
survival time are shortened when the distribution of actual returns is more volatile and has
fatter tails. In contrast, the RDUM approach only shortens the average survival time but
has a higher probability of success, implying that the decumulation strategy has a better
chance of being held for 30 years. This means that the distribution of survival time has
higher volatility than in the normal case.

Figure 11: Normal distribution, Student’s t distribution and Skew normal distribution
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Source: Amundi Investment Institute

3.2.3 Skew normal distribution

In statistics, skewness corresponds to the third statistical moment of a random variable
and can be used to indicate the degree of asymmetry in a probability distribution. For
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Table 14: Comparison between student’s t distribution and skew normal distribution

Student’s t Skew normal
ν = 5 ξ = 0, ω = 1, α = −3

mean 0.00 0.00
standard deviation 1.67 1.00
skewness 0.00 -0.45
kurtosis 6.00 0.31

Source: Amundi Investment Institute

Table 15: Simulation results of the SWR method in the case of student’s t distribution

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.258 1.251 1.242
Average bequest 0.472 0.679 0.925
Average wealth 1.729 1.930 2.167
Average survival time 28.039 27.882 27.689
Probability of success 65.2% 67.4% 67.8%

Source: Amundi Investment Institute

Table 16: Simulation results of the RDUM method in the case of student’s t distribution

Max allocation 50/50 60/40 70/30
Average consumption 1.288 1.291 1.293
Average bequest 0.006 0.006 0.007
Average wealth 1.295 1.298 1.300
Average survival time 28.698 28.757 28.797
Probability of success 0.765 0.788 0.809

Source: Amundi Investment Institute
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unimodal distributions, negative skew commonly indicates that the probability distribution
plot is left-skewed, while positive skew indicates that the probability distribution plot is
right-skewed. In particular, when the skewness is zero, it indicates that the data are rela-
tively evenly distributed on both sides of the mean, not necessarily absolutely symmetrically
distributed. Skewness risk in financial modeling is the risk that arises when observations
are not symmetrically distributed around the mean, but rather are skewed. In addition,
skewness risk usually refers specifically to the negative skewness of an asset or investment
strategy, which means that there may be frequent small gains and few large losses due to
stress events in finance. A negatively skewed distribution of returns is not desired by in-
vestors, as large losses tend to offset small gains. To investigate the robustness to skewness
risk of the RDUM method, we assume that the actual returns of the risky asset follow a skew
normal distribution8. To this end, we first simulate a skew normal distribution with location
ξ = 0, scale ω = 1 and shape α = −3, the first moments and the distribution are shown
in Table 14 and Figure 11b. We then scale this distribution to match the expected return
µ = 5% and the volatility σ = 15%, and the skewness of the return distribution remains at
−0.67. Tables 17 and 18 show the simulation results for the SWR and the RDUM methods,
from which it can be seen that the effect of the skewed normal returns is at the same level
for both methods and therefore the skewness risk for the RDUM method is not significant.

Table 17: Simulation results of the SWR method in the case of skew normal distribution

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.266 1.262 1.256
Average bequest 0.371 0.537 0.733
Average wealth 1.637 1.799 1.989
Average survival time 28.232 28.132 27.989
Probability of success 64.1% 66.4% 68.3%

Source: Amundi Investment Institute

Table 18: Simulation results of the RDUM method in the case of skew normal distribution

Max allocation 50/50 60/40 70/30
Average consumption 1.291 1.297 1.301
Average bequest 0.003 0.004 0.004
Average wealth 1.295 1.301 1.305
Average survival time 28.782 28.898 28.975
Probability of success 70.5% 74.7% 77.6%

Source: Amundi Investment Institute

In summary, we simulate three scenarios to investigate the robustness of the RDUM
method compared to the SWR method: overestimation of asset returns, underestimation of
volatility and fat tail, and skewness risk. In these cases, the RDUM method is affected to a
similar extent as the SWR method and does not show excessive model risk.

8More details can be found in Appendix A.10.
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4 Financial application
In this section, we will test and compare the SWR method and the RDUM method with
more realistic forward-looking financial data. For this purpose, we use the data simulated
by Amundi Cascade Asset Simulation Model (CASM)9. CASM is a platform developed
by Amundi in collaboration with Cambridge University. CASM combines our short-term
financial and economic outlooks. It incorporates medium-term dynamics into a long-term
equilibrium, to simulate forward-looking returns for different asset classes over multiple
horizons.

Figure 12 shows the 10Y expected return geometric return10 and the long-term expected
volatility of each asset. In particular, expected returns are calculated using Amundi central
scenario assumption, which includes the climate transition. For more detailed information,
see Amundi asset class views: A rocky net zero pathway11 (Defend et al., 2023). We consider
a small investment universe comprising 9 financial instruments with Equities, Government
bonds, Credit Investment Grade, Credit High-yield in the US and Europe, and Emerging
Market Debt. All assets are hedged to the Euro. We aim to build a well-diversified portfolio
using the risk parity approach described in Appendix A.11 and this portfolio is considered
as the risky asset in the SWR method and the RDUM method to design the decumulation
strategy. We keep the same setting in Section 3.2 with the initial wealth of the portfolio
X0 = 1, the risk-free interest rate r = 1%, the consumption c = 4%, and the investment
horizon T = 30 years. We also consider three constant-mix strategies for the SWR method:
50/50, 60/40, and 70/30, and these allocations are set as the upper bound for the optimal
allocation in the RDUM method.

Figure 12: 10Y expected return geometric return and the long-term expected volatility of
each assets12

Source: Amundi Asset Management CASM Model

9More details can be found in Appendix A.12.
10By definition, the arithmetic mean is always greater than or equal to the geometric mean. In particular,

higher volatility of returns, higher frequency of returns, and/or a longer time horizon will increase the
difference between the two measures.

11The paper is available at the Amundi Research Center. https://www.amundi.com/institutional/rocky-
net-zero-pathway.

12As of July 2023. The returns are computed in local currency.

41

https://www.amundi.com/institutional/rocky-net-zero-pathway
https://www.amundi.com/institutional/rocky-net-zero-pathway


Optimal Decumulation Strategies for Retirement Solutions

In Figure 13, we present the simulated forward-looking statistics over a 10-year horizon
compared with historical statistics calculated using a 20-year sample. In the simulation of
the risk parity portfolio, the length of the horizon is set to 30 years and we perform 20
000 simulations. Figure 14 and Table 19 show the distribution and quantile of simulated
statistics of the risk parity portfolio. Our risk parity portfolio has different risk profile
compared to the parameters used in Section 3, where the average annualized return is 3.5%
and the average volatility is 6.8%.

Figure 13: Comparison of simulated forward-looking statistics and historical statistics on
asset returns13

Source: Amundi Asset Management CASM Model

Figure 14: Distribution of simulated statistics of the risk parity portfolio
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13As of July 2023. The returns are computed in local currency.
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Table 19: Simulated statistics of the risk parity portfolio

Annualized Return Volatility Sharpe Ratio Maximum Drawdown
Mean 3.5% 6.8% 0.4 -21.2%
10% Quantile 0.6% 6.0% -0.0 -36.1%
30% Quantile 2.1% 6.4% 0.2 -24.3%
Median 3.3% 6.8% 0.4 -18.6%
70% Quantile 4.6% 7.1% 0.5 -14.5%
90% Quantile 6.5% 7.6% 0.8 -10.6%

Table 20: Simulation results of the SWR method in the normal case

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.167 1.164 1.160
Standard deviation consumption 0.058 0.066 0.073
Average bequest 0.130 0.173 0.220
Average wealth 1.297 1.336 1.380
Average survival time 29.268 29.177 29.082
Probability of success 67.3% 68.2% 68.7%

Source: Amundi Investment Institute

Table 21: Simulation results of the RDUM method in the normal case

Max allocation 50/50 60/40 70/30
Average consumption 1.185 1.185 1.186
Standard deviation consumption 0.042 0.045 0.044
Average bequest 0.007 0.007 0.004
Average wealth 1.192 1.192 1.190
Average survival time 29.679 29.666 29.685
Probability of success 85.3% 86.0% 86.1%

Source: Amundi Investment Institute

Table 22: Simulation results of the SWR method in the low-interest rate case

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.149 1.151 1.151
Standard deviation consumption 0.071 0.076 0.081
Average bequest 0.088 0.133 0.187
Average wealth 1.236 1.284 1.337
Average survival time 28.84 28.87 28.866
Probability of success 54.5% 59.9% 63.2%

Source: Amundi Investment Institute

Table 23: Simulation results of the RDUM method in the low-interest rate case

Max allocation 50/50 60/40 70/30
Average consumption 1.155 1.159 1.163
Standard deviation consumption 0.069 0.072 0.072
Average bequest 0.003 0.005 0.006
Average wealth 1.158 1.164 1.169
Average survival time 28.987 29.065 29.148
Probability of success 61.0% 67.4% 72.5%

Source: Amundi Investment Institute
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Table 24: Simulation results of the SWR method in the high consumption case

Max allocation 50/50 60/40 70/30
Average consumption 1.212 1.218 1.221
Standard deviation consumption 0.111 0.121 0.130
Average bequest 0.031 0.057 0.090
Average wealth 1.243 1.275 1.310
Average survival time 27.129 27.240 27.291
Probability of success 24.2% 31.0% 36.3%

Source: Amundi Investment Institute

Table 25: Simulation results of the RDUM method in the high consumption case

Constant-mix allocation 50/50 60/40 70/30
Average consumption 1.215 1.227 1.236
Standard deviation consumption 0.112 0.121 0.126
Average bequest 0.001 0.002 0.002
Average wealth 1.217 1.229 1.238
Average survival time 27.191 27.436 27.616
Probability of success 26.5% 35.9% 42.2%

Source: Amundi Investment Institute

From Tables 20 to 25, we show the results of the SWR method and the RDUM method for
three scenarios: normal conditions, low-interest rate, and high consumption, as described in
Section 3.1. Under normal conditions, the results in Table 20 show that the SWR method is
a wasteful strategy because we have a lower average survival time, a much lower probability
of success, and more bequest than the RDUM method.

We then lower the risk-free rate, making it harder for the strategy to succeed. In this
case, the RDUM method is still more effective than the SWR method from the point of view
of the success rate of the strategy, but the difference is not as large as in the normal case.
The third scenario is tested in a more difficult situation where consumption is set at 4.5%
and the risk-free interest rate is set at 1%. In this case, the probability of success for both
methods is low. If consumption levels are set too high, making it difficult for decumulation
strategies to be successful, then the RDUM method converges towards the SWR method, as
shown in Figure 15. Conversely, if consumption levels are appropriate, the RDUM method
favors ensuring the success of the strategy rather than pursuing more gains.

Figure 15: Comparison of quantiles of the SWR method and the RDUM method
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5 Conclusion
In this article, we discuss the general trend of pension schemes moving from DB to DC plans
and the importance of having an appropriate decumulation strategy for post-retirement to
avoid risks such as longevity risk, sequencing risk, inflation risk, etc. The main challenge
in designing a retirement strategy is that each retiree has his or her preferences for how
much to withdraw as income and how to invest savings in retirement, and these different
preferences stem from different personal financial situations, health conditions, and family
circumstances. As a result, it is difficult to define a common notion of “optimal” for each
individual, meaning that there is no single solution that fits everyone.

In this paper, we detail three methods used to design decumulation strategies: the
standard safe withdrawal rate (SWR) method, the consumption utility maximization (CUM)
method, and the ruin date utility maximization (RDUM) method. We test the feasibility
and the robustness of these methods with simulated data based on geometric Brownian
motion and certain scenarios such as overestimation of asset returns, underestimation of
volatility and fat tail, and skewness risk.

The SWR method allows retirees to regularly withdraw a fixed amount of money to
meet their needs and chooses a constant-mix or a glide-path investment strategy to invest
the remaining wealth in their portfolios. One of the famous strategies following the SWR
method is the 4% rule, which pays a constant real income corresponding to the 4% of
initial wealth at retirement and chooses a constant-mix allocation between stocks and bonds.
This strategy is simple and comprehensible for retirees, however, it is considered a wasteful
strategy, as in many scenarios, there is an excess of assets at the end of 30 years. The CUM
method is based on economic theory and seeks the optimal consumption and investment
strategy for the remaining funds the portfolio at each date, by maximizing the expected
discounted utility of lifetime consumption. Using this method, the optimal consumption is
not constant but varies with the value of the portfolio. While the CUM method will never
run out of money, it is still not suitable for retirees because it does not produce a steady
income.

The RDUM method, like the CUM method, also follows stochastic optimal control theory,
and its objective is to maximize the expected utility of the ruin date. In this method, the
consumption is fixed or programmed for each date, and the problem is finding an optimal
investment strategy. Although it is often difficult to find an analytical solution for this
method, numerical solutions to the HJB partial differential equations can be obtained by
the finite difference method. This method also involves a glide-path investment strategy,
but the allocation of risky assets decreases with the value of the portfolio rather than over
time, which makes more sense than the SWR method. While there are many metrics to
compare different decumulation strategies, such as the average total withdrawal during the
whole period of retirement, the average survival time, the probability of success, etc., we
believe the most important is the probability of success. Strategies should be set with
clear consumption goals and a fixed investment horizon, and be designed to maximize the
probability of success rather than other metrics. Because the real world is only a sample
in the simulation, but this piece of data is related to all retirees, that is, if the future
corresponds to a bad scenario, then all retirees using a similar strategy will experience
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the same difficulty of running out of money. It is therefore important to maximize the
probability of success of the strategy. Compared to the SWR method, the RDUM method
has a take-profit feature and thus a higher probability of success. We find that the strategy
based on the RDUM method is also robust in cases of overestimated return of risky assets,
thick tails, and negative skewness. In practical application, this method is customizable,
allowing retirees to choose different allocation constraints and consumption patterns, such
as constant, inflation-resistant, and U-shaped, depending on their actual situation. This
approach is therefore suitable for retirees with clear goals, certainty of consumption, and
relative conservatism. In addition, those who wish to avoid longevity risk, can set a longer
investment horizon, say 40 years. Another way to address longevity risk is to incorporate
an annuity or a modern tontine into a decumulation strategy. It can be viewed as an
exit strategy from the drawdown strategies described in this paper, or it can be considered
directly as an asset in the portfolio. However, the act of purchasing an annuity or modern
pension is irreversible, so timing is critical.

There are several ways to improve our work. In further research, we could consider
incorporating transaction costs to study their impact or approximating the solution of the
RDUM method with a stepwise function to reduce transaction costs. Another interesting
study would be to consider more complex financial market models, such as jump models,
or the use of machine learning techniques such as Restricted Boltzmann Machine (RBM)
and Generative Adversarial Networks (GAN) (Lezmi et al., 2020). We can then use these
models to simulate more realistic financial data to investigate the robustness of decumulation
strategies.
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A Appendix

A.1 Abbreviations

• CARA: Constant absolute risk
aversion

• CASM: Cascade asset simulation
model

• CRRA: Constant relative risk aver-
sion

• CUM: Consumption utility maxi-
mization

• DB: Defined-benefit

• DC: Defined-contribution

• DPP: Dynamic programming prin-
ciple

• FDM: Finite difference methods

• GAN: Generative adversarial net-
work

• HJB: Hamilton-Jacobi-Bellman

• i.i.d: Independent and identically
distributed

• ODE: Ordinary differential equa-
tion

• PAYG: Pay-as-you-go

• PDE: Partial differential equation

• PIDE: Partial integro-differential
equation

• NAV: Net asset value

• RDUM: Ruin date utility maxi-
mization

• SDE: Stochastic differential equa-
tion

• SN: Skew normal

• SWR: Safe withdrawal rate

• RBM: Restricted Boltzmann ma-
chine

A.2 Annuitization

In most countries, Social Security usually provides the most basic livelihood protection,
so retirees often purchase annuity products to protect their retirement. An annuity is a
contract between an individual and an insurance company whereby the retiree pays a lump
sum of money on or after the date of retirement in order to have the right to receive regular
payments for the rest of his life or for a specified period (e.g., from age 80 to 95). The
payments are often fixed but can also be inflation-indexed or completely variable, in which
case they are linked to the value of a chosen investment portfolio. In addition, the payments
can be either immediate, i.e., regular payments begin when the annuity is purchased, or
deferred, in which case the retiree will receive regular payments after a specified date (e.g.,
after age 80).

In the case of a life annuity, when regular payments of a purchased annuity are to continue
until the death of the annuitant, the longevity risk of retirees is transferred to the insurer’s
default risk. In addition, unless there are other beneficiaries in the contract, the annuity
does not leave a bequest for the annuitant’s relatives. Thus, as explained in Yaari (1965),
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annuities are an appropriate decumulation strategy for retirees with more longevity risk
aversion and no bequest motive.

However, purchasing an annuity is not a simple decision. The longevity risk for retirees
and the default risk for insurance companies are not easy to assess. The challenge for a
life annuity is the timing of the purchase, which is a very personalized issue as it depends
greatly on an individual’s health and financial goals. As recommended by Fullmer (2009), we
can use life annuities as the benchmark for a decumulation strategy, i.e., if the value of the
retiree’s pension fund is lower than the cost of annuitizing his or her required income stream,
a life annuity should be purchased rather than continuing with a decumulation strategy.

A.3 Tontine

The term “Tontine” derives from the name of Lorenzo de Tonti, a Neapolitan banker and
governor of the Italian province of Gaeta, who served as a financial advisor to the French
Crown in the 1850s and proposed the original tontine program to Cardinal Mazarin to raise
funds for the military expenditure of King Louis XIV. Unlike ordinary annuity plans, all
investors in the same tontine are treated as a group, and tontine’s dividends are proportional
to the number of surviving investors in the tontine. When each investor dies, they are not
replaced by a new investor, but their share is divided equally among the surviving investors.
Surviving investors therefore profit from the deaths of others, and the longer the investors
live, the more dividends they receive. This process continues until the last investor dies and
the organizers of tontine absorb the remaining capital.

Lorenzo de Tonti’s proposal was rejected by the Paris Parliament. It was not until
1670 that the first tontine was organized in the Dutch city of Kampen, and it was not
long before other European countries followed suit, such as France in 1689 and England
in 1693. After this, tontine continued to grow as it met both the financing needs of the
government and the retirement needs of the population, both of which contributed to the
rapid spread of tontine schemes in the 17th and 18th centuries. Particularly in the mid-
19th century, American insurance companies began to issue tontine insurance to the public,
and the tontine scheme entered a period of super-rapid growth. However, shortly after
1900, several sensational insurance embezzlement scandals led to an investigation of tontine
insurance by the Armstrong Committee14, and tontine was eventually banned in the United
States. Reasons for the ban included the gambling nature of the product, false advertising
in the actual sale, lack of supervision in the management of insurance companies leading to
corruption, falsification of accounts, and misappropriation of public funds.

The advantage of tontine is that it can offer a solution to longevity risk: the longer the
life span, the greater the benefit received. If properly regulated, tontine has the potential
to be a suitable insurance product that meets people’s retirement needs. Today, tontines
are regulated in Europe by Directive 2002/83/EC of the European Parliament and of the
Council. Many authors proposed a modern version of the tontine to help people finance
their final years, such as Piggott et al. (2005), Stamos (2008), Donnelly et al. (2014) and

14Joint Committee of the Senate and Assembly of the State of New York to Investigate and Examine into
the Business and Affairs of Life Insurance Companies Doing Business in the State of New York.
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Milevsky and Salisbury (2015). As reported in the New York Times in March 2017, tontines
are getting new consideration as a way for people to get a stable retirement income.

A.4 HJB equation for decumulation strategies by maximizing the
expected discounted utility of lifetime consumption

We define the value function V (t,Xt) at time t:

V (t,Xt) = E

[∫ T

t

e−ρ(s−t)F (s, cs)ds+ e−ρ(T−t)G (XT ) |Xt

]

= Et

[∫ T

t

e−ρ(s−t)F (s, cs)ds+ e−ρ(T−t)G (XT )

]

Thus, the optimal value function V ⋆ (t,Xt) is:

V ∗ (t,Xt) = max
ct,αt

V (t,Xt)

By applying the dynamic programming principle, we obtain:

V ∗ (t,Xt) = max
ct,αt

V (t,Xt)

= max
ct,αt

Et

[∫ T

t

e−ρ(s−t)F (s, cs)ds+ e−ρ(T−t)G (XT )

]

= max
ct,αt

Et

[∫ t+h

t

e−ρ(s−t)F (s, cs)ds+
∫ T

t+h

e−ρ(s−t)F (s, cs)ds+ e−ρ(T−t)G (XT )

]

= max
ct,αt

Et

[∫ t+h

t

e−ρ(s−t)F (s, cs)ds+ e−ρhEt+h

[∫ T

t+h

e−ρ(s−t−h)F (s, cs)ds+ e−ρ(s−t−h)G (XT )

]]

= max
ct,αt

Et

[∫ t+h

t

e−ρ(s−t)F (s, cs)ds+ e−ρhV ∗ (t+ h,Xt+h)

]
(27)

Let Ṽ ∗ (t,Xt) = e−ρtV ∗ (t,Xt) and we have

Ṽ ∗ (t,Xt) = max
ct,αt

Et

[∫ t+h

t

e−ρsF (s, cs)ds+ Ṽ ∗ (t+ h,Xt+h)

]
(28)

According to the Itô formula, we obtain:

Ṽ ∗ (t+ h,Xt+h) = Ṽ ∗ (t,Xt)

+

∫ t+h

t

{
∂Ṽ ∗

∂t
(s,Xs) + µ̃

∂Ṽ ∗

∂x
(s,Xs) +

1

2
σ̃2 ∂

2Ṽ ∗

∂x2
(s,Xs)

}
ds

+

∫ t+h

t

σ̃
∂Ṽ ∗

∂x
(s,Xs)dWs

(29)
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In particular,
∂Ṽ ∗

∂t
(s,Xs) = −ρe−ρsV ∗ (t,Xs) + e−ρt ∂V

∗

∂t
(s,Xs)

∂Ṽ ∗

∂x
(s,Xs) = e−ρs ∂V

∗

∂x
(s,Xs)

∂2Ṽ ∗

∂x2
(s,Xs) = e−ρs ∂

2V ∗

∂x2
(s,Xs)

Then, we combine Equations 28 and 29:

max
ct,αt

Et

[∫ t+h

t

e−ρsF (s, cs)ds

+

∫ t+h

t

{
∂Ṽ ∗

∂t
(s,Xs) + µ̃

∂Ṽ ∗

∂x
(s,Xs) +

1

2
σ̃2 ∂

2Ṽ ∗

∂x2
(s,Xs)

}
ds

+

∫ t+h

t

σ̃
∂Ṽ ∗

∂x
(s,Xs)dWs

]
= 0

(30)

Let h tend to zero, we can simplify the equation as:

max
ct,αt

[
e−ρtF (t, ct) +

∂Ṽ ∗

∂t
(t,Xt) + µ̃

∂Ṽ ∗

∂x
(t,Xt) +

1

2
σ̃2 ∂

2Ṽ ∗

∂x2
(t,Xt)

]
= 0

For simplicity, we omit (t,Xt) for Ṽ ∗ (t,Xt) and V ∗ (t,Xt). Then, we have:

max
ct,αt

[
e−ρtF (t, ct) +−ρe−ρtV ∗ + e−ρt ∂V

∗

∂t
+ µ̃e−ρt ∂V

∗

∂x
+

1

2
σ̃2e−ρt ∂

2V ∗

∂x2

]
= 0

Finally, since ρV ∗ and ∂V ∗

∂t are independent of ct, αt, we can rewrite the above equation as:

∂V ∗

∂t
+ max

ct,αt

[
F (t, ct) + µ̃

∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= ρV ∗ (31)

A.5 Analytical solution for Merton’s portfolio problem
According to Rao and Jelvis (2022), we can surmise with a guess solution in terms of a
deterministic function f of time:

V ∗ (t,Xt) = f (t)
γ X1−γ

t

1− γ

We have
∂V ∗

∂t
= γf(t)γ−1f ′(t)

X1−γ
t

1− γ

∂V ∗

∂x
= f(t)γX−γ

t

∂2V ∗

∂x2
= −γf(t)γX−γ−1

t

53



Optimal Decumulation Strategies for Retirement Solutions

Substituting the guess solution into Equation 14, we obtain:

f ′(t) =
ρ− (1− γ) ·

(
(µ−r)2

2σ2γ + r
)

γ
f(t)− 1

Then, we have

f(t) =

{
1+(νϵ−1)e−ν(T−t)

ν for ν ̸= 0

T − t+ ϵ for ν = 0

where

ν =
ρ− (1− γ) ·

(
(µ−r)2

2σ2γ + r
)

γ

Finally, we obtain:

α∗
t =

− (µ− r) ∂V ∗

∂x

σ2Xt
∂2V ∗

∂x2

=
(µ− r) f(t)γX−γ

t

σ2Xtγf(t)γX
−γ−1
t

=
µ− r

σ2γ

(32)

c∗t =

(
∂V ∗

∂x

)− 1
γ

=
Xt

f (t)

=

 νXt

1+(νϵ−1)e−ν(T−t) for ν ̸= 0

Xt

T−t+ϵ for ν = 0

(33)

A.6 HJB equation for decumulation strategies by maximizing the
expected utility of the ruin date

By applying the dynamic programming principle, we can obtain the following equation:

V ∗ (t,Xt) = max
αt

V (t,Xt)

= max
αt

Et [1τh<t+hU (τh) + 1τh≥t+hV
∗ (t+ h,Xt+h)]

(34)

According to Itô formula, we obtain:

V ∗ (t+ h,Xt+h) = V ∗ (t,Xt)

+

∫ t+h

t

{
∂V ∗

∂t
(s,Xt) + µ̃

∂V ∗

∂x
(s,Xt) +

1

2
σ̃2 ∂

2V ∗

∂x2
(s,Xt)

}
ds

+

∫ t+h

t

σ̃
∂V ∗

∂x
(s,Xt)dWs

(35)
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where µ̃ = [(r + (µ− r)αt)Xt − c̄t] and σ̃ = σαtXt. Let h tend to zero, we can simplify the
equation as:

max
αt

[
∂V ∗

∂t
+ µ̃

∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= 0

As ∂V ∗

∂t is independent of αt, we have:

∂V ∗

∂t
+ max

αt

[
µ̃
∂V ∗

∂x
+

1

2
σ̃2 ∂

2V ∗

∂x2

]
= 0

A.7 Analytical solution to the ruin date problem in the case of
infinite investment horizon

In the case of infinite investment horizon, the HJB equation associated with the ruin date
problem can be reduced to an ordinary differential equation:

− 1

λ
V ∗ − (µ− r)2

2σ2

(
∂V ∗

∂x

)2
∂2V ∗

∂x2

+ (rx− c̄t)
∂V ∗

∂x
= 0 (36)

Let s = − (µ−r)2

2σ2 , then:

λ−1 V ∗

∂V ∗

∂x

= s
∂V ∗

∂x
∂2V ∗

∂x2

+ (rx− c̄t) (37)

We can try to solve Equation 36 with a guess solution of the form V ∗ (t, x) = (rxk − c̄tk)
p.

As a result, we have:

∂V ∗

∂x
= rkp (rxk − c̄tk)

p−1

∂2V ∗

∂x2
= (rk)

2
p (p− 1) (rxk − c̄tk)

p−2

(38)

Hence,
λrp2 − [λ(r − s) + 1]p+ 1 = 0 (39)

Consider Equation 39, it has 2 roots due to:

∆ = [λ(r − s) + 1]2 − 4λr ≥ (λr + 1)2 − 4λr = (λr − 1)2 ≥ 0 (40)

where −s = (µ−r)2

2σ2 ≥ 0. Denote the greater root of 39:

p =
[λ(r − s) + 1] +

√
∆a

2λr
≥ −sλ+ λr + 1 + |λr − 1|

2λr
≥ µ̃2

4rσ2
+ 1 ≥ 1 (41)

In case of vanishing risk aversion λ → ∞:

p =
(r − s) + 1

λ + ∆a

λ2

2r
=

(r − s) + 1
λ +

√
[r − s+ 1

λ ]
2 − 4r

λ

2r
→ r − s

r
= 1 +

µ̃2

2rσ2
(42)
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Now, we have u∗ = [k(c−vr)]pa. The identification of the solution is done with the boundary
conditions.

Boundary conditions and optimal solution

• First boundary condition: It is observed that when the retiree withdraws a constant
amount c, the expression ϵ(x) = c − xr ≤ 0 holds ∀x ≥ xmax = c/r. In other
words, if the wealth value x reaches the value of xmax, the interest from the bank
account is sufficient to cover the coupon payment, rendering the problem trivial and
resulting in u(x) = 0 ∀x ≥ xmax. Consequently, our analysis will focus solely on the
range xt ∈ [xthres, xmax]. Therefore, the first boundary condition can be expressed as
u(xmax) = 0.

• Second boundary condition: u(xthres) = −1

From the second boundary condition, we can find that k = 1/(xthresr − c). As a result, we
have:

u∗(x) = −
[

c− xr

c− xthresr

]p
α∗(x) =

µ̃

σ2(p− 1)

c− xr

xr
= κa

xmax − x

x

(43)

In case of vanishing risk aversion λ → ∞:

α∗(x, λ → ∞) =
2r

µ̃

c− xr

xr
=

2r

µ̃

xmax − x

x
(44)

The optimal wealth path follows a hyperbolic shape, representing the trade-off between
wealth accumulation and risk exposure. Consequently, the adjustment of risky exposure
occurs at a pace greater than a linear one. As we approach the target capital, the need for a
high-risk asset shrinks as it generates sufficient investment income. Consequently, the risky
exposure can be reduced. This hyperbolic strategy effectively avoids drawdown issues as
wealth increases, since the risky exposure diminishes rapidly. Conversely, the strategy ex-
hibits mean-reverting behavior, wherein during bad market conditions, i.e., wealth decreas-
ing, the risky exposure is increased in anticipation of future market rebound. This behavior
stems from the assumption that the expected return, µ, is positive. The ratio (xmax−x)

x

can be interpreted as a “gap leverage”, a required leverage to close out the gap between
the current wealth X and the required weight xmax. We may approximate a finite horizon
problem with an explicit solution in plugging naively xmax (t) = c/r (1− exp  (−r(T − t)))

In addition, κ can be interpreted as a base exposure which depends on the support of the
current investment environment and retiree’s preference since it depends only on r, µ, σ, ρ

but not on c.
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A.8 Fully implicit scheme for the time-dependant problem

Suppose α∗ is given, and that we aim to solve:

∂V ∗

∂t
+ (r + (µ− r)α∗Xt − c̄t)

∂V ∗

∂x
+

1

2
α∗2σ2X2

t

∂2V ∗

∂x2
= 0 (45)

Or, using a centered differentiation scheme:

V ∗
t+dt,i − V ∗

t,i

dt +(r + (µ− r)α∗
iXt − c̄t)

V ∗
t,i+1 − V ∗

t,i−1

2dx +
1

2
α∗
i
2σ2X2

t

V ∗
t,i+1 + V ∗

t,i−1 − 2V ∗
t,i

(dx)2 = 0

(46)
In fact, the centered scheme is not the most stable. We can introduce a forward/backward
scheme for the first derivative, depending on the sign of the first derivative coefficient:

V ∗
t+dt,i − V ∗

t,i

dt + µ̂

(
V ∗
i+1 − V ∗

i

dx 1{µ̂>0} +
V ∗
i − V ∗

i−1

dx 1{µ̂<0}

)
+

1

2
α∗
i
2σ2X2

t

V ∗
i+1 + V ∗

i−1 − 2V ∗
i

(dx)2 = 0

where µ̂ = (r + (µ− r)α∗
iXt − c̄t)

A.9 Fully implicit scheme for the stationary problem

Suppose α∗ is given, and that we aim to solve:

−1

λ
V ∗ + (r + (µ− r)α∗Xt − c̄t)

∂V ∗

∂x
+

1

2
α∗2σ2X2

t

∂2V ∗

∂x2
= 0 (47)

Or, using a centered differentiation scheme:

− 1

λ
V ∗
i + (r + (µ− r)α∗

iXt − c̄t)
V ∗
t,i+1 − V ∗

t,i−1

2dx +
1

2
α∗
i
2σ2X2

t

V ∗
t,i+1 + V ∗

t,i−1 − 2V ∗
t,i

(dx)2 = 0

(48)
In fact, the centered scheme is not the most stable. We can introduce a forward/backward
scheme for the first derivative, depending of the sign of the first derivative coefficient:

− 1

λ
V ∗
i + µ̂

(
V ∗
i+1 − V ∗

i

dx 1{µ̂>0} +
V ∗
i − V ∗

i−1

dx 1{µ̂<0}

)
+

1

2
α∗
i
2σ2X2

t

V ∗
i+1 + V ∗

i−1 − 2V ∗
i

(dx)2 = 0

where µ̂ = (r + (µ− r)α∗
iXt − c̄t)

A.10 The skew normal distribution

The skew normal (SN) distribution is a continuous probability distribution that gener-
alises the normal distribution to allow for non-zero skewness, which was first introduced by
O’Hagan and Leonard (1976). We adopt here the construction of Azzalini and Dalla Valle
(1996) and Azzalini and Capitanio (1999).

The probability density function of a skew normal distribution with location ξ, scale ω
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and shape α is defined as follows:

f(x) =
2

ω
ϕ

(
x− ξ

ω

)
Φ

(
α

(
x− ξ

ω

))
where ϕ(x) and Φ(x) denote the probability density function and the cumulative distribution
function of a standard normal distribution N (0, 1), respectively. The first four moments of
the univariate SN distribution X are:

µ (X) = ξ + ωη

√
2

π

σ2 (X) = ω2

(
1− 2η2

π

)
skewness (X) =

4− π

2

(η
√
2/π)3

(1− 2η2/π)
3/2

excess kurtosis (X) = 2(π − 3)
(η
√
2/π)4

(1− 2η2/π)
2

where η = α√
1+α2

.

A.11 Risk budgeting approach
The fundamental principle of the risk budgeting (RB) approach is to allocate funds based
on risk, rather than capital, as stated in Roncalli (2013). To achieve this, we introduce the
concept of risk contribution, which is characterized as the contribution of each asset in the
portfolio to the portfolio’s overall risk. The portfolio manager defines a set of risk budgets
and then determines the weights of the portfolio such that the risk contributions are in line
with the budgets.

From a mathematical point of view, a risk budgeting portfolio is defined as follows:
RCi (x) = biR (x)

bi > 0, xi ≥ 0 for all i∑n
i=1 bi = 1,

∑n
i=1 xi = 1

(49)

where xi is the allocation of Asset i, R (x) is the risk of the portfolio, which is typically the
volatility of the portfolio, RCi (x) and bi are respectively the risk contribution and the risk
budget of Asset i.

A route to solving Problem (49) is to transform the non-linear system into an optimiza-
tion problem:

x⋆ = argmin
n∑

i=1

(RCi (x)− biR(x))
2

s.t. xi ≥ 0, bi ≥ 0 for all i
1⊤x = 1

1⊤b = 1

(50)
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However, Problem (50) is not a convex problem (Feng and Palomar, 2015), and the op-
timization has some numerical issues, particularly in the high-dimensional case, that is,
when the number of assets is large. Roncalli (2013) shows a different approach to solving
Problem (49) with the help of the logarithmic barrier method and the solution is:

xRB =
y⋆

1⊤y⋆

where y⋆(c) is the solution of the alternative optimization problem:

y⋆ (c) = argminR (y)

s.t.
n∑

i=1

bi ln yi ≥ c

yi ≥ 0 for all i

where c is an arbitrary scalar. This problem can be solved by the Newton algorithm (Chaves
et al., 2012) and the Cyclical Coordinate Descent (CCD) algorithm (Griveau-Billion et al.,
2013). In the special case of the equal risk contribution (ERC) portfolio, i.e. the risk budgets
are the same (bi = bj , for all i, j), we have:

y⋆ (λ) = argminR (y)

s.t.
n∑

i=1

ln yi ≥ c

yi ≥ 0 for all i

Finally,
xERC =

y⋆

1⊤y⋆

This portfolio allocation strategy is also known as the risk parity approach, which is the
main alternative method to the traditional mean-variance portfolio optimization.

A.12 Cascade Asset Simulation Model
Reasonable investment solutions require a transparent and comprehensive view of the capital
markets. This is especially true for institutional investors such as pension funds or endow-
ments with medium to long-term horizons in need of a coherent strategy to maximize the
probability of achieving their stated objectives. For such tasks, it is imperative to simulate
scenarios projecting possible trends, in not just the prices of instruments but additionally,
in the underlying risk factors and the their complex interactions. The process for generating
the scenarios reflecting our view of economic and financial market trends is a close collabo-
rative process between a wide variety of teams within Amundi. The underlying proprietary
platform generating these asset prices is named Cascade Asset Simulation Model (CASM),
and was originally developed in a joint venture between leading practitioners from Amundi
(previously Pioneer Investments) and Cambridge University. The platform mirrors industry
and academic best practices, taking into account the inherent complex relationships between
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macroeconomics, monetary policy and market dynamics. The CASM platform covers macro
and financial variables for major regions, in particular the US, UK, Eurozone, Japan, China
and Emerging Markets as an aggregate.

Applications of Monte Carlo methods in asset price simulation are well documented by
Glasserman (2003), and Hull (2021) among others. Stochastic generation of risk factor sce-
narios permits us to consider a wide range of possible asset prices and control the uncertainty
surrounding these. The additional flexibility allows us to vary starting assumptions and see
the effect asset price scenarios. This possibility enhances our ability to simulate coherent
scenarios across any instrument in a multi-asset portfolio and an asset-liability framework,
a feature that is particularly relevant to institutional clients with long time horizons – see
examples from Dempster et al. (2007, 2009).

The architecture of CASM can be broadly defined in two dimensions.

Source: Amundi Asset Management CASM Model - Institutional Advisory, for illustrative purposes only.

• The first dimension is composed of a top-down “cascading” effect (hence the name
Cascade Asset Simulation Model), starting at the top with macroeconomic variables,
reflected subsequently in the financial market risk factors. Initially proposed by Wilkie
(1984) and further developed by Dempster et al. (2009), this cascade structure is at
the root of the platform’s interdependent linear and non-linear relationships between
risk factors, which are ultimately used to define the prices of the different assets and
financial instruments.

• The second dimension of CASM portrays a representation of the future evolution of
the aforementioned “cascading” effect. The unique formulation allows for simulation
of coherent scenarios between the different risk factors from the short to the long
time horizons. In the short term, CASM blends econometric models and quantitative
short-term outlooks from in-house practitioners.
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Periodic and on-demand reviews along the two dimensions by in-house specialists enable
us to make necessary adjustments without significant re-formulation or re-engineering of
the platform, resulting in both consistent mean scenarios and efficient parameter control in
terms of estimates and transparency of explanatory variables. The current implementation
follows the best practice in implementing complex and both linear and non-linear relation-
ships between any number of market and economic factors available. Empirical studies
and qualitative views do in fact have a significant effect on their medium-term behaviour
as they converge to the predetermined equilibrium levels that are inferred by our models
and enhanced by qualitative judgement of Amundi’s experts. The model’s main aim is
not to forecast short-term trends with precision, but to give a good representation of the
medium and long-term evolution of the financial variables considering pairwise correlations
and riskiness.

The following dependency matrix shows the dependencies between models where → in
a cell indicates that the row model depends on the column model.

Source: Amundi Asset Management

For each model listed above, a series of innovations are generated. For subsequent models, a
correlation matrix of innovations for the relevant variables (e.g. GDP cycle and commodity
cycle for the inflation model) is used to generate a series of correlated random numbers via
the Cholesky decomposition. In this manner, the model captures the causal relationship of
the cascade structure and the interdependence between the risk factors.

Simulation & Model Structure Under a Monte Carlo environment, scenarios are gen-
erated along the aforementioned two dimensions taking into consideration the historical and
simulated correlation among the respective risk factors. In this manner, we are able to
model the distribution of the variables at each time step by matching the simulated and
historical statistical moments. A key factor to an effective and useful simulation platform
is its ability to portray a meaningful representation of the future evolution of financial risk
factors. Our belief is that risk factors will evolve towards their respective dynamic trend
over a medium and long-term time horizon. Under this framework, the short-term outlook
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of each risk factor is an exogenous input which limits the set of admissible parameters in
the calibration process in order to determine the initial direction and the reversion speed
towards trend. The resulting risk factor evolution is designed to match the corresponding
official short-term outlook. On the long-term time horizon, we use best-practice statistical
and economic properties to derive an intuitive equilibrium level for each of the risk factors
in question. The resulting equilibrium levels enhance the stability and statistical interpre-
tation of the simulations. Meanwhile, the medium-term dynamics are primarily driven by
variables related to business cycles and serve to link the short-term and long-term risk factor
levels.

The prevailing quantitative formulation governing CASM is that of a multi-factor dif-
fusive mean reverting process. As previously mentioned, models in the platform exhibit
long-run behaviour converging to predetermined long run levels or dynamic trends. The
convergence process is governed both by the distance between the current endogenous vari-
able level and the equilibrium level and the future evolution of the business cycle related
variables. Academic and empirical studies point to the existence of such mean reversion
behaviour in the markets – see Uhlenbeck and Ornstein (1930) and Chan et al. (1992) for an
exposition on this topic. For each of the distinct risk factor models in CASM, the calibration
process estimates parameters by minimizing the distance (in a least squares sense) between
the statistics that describe the distribution of the historical data and the statistics of the
sampling distribution from the simulated data. The cascade model structure captures the
complex relationships between macro-economic and financial variables. The resulting sim-
ulated multivariate distributions exhibit tail co-dependence and skewness that we observe
empirically. Further alignment of the models with their historical correlation estimates is
achieved by correlating the random numbers of the stochastic processes.
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