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1. Introduction

The expectations hypothesis (EH) of the term structure of interest rates asserts that the

long-term rate equals the average expected future short rates plus a constant risk premium.

A standard way to test the EH is to examine whether bond risk premia are time-varying or

excess bond returns are predictable. One strand of the literature argues that macroeconomic

variables have strong predictive power for future excess bond returns beyond the information

in the yield curve. For example, several studies have shown that individual macro variables

or macro factors extracted from a large panel of macro variables can predict excess bond

returns (Ludvigson and Ng, 2009, 2011; Cooper and Priestley, 2009; Cieslak and Povala,

2015; Gargano, Pettenuzzo, and Timmermann, 2019; Bianchi, Büchner, and Tamoni, 2021).

Besides, Wright (2011), Joslin, Priebsch, and Singleton (2014), Bekaert and Ermolov (2020),

and Li, Sarno, and Zinna (2021) apply unspanned macro term structure models and find

bond risk premia are time-varying along with the real economy and inflation.

Our paper stands at the intersection of two recent research directions regarding the pre-

dictability of bond returns. First, some recent studies have emphasized that bond risk premia

should be conditioned on information available to investors in real-time. However, almost all

of the above studies use fully-revised macro variables in their empirical analysis, not available

to bond investors in real-time due to data revisions and publication delays. Ghysels, Horan,

and Moench (2018) find in the standard linear predictive models, the predictive power of

macro variables for future overlapping excess bond returns is mostly from data revisions and

argue the real-time macro data should be used in bond return predictability to avoid any

hindsight problem. Wan, Fulop, and Li (2021) use different types of real-time macro data to

implement empirical analysis based on linear predictive models with and without stochas-

tic volatility. They find no statistical or economic evidence for forecasting non-overlapping

one-month holding period excess bond returns whenever real-time, instead of fully-revised,

macro factors are used as predictors. In contrast, Huang, Jiang, Tong, and Zhou (2021) show
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annual holding period overlapping excess bond returns can be predicted by real-time macro

vintage data when a data-driven scaled sufficient forecasting method is used. One problem

with these approaches may be that the real-time macro panels they use may contain only a

subset of the real-time information flow available to bond investors.

Second, a recent strand of the literature on asset return predictability has emphasized the

usefulness of modern machine learning techniques that allow for flexible nonlinear predictive

relationships. In this paper, instead of relying on standard linear predictive models, we focus,

in particular, on deep learning predictive methods.1 Gu, Kelly, and Xiu (2020) reinvestigate

equity return predictability by using various deep/machine learning models and confirm the

predictive power of deep learning as the best. Similarly, using a large panel of fully-revised

macro variables as predictors, Bianchi, Büchner, and Tamoni (2021) and its Corrigendum

(Bianchi et al., 2021) find that the deep learning models can generate strong statistical and

economic evidence of predictability for excess bond returns. Feng, Polson, and Xu (2021)

build characteristics-sorted factor models in a deep learning framework, which are useful

for pricing equity returns. Chen, Pelger, and Zhu (2020) provide a deep learning model to

generate the stochastic discount factor.

In this paper, we revisit the question of bond return predictability and argue that one

should be particularly cautious regarding what information to use when using predictive

modeling. If the information includes variables unavailable to bond investors in real-time,

these methods may overestimate the extent of predictability. Hence, we ask whether such

nonlinear predictive methods are still helpful when we only condition on macro information

available to investors in real-time. For real-time macro news information, Balduzzi, Elton,

and Green (2001) and Brenner, Pasquariello, and Subrahmanyam (2009) investigate the

effects of scheduled announcements and surprise on treasury bond volatility and comovement

with the equity and corporate bond market. First, similar to previous studies, we use the

real-time vintage data of a large panel of macroeconomic variables that are frequently used in

1In the paper, we distinguish between deep learning and machine learning. We use machine learning to
refer to algorithms other than the deep neural network.
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literature. We rely on the Archival Federal Reserve Economic Data (ALFRED) and construct

a balanced panel of 125 monthly macroeconomic times series. Following the literature, we

group those variables into eight economic categories. Second, to better approximate the

information flow available to bond investors, we complement this predictor set with a large

panel of real-time news-based macroeconomic data. We take a panel of 180 monthly news

topic attention introduced by Bybee, Kelly, Manela, and Xiu (2021), who measure the state

of the economy via textual analysis of the full-text content of about 800,000 Wall Street

Journal (WSJ) articles. They show that this text-based news attention accurately tracks

various economic activity measures and has incremental forecasting power for macroeconomic

outcomes. Following Bybee et al. (2021), we divide news topic attention into two groups:

Economy and Politics/Cultures.

Altogether, the panel of macroeconomic predictors is very large, and most of those vari-

ables are highly correlated. Furthermore, financial asset returns are simply noisy signals of

the ex-ante expected returns. Hence, simple off-the-shelf application of deep learning may

not suffice to improve forecasting significantly. Motivated by the group features of macroe-

conomic variables and the parsimonious architectures (also see, e.g., Bianchi, Büchner, and

Tamoni, 2021; Huang and Shi, 2022), we develop neural networks with a group structure that

compress similar information (i.e., variables with high correlations) into the same categories

and hence can help alleviate issues related to highly correlated predictors. Furthermore, we

aim to forecast bond returns with different maturities using the same factors trained from

the same neutral network. Having noticed that bond returns with different maturities vary

differently over time, we design a weighted group neutral network (WGNN) that attaches

weight to bond returns of each maturity based on its variations in the loss function.

We construct monthly frequency excess bond returns with maturities of two to ten years

using the yield curve dataset constructed by Liu and Wu (2021). We consider two types of

bond returns: the first is the commonly used one-year holding-period overlapping returns,

and the other is the one-month holding-period non-overlapping returns. Putting all data
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sources together and given the availability of news-based data, our final sample spans the

period from January 1984 and June 2018. We set the out-of-sample period from January 2000

to June 2018, which is particularly interesting and may be challenging for out-of-sample tests

because, in this period, the US economy experienced the 2008 financial crisis, the interest

rates entered an era of zero lower bound, and the US treasury bonds seem to become macro

hedge assets (Li, Sarno, and Zinna, 2021) with a negative correlation with stock. We then

investigate whether and in which deep/machine learning models any out-of-sample statistical

and/or economic evidence of predictability exists for non-overlapping and overlapping excess

bond returns.

When forecasting non-overlapping excess bond returns, we find that our WGNN can help

find statistically significant out-of-sample evidence of short-term bond return predictability

using real-time vintage macro data. Such predictability further improves when news-based

topic attention data are combined with vintage data, suggesting that news contains impor-

tant information that is not fully reflected by standard macroeconomic indicators. We also

find that the shrinkage regressions, such as Lasso and Elastic net, also seem to help find

some out-of-sample statistical evidence for forecasting 2- and 3-year non-overlapping excess

bond returns when macro vintage data and news-based data are used together. However,

the evidence is much weaker than when fully-revised macro data are used as in Gargano,

Pettenuzzo, and Timmermann (2019).

We find different results when we move to forecast overlapping excess bond returns. First,

when real-time macro vintage data alone are used, our WGNN can generate statistically

significant out-of-sample R2s for bond returns of all maturities that range from 5.21% for

5-year bond returns to 10.66% for 2-year bond returns and generate a statistically significant

overall out-of-sample R2 of 7.31%. Furthermore, we also find that some standard machine

learning models, PCA and Elastic Net, work well in forecasting bond returns with maturities

equal to and larger than five years. Second, when news-based information is included with

macro vintage data, our WGNN improves for bond returns of all maturities, with the out-of-
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sample R2s ranging from 6.88% for 3-year bond returns to 9.37% for 2-year bond returns and

with an overall out-of-sample R2 of 8.56%. However, nearly all machine learning models lose

their ability to generate positive out-of-sample R2s. Given that when both types of real-time

data are combined, the number of predictors becomes very large (in total, 305 variables),

and that the variables extracted from the news are highly correlated with those standard

macro variables, negative out-of-sample R2s from machine learning models just suggest that

they can not efficiently handle such a high-dimensional data with high correlations. Third,

we further find that in our WGNN, the Labor, Interest, Housing groups, and two news-based

groups play important roles in forecasting overlapping bond returns. However, the above

evidence of overlapping bond return predictability is still weaker than the findings of the

literature using fully-revised macro data (see, e.g., Ludvigson and Ng, 2009, 2011; Cooper

and Priestley, 2009; Cieslak and Povala, 2015; Gargano, Pettenuzzo, and Timmermann,

2019; Bianchi, Büchner, and Tamoni, 2021).

We then explore whether the above statistical predictability can be translated into a

mean-variance investor’s economic gains. For this purpose, we consider two cases: the first

enables investors to take a full short position but prevents extreme investments similar to

(Goyal and Welch, 2008; Campbell and Thompson, 2008; Ferreira and Santa-Clara, 2011;

Thorton and Valente, 2012; Sarno, Schneider, and Wagner, 2016). To allow for the fact that

investors in bond markets can achieve higher leverage than equity, for instance, through repo

agreements, our second set of results allows for looser portfolio constraints with portfolio

weights on risky bonds ranging between -1 and 8.

Given the weak statistical evidence for forecasting non-overlapping bond returns, we

only report results on economic gains for overlapping bond returns. For this latter, we find

that the statistical predictability from our WGNN based on both macro vintage data and

news attention can translate into investors’ economic gains for long-term bonds when they

can leverage their investments. For example, when we assume an investor’s risk-aversion

coefficient equals 5, the utility gains are 75 bps for a 6-year bond, 123 bps for a 7-year bond,
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132 bps for an 8-year bond, and 86 bps for 9- and 10-year bonds. However, when investors

are prevented from extreme investments, the utility gains are negligible or even negative, a

result that is very different from those obtained using the fully-revised macro data (see, e.g.

Gargano, Pettenuzzo, and Timmermann, 2019; Bianchi, Büchner, and Tamoni, 2021).

When both macro vintage and news-based data are used in our WGNN, we may wonder

why utility gains for short-term bonds are so small or negative even when investors are

allowed to take leverage, given that the out-of-sample R2s in those bonds are very high.

We find that the vast majority of the unrestricted portfolio weights on 2-, 3-, and 4-year

bonds are huge, way above the upper bound, and this is particularly striking for a 2-year

bond. High portfolio weights on short-term bonds may result from the fact that, unlike

stocks and long-term bonds, variations of the short-term bonds are much smaller, and those

bonds are always regarded as safe assets or macro hedge assets (He, Krishnamurthy, and

Milbradt, 2016; Li, Sarno, and Zinna, 2021), whose correlations with stocks are negative in

our out-of-sample period.

Our work makes three main contributions to the literature. First, we document that

adding information from news to bond investors’ information sets increases the evidence

for predictability but necessitates using parsimonious and economically motivated statistical

tools. Hence our paper clearly shows that news contains rich information on future bond

returns that is not captured by standard macroeconomic variables and indicators. Second,

we propose a weighted group neural network model based on economic motivations, adding

to the recent literature on empirical asset pricing with deep/machine learning for forecast-

ing financial asset returns. Gu, Kelly, and Xiu (2020) forecast equity returns with various

deep/machine learning algorithms and find deep learning outperforms. Bianchi, Büchner,

and Tamoni (2021) also uses multiple deep/machine learning models to forecast excess bond

returns. However, they use the fully-revised macro data and ignore issues related to macro

data revisions and publication delay. Huang and Shi (2022) propose a two-step Lasso ap-

proach that exploits a similar idea of grouping. Huang et al. (2021) aim at the same research
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questions as we do and propose a data-driven scaled sufficient forecasting method. Third,

we show that the existence of realistic leverage constraints drives a wedge between statis-

tical predictability of bond returns and corresponding economic gains, especially for short

maturity bonds, mainly due to the extreme implied portfolio positions caused by the low

volatility of bonds.

The remainder of the paper is organized as follows. Section 2 presents excess bond

returns and introduces our weighted group neutral network models. Section 3 discusses

statistical and economic evaluation of out-of-sample return predictability. Section 4 presents

the data and summary statistics. Section 5 provides main empirical results. Finally, Section

6 concludes the paper.

2. Bond Return Predictability and Weighted Group Deep Learning

2.1. Bond Return Predictability

Following the existing literature, we define the log-yield of an n-year bond as

y
(n)
t ≡ − 1

n
p
(n)
t , (1)

where p
(n)
t = lnP

(n)
t and P

(n)
t is the nominal price of an n-year zero-coupon bond at time t.

The log forward rate at time t between time t+ n−m/12 and t+ n is

f
(n)
t ≡ p

(n−m/12)
t − p

(n)
t , (2)

where m is the holding period in months. The corresponding forward spread is given by

fs
(n)
t = f

(n)
t − m

12
× y

(m/12)
t . (3)

The excess return of an n-year bond is computed as the holding period return from

buying an n-year bond at time t and selling it m-periods later in excess of the yield on an

8



m-period risk-free rate at time t:

rx
(n)
t+m = p

(n−m/12)
t+m − p

(n)
t − m

12
× y

(m/12)
t , (4)

where y
(m/12)
t is the annualized m-period risk-free rate. In this paper, we construct monthly

frequency excess bond returns and consider two types of excess returns: the first is the

commonly used one-year holding period overlapping excess bond returns, that is, m = 12

months, and the other is the one-month holding period non-overlapping excess bond returns,

that is, m = 1 month. We consider bond maturity n that can take the values of 2 to 10

years.

The standard approach to investigating bond return predictability usually takes a linear

predictive model of the form

rx
(n)
t+m = α(n) + β(n)TXt + ϵ

(n)
t+m, (5)

where Xt is a set of the pre-determined predictors (a v × 1 vector, the number of predictors

is v), β(n) is a vector of corresponding coefficients and ϵt is a mean-zero error term, whose

variance can be either constant or stochastic. In most studies of bond return predictability,

the predictors X include either the yield-curve-based factors (see, e.g., Fama and Bliss, 1987;

Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005) or macro factors extracted from a

large panel of macro data (see, e.g., Ludvigson and Ng, 2009, 2011; Cooper and Priestley,

2009; Cieslak and Povala, 2015; Gargano, Pettenuzzo, and Timmermann, 2019; Wan, Fulop,

and Li, 2021).

2.2. Group Deep Learning

Differently, deep learning is a form of nonlinear supervised machine learning that employs a

deep neural network for predicting the output variable, rx, via a large number of predictors,

X. In this paper, we consider two types of real-time macro information as our predictors, the
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first includes the real-time version of a large panel of macroeconomic variables commonly

used in the literature, and the other contains a large panel of real-time news-based macro-

related variables that are recently constructed by Bybee et al. (2021).

Given that the number of predictors is very large and most are highly correlated, the

off-the-shelf application of deep learning would hardly improve bond return forecasting.

Motivated by group features of those macro variables, we develop neural networks with the

group structure that compress similar information into categories and help alleviate issues

related to highly correlated predictors.

2.2.1. Group Structure in Neural Networks

We develop a neural network with a group structure (GNN) that can categorize information

contained in predictors. There are three layers in a GNN. At time t, the first layer is macro

information that is available at that time as input, X
(0)
t = [X1, · · ·,Xt]

T , which is a t × v

matrix and can be divided into k groups, X
(0)
t = [X

(0)
t,1 , · · ·,X

(0)
t,k ], based on some economic

restrictions, where t indicates the length of sample until time t and v is the total number

of predictors. Following variables subscripted by t below means that they are based on the

information until t. Each component X
(0)
t,i for group i, i = 1, 2, ..., k, is a t× vi matrix, where

vi represents the number of variables in group i, and
∑k

i=1 vi = v. Furthermore, we assume

that groups 1 to k1 are from the first type of data, and groups k1 + 1 to k from the second

type of data.

The second layer is the nonlinear transformation and dimension reduction for each group

X
(0)
i , which is conducted as follows,

X
(1)
t,i

t×1

= g
(
b
(1)
t,i

t×1

+X
(0)
t,i W

(1)
t,i

vi×1

)
, (6)

where g(·) is a nonlinear activation function, b
(1)
t,i is a t× 1 bias vector containing the same

bias components for each group, and W
(1)
t,i is a vi × 1 vector of weights. Commonly used
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activation functions include sigmoidal (e.g., 1/(1 + exp(−x)) or tanh(x)), Heaviside gate

functions (e.g., I(x > 0)), or rectified linear units (ReLU). In the paper, we use ReLU as the

activation function, i.e.,

g(x) = ReLU(x) = max(0, x), (7)

which is frequently used in the feed-forward networks, and whose advantage is that it allows

for faster and more effective training of deep neural architectures on large and complex

datasets. Each neuron at this layer is a t×1 vector X
(1)
t,i , which is regarded as a latent factor

representing for information contained in group i. All outputs at this layer are then stacked

together into a t× k matrix X
(1)
t = [X

(1)
t,1 · ··,X(1)

t,k ].

The third layer is a linear combination of k factors, X
(1)
t , derived from the previous hidden

layer for forecasting excess bond returns, rxt+m = [rxt+1, · · ·, rxt+m]
T , as follows,

r̂xt+m
t×N

= b
(2)
t

t×1
1T +X

(1)
t

t×k

W
(2)
t

k×N

, (8)

where r̂xt+m represents the predicted excess returns matrix for bonds with N different matu-

rities, 1 is a N×1 vector of ones, and W
(2)
t contains the coefficients used for the combination.

2.2.2. Penalties and Loss Function

With enhanced flexibility, however, neural network models come with a high propensity for

overfitting. The most common device for guarding against overfitting is to append a penalty

to the objective function in order to favor more parsimonious specifications. Thus, to reduce

possibility that the model overfits noises, while preserving its fit of signals, we add L2-norm

regularizers to the weights in W
(1)
t,i for each group i in Equation (6) and W

(2)
t in Equation

(8). The Entry-wise version of L2-norms for a matrix Ω ∈ Ra×b with components ωuv for

u = 1, · · ·, a and v = 1, · · ·, b is defined as

||Ω||2 = (
a∑

u=1

b∑
v=1

ω2
uv)

1
2 . (9)
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We define the penalty function, Φ(Wt), as follows,

Φ(Wt;λt) = λt,1

k1∑
i=1

||W(1)
t,i ||2 + λt,2

k∑
i=k1+1

||W(1)
t,i ||2 + λt,3||W(2)

t ||2, (10)

where λt,1 and λt,2 are two penalty parameters for two types of macro predictors, respectively,

in the first layer, and λt,3 is a penalty parameter for the linear combination of groups in last

layer. The distinction of penalties for two types of predictors enables us to easily shut

down one of them. In our empirical study, we performs the validation procedure to select

λt = [λt,1, λt,2, λt,3].

Given the grouped structure and penalties, the objective function, L(Wt,bt;Xt), which

minimizes the mean squared errors (MSE) of GNN, becomes

L(Wt,bt;Xt) =
1

N × t

t∑
s=1

N+1∑
n=2

(r̂x(n)
s+m − rx

(n)
s+m)

2 + Φ(Wt, λt). (11)

By minimizing the objective function of Equation (11), we estimate the parameters Wt and

bt for the multivariate outcome rxt+m. While we use the ReLU activation function at the

intermediate layers in GNN, a simple linear transformation function is adopted at the output

layer to preserve linearity because we want to exploit interpretable contributions of different

groups to return predictability of bonds with different maturities. One can interpret this

architectural choice as an extension of Cochrane and Piazzesi (2005) insofar as excess bond

returns at various maturities are linked to the same common factors.

2.2.3. Weighted GNN

Bond returns with different maturities vary differently over time. In the empirical data,

bonds with longer maturity have high return variations. In the standard deep/machine

learning setup, the bond returns with different maturities are simultaneously trained through

the neural network. However, given the differences in their return variations, it may lead

to unbalanced training if we consider an equally-weighted loss function. Training of bond
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X1:t,1
...

X1:t,v1

X1:t,v1+1
...

X1:t,v1+vt2

...

...

...
X1:t,

∑k−1
i=1 vi+1
...

X1:t,
∑k

i=1 vi

X
(0)
t,1

X
(0)
t,2

...

X
(0)
t,k

X
(1)
t,1

X
(1)
t,2

...

X
(1)
t,k

rx
(2)
t+m

...

rx
(n)
t+m

Input Layer

X

Hidden

Layer

Output Layer

rx

Figure 1: (Weighted) Group Neural Network with k Groups

returns with longer maturity and high return variation may be assigned with high weights

when training the neural network. Even for the stock return prediction, the deep/machine

learning model might over-train high volatility stocks and under-train low volatility stocks.

Motivated by the philosophy of weighted least squares (WLS), we change the weights of

bond returns with different maturities in Equation (11) by scaling rxn
t+m with the estimated

volatility, σ̂
(n)
t , of the training data that is available at time t. Therefore, the loss function

now becomes

L(Wt,bt;Xt) =
1

N × t

t∑
s=1

N+1∑
n=2

(
r̂x(n)

s+m − rx
(n)
s+m

(
σ̂
(n)
t

)−1
)2

+ Φ(Wt, λt). (12)

where r̂x(n)
s+m is the predicted volatility-scaled return and the predicted non-scaled return is

r̂x(n)
s+mσ̂

(n)
t . In the rest of this paper, we call it a weighted group neural network (WGNN).

GNN and WGNN are illustrated in Figure 1.
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2.3. Machine Learning

For comparison, we include in our empirical analysis major machine learning algorithms.

Specifically, we consider the following machine learning models: principal component anal-

ysis (PCA), partial least squares (PLS), Ridge regression, Lasso regression, Elastic Net,

AutoEncoder, Boosted tree and Random Forest, for which we follow the standard setups as

in Hastie, Tibshirani, and Friedman (2009) and Goodfellow, Bengio, and Courville (2016).

The first five models are linear, whereas the last three are nonlinear. For financial applica-

tions of some of these algorithms, see, for example, Gu, Kelly, and Xiu (2020) and Bianchi,

Büchner, and Tamoni (2021), among others.

Unlike deep learning, for these machine learning methods, we perform time-series mod-

eling by putting all predictors together, i.e., forecasting each-maturity excess bond returns

separately using all available predictors, and employ the same forward-validation scheme as

in Figure 2 to select their respective tuning parameters.

3. Assessing Out-of-Sample Performance

3.1. Model Selection

We adopt an adaptive model selection scheme in training deep/machine learning models to

accommodate potential business cycle features in macro and/or yield data. Relying on a large

cross-section of equity return data, Gu, Kelly, and Xiu (2020) employ a forward validation

scheme, using the recent five-year data for model validation and selection. However, for

treasury bond returns, the model selection could be sensitive in different years and may result

in highly noisy model selection results from year to year. Therefore, to ensure model selection

stability, we introduce a deterministic three-fold cross-validation scheme as presented in

Figure 2, which does not randomly split the training samples.

Specifically, to predict bond returns in Year K + 1, we first split the past data up to the

end of Year K into three consecutive intervals as three folds (see Figure 2). We then train
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Figure 2: Out-of-Sample Design

each model using any two of three folds and validate using the remaining fold, which results in

three sets of validation results. Finally, we determine the best tuning parameters according to

the average of these three sets of validation errors and refit the model using all the past data.

Our model selection procedure differs from regular randomized cross-validation, designed for

independent observations. The advantage of our deterministic three-fold cross-validation

scheme is to allow for a high degree of time-series dependence in our data.

For deep learning, we try multiple neural network architectures, different regularization

levels, and different learning rates for deep learning model training. For machine learning,

we implement a large number of tuning parameters for the variable selection. We update the

model selection on an annual basis such that we have additional 12-month data for model

training and validation.

3.2. Statistical Evaluation

At each time t in the out-of-sample period, denote the m-months-ahead forecasted value of

the n-year excess bond return as r̂x
(n)
t+m and define the sum of squared forecast errors (SSE)

from the initial time of the out-of-sample period, t0, to time t as

ŜSE(t) =
t−m∑
s=t0

(rx
(n)
s+m − r̂x(n)

s+m)
2. (13)
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Furthermore, denote the forecast from using the historical average as rx
(n)
t+m = 1

t

∑t
s=1 rx

(n)
s .

Then, its SSE is given by

SSE(t) =
t−m∑
s=t0

(rx
(n)
s+m − rx

(n)
s+m)

2. (14)

A natural measure of predictive performance of a model is the out-of-sample R-squared,

R2
OS, proposed by Campbell and Thompson (2008). The R2

OS statistic is computed as

R2
OS = 1− ŜSE(T )

SSE(T )
, (15)

where T denotes the end of the out-of-sample period. R2
OS is analogous to the standard

R2 and measures the proportional reduction in prediction errors of the forecast from the

predictive model relative to the historical average forecast. We also define an overall R2
All,OS

for evaluating predictability of all N bond returns with different maturities as

R2
All,OS = 1−

∑t−m
s=t0

∑N
n=2(rx

(n)
s+m − r̂x(n)

s+m)
2∑t−m

s=t0

∑N
n=2(rx

(n)
s+m − rx

(n)
s+m)

2
. (16)

When R2
OS > 0 or R2

All,OS > 0, the predictive model clearly statistically outperforms

the historical average. We can further test whether this outperformance is statistically

significant, using the statistic developed by Clark and West (2007). The Clark-West statistic

adjusts the well-known Diebold and Mariano (1995) and West (1996) statistic and generates

asymptotically valid inference when comparing nested model forecasts. Clark and West

(2007) show that this statistic performs well in terms of power and size.

3.3. Economic Evaluation

In evaluating economic evidence of bond return predictability in a predictive model, we

consider a mean-variance investor who constructs a portfolio consisting of a risk-free zero-

coupon bond and a risky bond with maturity of n-year and maximizes her expected utility
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on the next-period portfolio value.

At each time t in the out-of-sample period, the optimal weight on the risky bond for the

mean-variance investor is given by

w
(n)
t =

1

γ

Et

(
rx

(n)
t+m

)
V art

(
rx

(n)
t+m + m

12
y
(m/12)
t

) , (17)

where γ measures the investor’s relative risk aversion, Et

[
rx

(n)
t+m

]
represents the m-month-

ahead forecasted value of the n-year excess bond return at time t, and V art

(
rx

(n)
t+m +

m
12
y
(m/12)
t

)
is the conditional variance of the n-year bond return at time t that is estimated us-

ing sample variance from a 36-month rolling window of historical returns similar to Campbell

and Thompson (2008). Then, the realized portfolio return at time t+m is given by

R
(n)
p,t+m = w

(n)
t × rx

(n)
t+m + (1− w

(n)
t )× m

12
y
(m/12)
t , (18)

where rx
(n)
t+m is the realized excess bond return at time t +m, and y

(m/12)
t is the annualized

m-month risk-free rate at time t.

Over the out-of-sample period, the investor then realizes the average utility as follows:

UMV = µp −
1

2
γσ2

p, (19)

where µp and σ2
p are the sample mean and variance of the portfolio returns over the out-

of-sample period. Denote the investor’s average utility resulting from using the forecasted

values of the deep/machine learning predictive models as ÛMV , and denote the investor’s

average utility resulting from using the historical average forecasts as ŪMV . The difference,

ÛMV − ŪMV , represents the investor’s utility gains achieved from using the deep/machine

learning forecasts over the historical average forecasts in asset allocation.

17



4. Data and Summary Statistics

We combine different sources of data for our empirical analyses. Those data include the yield

curve data and two types of data on real-time macroeconomic information: macro vintage

data and news-based macro data of Bybee et al. (2021). Given availability of the news-based

data, we choose our sample that spans over the period from January 1984 to June 2018.

4.1. Yield Data

The commonly used yield data are those from the Fama-Bliss dataset (Fama and Bliss, 1987),

which is available only for maturities of one, two, three, four, and five years and also cannot

be used to construct the one-month holding-period non-overlapping bond returns. Recently,

Liu and Wu (2021) use a nonparametric smoothing approach to reconstruct the constant-

maturity zero-coupon Treasury yield curve with maturities ranging from 1 month to 360

months and show their dataset has much smaller pricing errors than the other commonly used

dataset constructed by Gürkaynak, Sack, and Wright (2007), who use a parametric model

of Nelson and Siegel (1987) to interpolate/extrapolate a smooth yield curve. Therefore, this

paper uses the dataset of Liu and Wu (2021) to compute monthly frequency overlapping and

non-overlapping excess bond returns.

Panel I of Table 1 presents the summary statistics of annualized non-overlapping excess

bond returns. We see that both mean and standard deviation increase with respect to bond

maturity. Both skewness and kurtosis have smirk-shapes to bond maturity. The first-order

autocorrelation decreases to maturity, ranging from 0.22 in two-year excess bond returns to

0.06 in 10-year excess bond returns.

Panel II of Table 1 presents the summary statistics of overlapping excess bond returns.

We find similar term structure patterns of mean and standard deviation to non-overlapping

excess bond returns. However, the corresponding mean and standard deviation are smaller

in overlapping excess bond returns than in non-overlapping excess bond returns for each
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maturity. The patterns of skewness and kurtosis in overlapping excess bond returns differ

from those in non-overlapping excess bond returns. For each maturity, the skewness is much

larger in overlapping excess bond returns than in non-overlapping excess bond returns. In

contrast, the kurtosis is smaller in overlapping excess bond returns than in non-overlapping

excess bond returns. Furthermore, the overlapping excess bond returns are much more

persistent than non-overlapping excess bond returns. First-order autocorrelation ranges

from 0.95 in two-year excess bond returns to 0.91 in ten-year excess bond returns.

Figure 3 presents the time series of non-overlapping (thin blue line) and overlapping (thick

red line) excess bond returns for maturities of 2, 5, 7, and 10 years. For each maturity, we

see that overlapping returns are much more persistent than non-overlapping returns, and

their dynamics are very different from those of non-overlapping returns.

4.2. Real-Time Macroeconomic Vintage Data

Our first type of real-time macro information is based on data on macroeconomic variables

commonly used in literature. However, most studies on bond return predictability with macro

information use fully-revised macro variables in their empirical analysis. Macroeconomic

data are subject to possible future revisions and are often released with a delay. If there

is any macro information that affects bond prices, that should be the real-time one when

bond prices are determined. A recent study by Ghysels, Horan, and Moench (2018) finds

the predictive power of macro variables for future excess bond returns is largely from data

revisions. The authors suggest using real-time macro data in bond return predictability.

Therefore, we rely on the Archival Federal Reserve Economic Data (ALFRED), main-

tained by the Federal Reserve Bank of St. Louis, to construct real-time macro data, which,

following Croushore (2011), are collections of macro vintage data reflecting macro informa-

tion available at each time without revised with respect to future information.2

2The use of real-time macro information suggests that econometricians may have less information than
economic agents who know the equilibrium relationship between prior macroeconomic information and the
yield curve, see, e.g., Atanasov, Moller, and Priestley (2022), and also the discussion in Hansen (2007). The
real-time macroeconomic data are also recently used by Huang and Shi (2022) and Huang et al. (2021).
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Following Ludvigson and Ng (2011) and McCracken and Ng (2016), we construct a bal-

anced panel of 125 monthly macroeconomic times series. These macro variables cover major

economic categories and are grouped into eight categories: (i) output and income (15 series);

(ii) labor market (31 series); (iii) housing sector (10 series); (iv) consumption, orders, and in-

ventories (10 series); (v) money and credit (13 series); (vi) interest rates and foreign exchange

rates (21 series); (vii) prices (20 series); and (viii) stock market (5 series). We stationarize

these variables following the same methods as those of McCracken and Ng (2016). See the

Appendix for the complete list of these macro variables (Table A1) and the transformation

methods used to stationarize them.

4.3. News-based Real-Time Macro Information

Our second type of real-time macro information is news-based, recently introduced by Bybee

et al. (2021) who propose an approach to measuring the state of the economy via textual

analysis of the full-text content of about 800,000 Wall Street Journal articles. They estimate

a topic model that summarizes business news as topical themes and quantifies the proportion

of news attention allocated to each theme. They further show that this text-based news at-

tention accurately tracks various economic activity measures and has incremental forecasting

power for macroeconomic outcomes.

The model used in Bybee et al. (2021) follows the LDA topic modeling approach of Blei,

Ng, and Jordan (2003) that treats an individual article as a mixture of topics. The formation

of topics is unsupervised and is estimated as clusters of terms that tend to co-occur in articles.

We use news attention as our measure of real-time macro information, and there are in

total of 180 time series. See the Appendix for the complete list (Table A2). Following Bybee

et al. (2021), we divide news topic attention time series into two groups: (i) economy news

(78 series) and (ii) politics and culture news (102 series). Combining two types of real-time

macroeconomic data, we have time series on 305 variables.
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5. Empirical Results

We set the out-of-sample period to range from January 2000 to June 2018. This period is

particularly interesting and maybe challenging for out-of-sample tests. As the US economy

experienced the 2008 financial crisis, the interest rates entered an era of zero lower bounds.

The US treasury bonds seem to become macro hedge assets and are negatively correlated

with stock (Li, Sarno, and Zinna, 2021). We consider two types of predictors, real-time

macro variables and news-based topic attention. For the deep learning models, we consider

standard neural networks (NN), group neural networks (GNN), and weighted group neutral

networks (WGNN). To reduce stochastic errors when using deep learning models, we adopt

an ensemble learning approach, i.e., for the model selected from each type, we conduct 10

independent runs at each time in the out-of-sample period and take the mean output as its

forecast (see Section B and Table A3 and Figure A1 there in the Appendix for some details

of model training). We only consider one component case for the machine learning models

of PCA, PLS, and AutoEncoder. When the number of components exceeds one, the model

performance generally deteriorates.

5.1. Statistical Evidence

5.1.1. Forecasting Non-overlapping Bond Return

Table 2 presents the out-of-sample R2s for forecasting non-overlapping excess bond returns.

The Clark-West statistics (Clark and West, 2007) over historical averages are applied only

when the out-of-sample R2s are positive. We first look at the model performance when we

only use the real-time macro vintage data in Panel I. First, we find that all three types

of deep learning models seem to help find out-of-sample statistical evidence for forecasting

two-year-maturity non-overlapping excess bond returns; however, the out-of-sample R2s from

NN and GNN are smaller than 1%, whereas the out-of-sample R2 of WGNN is about 2.54%

for two-year excess bond returns. Differently, for excess bond returns with maturity over
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two years, the out-of-sample R2s from all three deep learning models are either near-zero or

negative.

Second, we also consider some commonly used linear and nonlinear machine learning

predictive models for comparison. Regardless of which machine learning model is used and

which bond maturity is under consideration, all out-of-sample R2s are negative except for

random forest in forecasting two-year- and three-year-maturity returns. Wan, Fulop, and

Li (2021) show that when real-time macro information is used, it is difficult to find any

statistical evidence of non-overlapping bond return predictability in linear predictive models

no matter whether stochastic volatility is introduced or not. Our findings are consistent

and provide further empirical evidence that ordinary machine learning models cannot help

find statistical evidence of non-overlapping bond return predictability when using real-time

macro information.

The literature has found that the news contains useful macroeconomic information. For

example, Bybee et al. (2021) show that the text of business news summarizes wide-ranging

facets of the state of the economy. Ellingsen, Larsen, and Thorsrud (2021) use news data for

macroeconomic forecasting and find that the news data contains information not captured

by the complex economic indicators. Therefore, we next examine whether including news-

based information can improve the out-of-sample performance of our deep/machine learning

predictive models in forecasting non-overlapping excess bond returns.

Panel II of Table 2 presents out-of-sample R2s resulting from combining real-time macro

vintage data and news topic attention (in total, 305 variables) in forecasting non-overlapping

excess bond returns. First, the performance of the three types of deep learning models

improves. For example, the out-of-sample R2 from WGNN is now 3.66% for forecasting two-

year excess bond returns and 1.53% for forecasting three-year excess bond returns. However,

the evidence of predictability for bond returns with other maturities is still nonexistent.

Second, it seems that the two penalized regressions, Lasso and Elastic Net, can now also

find some statistical evidence of out-of-sample predictability for two- and three-year non-
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overlapping excess bond returns; however, the corresponding out-of-sample R2s are smaller

than those from WGNN: 2.10% and 2.03%, respectively, for 2-year bond returns, and 1.50%

and 1.30%, respectively, for 3-year bond returns. The out-of-sample R2s from the other

machine learning models are still negative. In the Appendix, we examine non-overlapping

bond return predictability using news top attention alone and hardly find any evidence of

predictability (see, Panel I of Table A5)

All the above findings suggest that when using real-time macro information, whether

news-based information is included, our deep learning models, particularly WGNN, can

help find out-of-sample statistical evidence for forecasting short-term non-overlapping excess

bond returns. Furthermore, the shrinkage regressions, such as Lasso and Elastic net, seem

also to help find some out-of-sample statistical evidence for forecasting short-term non-

overlapping excess bond returns when news-based information is combined with real-time

macro variables. However, such evidence is much weaker than that found when fully-revised

macro data are used as in Gargano, Pettenuzzo, and Timmermann (2019).

5.1.2. Forecasting Overlapping Returns

We now look at model performance for forecasting overlapping excess bond returns. Table 3

presents out-of-sample R2s resulting from deep/machine learning predictive models. We only

use real-time macro vintage data in Panel I as our predictors. We find that WGNN performs

much better than NN and GNN in general among the three types of deep learning models,

and such outperformance is much stronger for short-maturity bond returns. The out-of-

sample R2s resulting from WGNN are positive and statistically significant for all-maturity

bond returns, ranging from 5.21% for 5-year overlapping excess bond returns to 10.66% for

2-year overlapping excess bond returns. The overall out-of-sample R2 for forecasting all-

maturity returns is 7.31% in WGNN, whereas it is only 1.60% in GNN and is negative in

NN.

We then check whether the machine learning models can help find out-of-sample statis-
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tical evidence for forecasting overlapping bond returns. Unlike what we have observed in

forecasting non-overlapping returns, we find that although most machine learning models

underperform historical averages in forecasting short-maturity overlapping returns, several

standard machine learning models can help find statistical out-of-sample evidence for pre-

dicting long-maturity overlapping bond returns. In particular, we find that both PCA and

Elastic Net work quite well in forecasting overlapping bond returns with maturity larger

than or equal to 5 years: the out-of-sample R2s from PCA range from 3.59% for 5-year

bond returns to 9.00% for 10-year bond returns, and the out-of-sample R2s from Elastic Net

range from 3.63% for 5-year bond returns to 10.13% for 10-year bond returns. The overall

out-of-sample R2s from PCA and Elastic Net are 6.17% and 6.26%, respectively, which are

smaller than that of WGNN. Ridge, Random Forest, and AutoEncoder also perform well for

forecasting long-term bond returns, and their overall out-of-sample R2s are 3.24%, 2.54%,

and 1.20%, respectively.

We further examine whether including news-based information improves the out-of-

sample performance of deep/machine learning predictive models for forecasting overlapping

bond returns. From Panel II of Table 3 that uses both real-time macro vintage data and news

topic attention as our predictors, we find that similar to what we have observed in Table

2 for forecasting non-overlapping returns, the performance of all three types of deep neural

networks improves, and this improvement is particularly striking for WGNN. Compared to

those in Panel I, the out-of-sample R2s resulted from WGNN increase for overlapping bond

returns of all maturities except 2-year bond, now ranging from 7.38% for 4-year bond returns

to 9.37% for 10-year excess bond returns. The overall out-of-sample R2 of WGNN increases

to 8.56%, and such improvement is highly statistically significant (see Table A6 in the Ap-

pendix). This result is consistent with what is found by Bybee et al. (2021) who show that

news attention accurately tracks a wide range of economic activity measures and that they

have incremental forecasting power for macroeconomic outcomes.

However, when a large panel of news-based data is combined with real-time macro vin-
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tage data, all those machine learning models that perform well in forecasting long-maturity

bond returns in Panel I lose their ability and result in negative out-of-sample R2s. Given

that when both types of real-time macro information are combined, the number of predic-

tors becomes very large (in total, 305 variables), and that the variables extracted from the

news are highly correlated with those standard macro variables, negative out-of-sample R2s

from machine learning models just suggest that they can not efficiently handle such a high-

dimensional data with high correlations. In the Appendix, we further examine how those

machine learning models perform when news topic attention data are used alone (Panel II of

Table A5). We find that none of them can produce positive out-of-sample R2s. However, our

neural network with a group structure efficiently works with those high-dimensional data by

grouping variables with similar information (high correlation) and reducing their respective

dimensions separately.

The above results raise a question of how important the nonlinearity is in WGNN, given

that WGNN completely dominates GNN and NN no matter whether news topic data are

included. To answer this question, we rerun three-type of deep learning models (i.e., NN,

GNN, andWGNN), either removing ReLu or replacing ReLu with a linear activation function

in neural networks. The resulted out-of-sample R2s are reported in Panel II’s of Table A7

and Table A8, respectively, in the Appendix. We see that the performance of WGNN

deteriorates dramatically except for 2- and 3-year bond returns. The overall out-of-sample

R2 decreases to 2.80% when only macro vintage data are used and decreases to 3.40%

when both macro vintage data and news topic data are used together. The performance

deterioration of WGNN (and also of NN and GNN ) in these two cases further suggests

that nonlinearity (the usage of a nonlinear activation function neural networks), grouping

(putting similar predictors in the same group in neural networks), and weighting (scaling

bond excess returns) are all very important in predicting excess bond returns.

All the above findings suggest that our weighted group deep learning model performs

quite well for all-maturity bonds for forecasting overlapping bond returns, particularly when
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real-time vintage macro data are combined with news-based data. Several machine learning

models, PCA and Elastic Net in particular, work well in forecasting long-maturity bond

returns using real-time vintage macro variables alone; however, they can not efficiently han-

dle high-dimensional and highly-correlated data when real-time vintage macro variables are

augmented by news-based macro information. However, the evidence we find is relatively

weaker compared to what is found using fully-revised macro data (see, e.g., Ludvigson and

Ng, 2009, 2011; Cooper and Priestley, 2009; Cieslak and Povala, 2015; Bianchi, Büchner,

and Tamoni, 2021).

5.1.3. Importance of Predictors

When both real-time vintage macro data and news-based attentions data are used, there are

in total of ten groups input into our weighted group neural network (WGNN), of which eight

groups are from the vintage macro variables (Output, Labor, Housing, Consumption, Money,

Interest, Prices, and Stock), and two groups are from news topic attention (Economy and

Politics). We can investigate group importance by extracting the group-wise components

from WGNN (see Equation (6)) and then running a regression of excess bond returns of each

maturity on them. To alleviate randomness in training deep learning models and to make

group importance measure robust, we repeat the above procedure 30 times using the most

recent data and report the average squared t-values to measure group importance.

Given that the evidence of bond return predictability in non-overlapping returns is quite

weak, only existing in the two-year bond returns, and that such evidence is much stronger

in overlapping returns, existing in all-maturity bond returns, we focus on the importance

of each group in forecasting overlapping bond returns. Table 4 presents average squared

t-values of each group in each regression. We find that the group of Labor is very important

for forecasting bond returns with maturities of 2-7 years, and its importance is decreasing

with respect to maturity, and the group of Interest plays a critical role in forecasting bond

returns with maturities of 4-10 year and its importance is increasing with respect to maturity.
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Furthermore, the group Housing and the two news-based groups (Economy and Politics)

are very important for forecasting all-maturity bond returns. These results are generally

consistent with Huang and Shi (2022) who find important roles played by Labor and Housing

in forecasting annual excess bond returns using a two-step Lasso approach. The importance

of news-based groups has already been noticed in Table 3, where we see that the performance

of WGNN improves a lot when news-based attentions are introduced.

We have observed important roles played by two news-based groups in WGNN in Table

3 and Table 4. We further explore the importance of each variable in news topic attention

in WGNN. Chen, Pelger, and Zhu (2020) introduce a measure of variable importance in

deep learning by relying on the magnitude of gradient values when training the model. The

gradient values of a loss function are the slope coefficients in a linear model and perfectly

represent variable importance in complex nonlinear deep learning models. For each attention

series j, its gradient function is defined as

grad(Xj,t) =
∂L(Wt,bt;Xt)

∂Xj,t

. (20)

A larger absolute gradient means that a variable has a greater effect on loss minimization.

When the gradient of an attention series is positive, the higher the attention of the news

is, the more helpful it is for bond return predictability. When the gradient is negative, the

smaller the attention of the news is, the greater its help is. As above, we repeat the model

training of WGNN 30 times and present the average gradient values of the last epoch training

for the input news topic attention.

Figure 4 and Figure 5 present gradients of Economy news and of Politics news, respec-

tively. In each figure, there are two panels, the left plots 20 news attentions with the most

negative gradients, and the right plots 20 news attentions with the largest gradients. For

Economy news, we find that in forecasting bond returns, news attention to (i) Steel, (ii)

NASD, and (iii) Control Stakes in the left panel is of the highest importance, and news
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attentions to (i) Small changes, (ii) Small caps, and (iii) Competition in the right panel have

greatest contributions. For Politics and culture news, news attentions to (i) State politics,

(ii) Changes, and (iii) Broadcasting in the left panel, as well as to (i) Courts, (ii) Fees, and

(iii) California in the right panel are most useful in forecasting bond returns. Generally,

traditional macro indicators do not cover the information contained in these news topics.

5.2. Economic Evidence

From the previous subsection, we find that the out-of-sample statistical evidence for fore-

casting non-overlapping excess bond returns using real-time macro information is weak,

seemingly only existing in forecasting very short-term bond returns; however, we do find

strong out-of-sample statistical evidence for forecasting overlapping excess bond returns of

both short- and long-term maturities, in particular, when using the weighted group neural

network (WGNN) model based on both macro vintage data and news-based macro data.

We then ask whether this statistical evidence of bond return predictability can translate

into investors’ economic gains. For this purpose, we compute investors’ utility gains using

deep/machine learning predictive models over the historical average for a mean-variance

investor, as discussed in Subsection 3.3.

In investigating economic evidence, we consider two cases. The first enables investors

to take a full short position such that the portfolio weight, ŵ
(n)
t , bounds between -1 and 2

to prevent extreme investments (Goyal and Welch, 2008; Campbell and Thompson, 2008;

Ferreira and Santa-Clara, 2011; Thorton and Valente, 2012; Sarno, Schneider, and Wagner,

2016), and the second allows investors for leveraging their investments, such that the portfolio

weight, ŵ
(n)
t , could be in the range between -1 and 8. Unlike in the equity market, investors

could take extreme positions in the bond market, facilitated by repo agreements. Given that

the statistical evidence for forecasting non-overlapping bond returns is weak and we find that

it clearly cannot translate into investors’ economic gains no matter which case is considered,

in this part, we mainly focus on those models whose overall out-of-sample R2s are larger
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than 2% in forecasting overlapping bond returns, as shown in Table 3, and see whether such

out-of-sample evidence from those models can translate into investors’ economic gains.

Table 5 reports the annualized percentage utility gains over the historical average for a

mean-variance investor with moderate risk aversion (γ = 5). Panel I presents the utility

gains resulting from those models whose overall out-of-sample R2s are larger than 2% in

Table 3 and where investors are not allowed to take extreme investments. Even though

some of those models can generate positive utility gains for long-maturity bonds, they are

generally quite small. For example, WGNN generates a utility gain of only 10 bps based on

both macro vintage data and news-based data for the 10-year bond, and Ridge generates

the largest utility gain based on macro vintage data among those models for the 10-year

bond, which, however, is still small (32 bps). We then examine whether statistical evidence

of overlapping bond return predictability can translate into investors’ economic gains when

investors could leverage their investments. Panel II presents utility gains from the above

models when the portfolio weight bounds between -1 and 8. Now we find that our WGNN

can generate positive and relatively large utility gains for bonds with maturities of 6 to 10

years based on both macro vintage data and news-based data: the utility gain ranges from

75 bps (6-year bond) to 132 bps (8-year bond); however, when macro vintage data alone

are used, the utility gains from WGNN become negative for all maturities, highlighting

the importance of news-based macro information in forecasting bond returns and a result

consistent with what we have seen in Table 3, where whenever news-based macro information

is introduced, the performance of WGNN improves dramatically. Furthermore, we see that

the utility gains from all the other models are either very small or negative.

We then explore how the investor’s appetite for risk affects her utility gains. For this

purpose, we consider the other two types of investors: the first is slightly risk-averse (γ = 3),

and the other is strongly risk-averse (γ = 8). Table 6 presents utility gains for these two types

of investors who are allowed to take leverage for their investments, that is, ŵ
(n)
t ∈ [−1, 8]. We

find that whenever the investor becomes aggressive, the WGNN can still generate positive
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and relatively large utility gains for bonds with maturities of 8-10 years when both macro

vintage data and news-based data are used: the utility gain is 52 bps for an 8-year bond,

115 bps for a 9-year bond, and 137 bps for the 10-year bond, and the PCA also seems to

generate utility gains larger 50 bps for bonds with maturities of 6 and 7 years when macro

vintage data are used: 58 bps for 6-year bond and 60 bps for a 7-year bond. However, all

the other models generate utility gains that are either negative or close to zero.

When the investor becomes conservative, the WGNN can continue to generate positive

and relatively large utility gains for bonds with maturities of 6-10 years when both macro

vintage data and news-based data are used: the utility gains are between 52 bps (9- and

10-year bonds) and 90 bps (7-year bond); however, the utility gains from the other models

are negative or close to zero.

Perhaps surprisingly, we may wonder why utility gains for short-term bonds are so small

or negative, given that in Table 3 we see that the out-of-sample R2s resulting from WGNN

in forecasting short-term bond returns are quite high, in particular, when we use both macro

vintage data and news-based data. To investigate this point, we take a deep look at the

unrestricted portfolio weights, representing how much the investor would like to hold on

to the risky bonds in the out-of-sample period. The left panels of Figure 6 present the

unrestricted portfolio weights on 2-, 3-, and 4-year bonds in WGNN based on macro and

news data and PCA and Elastic Net based on macro data. We find that in all three models,

the vast majority of the portfolio weights in those three-maturity bonds are huge, way above

the upper bound, which is 8 in our study, and this is particularly striking for a 2-year

bond. Furthermore, the portfolio weights on those bonds increase dramatically after about

2012. High portfolio weights on bonds and their dramatic increase after the global financial

crisis may result from the fact that, unlike stocks and long-term bonds, variations of the

short-term bonds are much smaller, and those bonds are always regarded as safe assets (He,

Krishnamurthy, and Milbradt, 2016), whose correlation with stocks is negative, especially

during market downturns. When computing average utility, we have to cap the portfolio
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weights at the upper bound, resulting in small or negative utility gains.

However, the issue of high unrestricted portfolio weights is much alleviated for the long-

term bonds. The right panels of Figure 6 present the unrestricted portfolio weights on 6-, 8-,

and 10-year bonds for the same three models. The unrestricted portfolio weights are much

smaller than those presented in the left panels. This is particularly true for WGNN with

macro and news data, as most of the 6-year bond portfolio weights and all 8- and 10-year

bond portfolio weights are below the upper bound we set, explaining its outperformance in

generating utility gains for long-term bonds in Tables 5 and 6.

6. Conclusion

Numerous studies have documented that macroeconomic variables strongly predict future

excess bond returns. However, most of these works use the fully-revised macro variables

in their empirical analysis. Macro data are subject to possible future revisions and are

often released with a delay. Ghysels, Horan, and Moench (2018) find that the predictive

power of macro variables for future excess bond returns is largely from the data revision and

argue that the real-time, instead of fully-revised, macro data should be used in bond return

predictability to avoid any hindsight problem. Wan, Fulop, and Li (2021) use different types

of real-time macro data to implement a comprehensive analysis based on linear predictive

models with and without stochastic volatility and find no statistical and economic evidence

for forecasting non-overlapping excess bond returns whenever real-time macro factors are

used as predictors.

This paper reexamines whether non-overlapping and overlapping bond returns are pre-

dictable when real-time, instead of fully-revised, macro information relies on a weighted

group deep learning model. Deep learning is a form of nonlinear supervised machine learn-

ing that employs a deep neural network to implement prediction through a series of nonlinear

transformations using many predictors. A recent study by Gu, Kelly, and Xiu (2020) reinves-

tigates equity return predictability by using various deep/machine learning models and find
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deep learning outperforms. Similarly, using a large panel of fully-revised macro variables as

predictors, Bianchi, Büchner, and Tamoni (2021) find the deep learning models can generate

robust evidence of overlapping and non-overlapping bond return predictability.

However, the panel of macroeconomic variables potentially used for bond return fore-

casting is very large, and most of those variables are highly correlated. Simple off-the-shelf

application of deep learning may hardly significantly improve forecasting. Motivated by

group features of macroeconomic variables, in this paper, we develop weighted neural net-

works with a group structure that compress similar information into the same categories and

can help alleviate issues related to highly correlated predictors.

The paper considers two types of real-time macro information: real-time macro vintage

data and news-based topic attention. We find news contains rich information on future bond

returns beyond traditional macro variables. When both types of real-time data are used as

predictors, our proposed model can help find significant statistical evidence for forecast-

ing non-overlapping short-term bond returns and for forecasting overlapping bond returns

with maturities of 2 to 10 years. Furthermore, the statistical evidence of overlapping bond

return predictability can be translated into investors’ economic gains for long-term bonds

when investors are allowed to leverage their investments. While some standard machine

learning methods can also help find statistical evidence for forecasting long-term overlap-

ping bond returns when macro vintage data alone are used, they cannot efficiently handle

high-dimensional predictors with high correlations when both types of real-time data are

combined.
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Table 1: Summary Statistics: Excess Bond Returns

Panel I: Non-overlapping Excess Bond Returns

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Mean 1.68 2.44 3.01 3.49 3.99 4.33 4.78 5.03 5.55

Std 1.93 3.07 4.22 5.26 6.25 7.19 8.22 9.13 10.03

Skew 0.22 0.02 −0.05 −0.05 −0.04 −0.00 0.06 0.15 0.16

Kurt 4.09 3.73 3.50 3.66 3.75 3.71 4.07 4.48 4.60

ACF 0.22 0.18 0.14 0.12 0.10 0.08 0.07 0.07 0.06

Panel II: Overlapping Excess Bond Returns

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Mean 0.84 1.55 2.24 2.69 3.25 3.60 4.01 4.32 4.65

Std 1.38 2.61 3.72 4.69 5.74 6.61 7.47 8.40 9.28

Skew 0.55 0.33 0.26 0.20 0.26 0.19 0.26 0.29 0.66

Kurt 3.09 2.95 3.05 3.11 3.40 3.53 3.63 3.87 3.93

ACF 0.95 0.94 0.93 0.92 0.92 0.92 0.91 0.91 0.91

Note: The table reports summary statistics of non-overlapping (one-month holding) and overlapping (annual

holding) treasury bond excess returns constructed from the yield curve dataset of Liu and Wu (2021). Means

and standard deviations are annualized. The sample includes those bonds with maturities of 2 to 10 years.

The data are at the monthly frequency and range from January 1984 to June 2018.
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Table 2: Non-overlapping Bond Return Predictability

Panel I: Real-Time Macro Variables

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Deep Learning Models

NN 0.12∗∗ 0.14∗∗∗ 0.03 0.01 −0.01 0.04 0.01 −0.02 0.04 0.01∗

GNN 0.97∗∗ 0.16 0.39∗ 0.11 0.18 0.25∗ 0.03 0.08 0.14 0.14∗∗∗

WGNN 2.54∗∗ −0.21 −1.68 −2.56 −3.00 −2.93 −3.57 −3.89 −3.77 −3.32

B. Machine Learning Models

PCA −0.76 −1.66 −2.37 −2.43 −2.35 −2.57 −2.84 −3.06 −3.21 −2.82

PLS −38.85 −38.32 −37.93 −38.74 −39.53 −39.34 −40.36 −40.45 −40.55 −39.96

Lasso −3.28 −2.52 −2.52 −0.68 −0.95 −1.94 −3.56 −2.57 −4.20 −2.80

Ridge −2.14 −3.87 −3.77 −4.73 −4.07 −5.22 −4.94 −4.99 −5.44 −4.93

Elastic Net −4.66 −2.66 −1.42 −1.86 −2.01 −2.23 −3.06 −3.91 −4.19 −3.19

AutoEncoder −1.73 −2.58 −3.14 −3.06 −2.97 −3.32 −3.54 −3.65 −3.71 −3.44

Boosted Tree −4.24 −6.18 −6.25 −8.08 −7.99 −11.52 −6.71 −7.52 −11.78 −8.99

Random Forest 1.95∗∗ 0.82∗ −0.09 −0.47 −0.67 −0.97 −1.35 −1.55 −1.76 −1.21

Panel II: Real-Time Macro Variables and News Attentions

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Deep Learning Models

NN 0.08∗∗ 0.05∗∗ 0.03∗∗ 0.02 0.03∗∗∗ 0.01 0.02∗∗ 0.01 0.02∗∗ 0.02∗∗∗

GNN 1.31∗ 0.47 0.53∗ 0.53∗∗ 0.35∗∗ 0.45∗∗ 0.13 0.26∗ 0.05 0.26∗∗∗

WGNN 3.66∗∗ 1.53∗∗ −0.50 −0.73 −1.56 −1.90 −2.00 −2.50 −2.47 −1.91

B. Machine Learning Models

PCA −1.69 −2.70 −3.66 −3.84 −3.79 −3.87 −4.05 −4.11 −3.98 −3.92

PCA (1+1) 0.00 −1.80 −3.21 −3.59 −3.61 −3.63 −4.00 −4.11 −3.98 −3.80

PLS −39.22 −41.64 −42.51 −42.46 −42.61 −42.41 −42.42 −41.05 −41.20 −41.79

Lasso 2.10∗∗ 1.50∗ 1.51∗ −0.08 −0.67 0.31 −0.67 −2.84 −4.75 −1.88

Ridge −2.35 −3.57 −4.32 −5.23 −4.77 −4.75 −4.43 −4.44 −4.63 −4.57

Elastic Net 2.03∗∗ 1.30∗ 1.11 −0.29 0.19 0.03 −1.18 −1.97 −2.24 −1.11

AutoEncoder −0.90 −2.10 −3.13 −3.39 −3.43 −3.52 −3.69 −3.77 −3.66 −3.56

Boosted Tree −5.08 −8.95 −9.33 −8.30 −9.19 −7.18 −9.03 −15.59 −9.99 −10.38

Random Forest 0.12 −1.01 −1.66 −1.84 −1.88 −1.91 −2.04 −2.09 −2.15 −1.98

Note: This table reports out-of-sample R2 resulting from the deep/machine learning predictive models for

forecasting non-overlapping excess bond returns using macro vintage data alone (Panel I) and both macro

vintage data and news topic attention (Panel II). The last column presents the aggregate performance by

combining bond returns of all maturities together to compute out-of-sample R2. In the table, PCA (1+1)

uses the first PC from macro vintage data and the first PC from news attentions data. The out-of-sample R2

is computed using Equation (16), and its statistical significance is evaluated using the method of Clark and

West (2007). *, **, and *** denote significance at the 10%, 5%, and 1% significance levels. The out-of-sample

period ranges from January 2000 to July 2017.
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Table 3: Overlapping Bond Return Predictability

Panel I: Real-Time Macro Variables

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Deep Learning Models

NN −16.19 −9.46 −8.98 −6.01 −3.44 −0.87 1.06 2.03∗ 2.69∗ −0.44

GNN 0.00 0.00 0.05∗∗∗ 0.25∗∗∗ 0.86∗∗ 1.25∗∗ 1.85∗∗ 2.22∗ 2.22∗ 1.60∗∗∗

WGNN 10.66∗∗ 6.15∗ 5.23∗ 5.21∗∗ 6.43∗∗ 6.93∗∗ 7.51∗∗ 7.89∗∗∗ 8.32∗∗∗ 7.31∗∗∗

B. Machine Learning Models

PCA −5.19 −1.08 0.23∗∗∗ 3.59∗∗∗ 4.26∗∗ 5.42∗∗∗ 6.75∗∗ 7.39∗∗ 9.00∗∗∗ 6.17∗∗∗

PLS −95.19 −86.73 −89.45 −77.62 −81.34 −72.31 −69.96 −65.91 −52.43 −68.45

Lasso −4.41 −1.52 −1.34 −2.16 0.54 −0.76 −0.09 1.50∗∗ 4.99∗∗∗ 1.16∗∗∗

Ridge 0.98∗∗ 1.64∗∗ 1.06∗ 1.71∗ 0.97 2.05∗ 3.48∗∗ 3.72∗∗ 5.42∗∗ 3.24∗∗∗

Elastic Net 1.03∗ 1.24 2.69 3.63∗ 3.84∗∗ 4.08∗∗ 6.04∗∗ 7.86∗∗∗ 10.13∗∗∗ 6.26∗∗∗

AutoEncoder −6.38 −4.16 −4.28 −1.68 −0.89 0.25∗∗ 1.61∗∗ 2.16∗∗ 4.23∗∗ 1.20∗∗∗

Boosted Tree −18.90 −15.69 −19.33 −12.62 −16.82 −25.99 −15.00 −25.31 −14.65 −18.75

Random Forest −6.89 −4.94 −3.15 −0.82 0.15 1.71 2.97∗ 4.04∗∗ 5.65∗∗ 2.54∗∗∗

Panel II: Real-Time Macro Variables and News Topic Attention

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Deep Learning Models

NN −0.49 −1.13 −2.59 −1.06 0.73∗∗ 1.73∗∗∗ 2.39∗∗ 3.09∗ 2.71 1.76∗∗∗

GNN 0.00 0.00 0.11∗∗∗ 0.38∗∗∗ 1.12∗∗∗ 1.53∗∗ 2.15∗∗ 2.46∗ 2.40∗ 1.82∗∗∗

WGNN 9.35∗∗ 6.88∗∗ 7.38∗∗ 7.41∗∗∗ 8.33∗∗∗ 8.39∗∗∗ 8.76∗∗∗ 8.51∗∗∗ 9.37∗∗∗ 8.56∗∗∗

B. Machine Learning Models

PCA −26.34 −34.33 −36.30 −38.51 −39.76 −39.75 −38.21 −38.47 −37.08 −38.10

PCA (1+1) 0.63∗∗ −7.21 −10.90 −13.94 −15.57 −14.83 −14.25 −14.98 −14.36 −14.17

PLS −141.10 −150.05 −146.94 −129.39 −121.28 −107.66 −93.84 −82.77 −68.13 −96.85

Lasso −58.74 −38.93 −33.66 −38.92 −44.11 −44.79 −37.87 −35.76 −19.43 −36.83

Ridge −20.68 −22.58 −20.53 −20.29 −20.35 −18.55 −16.04 −13.22 −8.36 −15.48

Elastic Net −50.37 −36.41 −29.14 −41.17 −45.79 −32.44 −21.12 −14.24 −8.56 −24.36

AutoEncoder −24.78 −33.00 −35.08 −37.56 −39.01 −39.18 −37.80 −38.20 −36.88 −36.71

Boosted Tree −14.01 −22.21 −33.31 −29.79 −18.92 −26.06 −20.00 −27.21 −24.01 −21.92

Random Forest −12.93 −14.68 −12.49 −9.74 −7.25 −5.53 −3.17 −1.49 −0.02 −4.37

Note: This table reports out-of-sample R2 resulting from the deep/machine learning predictive models for

forecasting overlapping excess bond returns using macro vintage data alone (Panel I) and both macro vintage

data and news topic attention (Panel II). The last column presents the aggregate performance by combining

bond returns of all maturities together to compute out-of-sample R2. In the table, PCA (1+1) uses the first

PC from macro vintage data and the first PC from news attentions data. The out-of-sample R2 is computed

using Equation (16), and its statistical significance is evaluated using the method of Clark and West (2007).

*, **, and *** denote significance at the 10%, 5%, and 1% significance levels. The out-of-sample period

ranges from December 2000 to June 2018.
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Table 4: Variable Group Importance for Weighted Group Neural Network (WGNN)

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Output 1.08 0.85 0.70 0.72 0.75 0.72 0.72 0.75 0.69

Labor 10.78∗∗∗ 10.63∗∗∗ 8.21∗∗∗ 6.59∗∗∗ 4.86∗∗ 4.08∗∗ 3.12∗ 2.43 2.47

Housing 5.34∗∗∗ 5.81∗∗∗ 6.97∗∗∗ 7.95∗∗∗ 8.69∗∗∗ 8.76∗∗∗ 8.71∗∗∗ 8.46∗∗∗ 8.44∗∗∗

Consumption 1.26 1.40 1.66 2.00 2.15 2.31 2.37 2.58 2.67

Money 2.21 2.09 2.17 2.32 2.37 2.37 2.53 2.66 2.65

Interest 2.93∗ 3.79∗ 5.84∗∗∗ 8.09∗∗∗ 10.50∗∗∗ 12.97∗∗∗ 15.61∗∗∗ 17.86∗∗∗ 19.28∗∗∗

Prices 0.37 0.39 0.43 0.49 0.46 0.48 0.52 0.55 0.59

Stock 2.41 2.65 2.79∗ 2.94∗ 2.99∗ 3.12∗ 3.17∗ 3.24∗ 3.30∗

Economy news 9.11∗∗∗ 6.57∗∗∗ 6.16∗∗∗ 5.59∗∗∗ 5.97∗∗∗ 5.40∗∗∗ 5.36∗∗∗ 5.28∗∗∗ 4.99∗∗

Politics news 10.61∗∗∗ 8.46∗∗∗ 7.93∗∗∗ 7.50∗∗∗ 7.60∗∗∗ 7.06∗∗∗ 6.88∗∗∗ 6.72∗∗∗ 6.27∗∗∗

Note: This table reports significance of group importance. We can investigate group importance by extracting

the group-wise components from WGNN and then running a regression of excess bond returns of each

maturity on them. To alleviate randomness in training deep learning models and to make group importance

measure robust, we repeat the above procedure 30 times using the most recent data and report the average

squared t-values to measure group importance. *, **, and *** denote significance at the 10%, 5%, and 1%

significance levels.
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Table 5: Utility Gains and Bond Return Predictability

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

A. w ∈ [-1, 2]

WGNN (macro+news) 0.00 0.00 0.00 −0.00 −0.03 0.03 0.04 0.07 0.12

WGNN (macro) 0.00 0.00 0.00 −0.04 −0.11 −0.14 −0.21 −0.20 −0.17

PCA (macro) 0.00 0.00 0.00 0.00 0.01 0.10 0.18 0.24 0.31

Ridge (macro) 0.00 0.00 0.00 0.00 0.00 0.07 0.14 0.23 0.32

Elastic Net (macro) 0.00 0.00 0.00 −0.01 −0.33 −0.60 −0.74 −0.69 −0.71

Random Forest (macro) 0.00 0.00 0.00 −0.06 −0.13 −0.11 −0.03 0.11 0.20

B. w ∈ [-1, 8]

WGNN (macro+news) −0.12 −0.06 −0.10 −0.16 0.75 1.23 1.32 0.86 0.86

WGNN (macro) −0.23 −0.34 −0.61 −1.05 −0.17 −0.28 −1.07 −2.06 −2.01

PCA (macro) 0.01 0.35 0.30 0.15 −0.59 −2.50 −2.43 −1.41 −1.55

Ridge (macro) 0.00 −0.02 −0.17 −0.36 −1.05 −3.45 −5.51 −5.76 −8.92

Elastic Net (macro) −0.07 −0.09 −0.20 −0.34 −1.30 −4.14 −7.80 −12.02 −17.47

Random Forest (macro) −0.04 −0.31 −0.67 −0.76 −1.20 −3.34 −6.06 −6.14 −7.33

Note: This table reports the annualized percentage utility gains for forecasting overlapping excess bond

returns for a mean-variance investor with the coefficient of relative risk-aversion equal to 5. We consider two

types of investors: the first can only take a short position, that is, w ∈ [-1, 2], and the other can leverage

her investments, i.e., w ∈ [-1, 8]. Only those deep/machine learning models that can generate the overall

out-of-sample R2s larger than 2% are taken into account. The out-of-sample period ranges from December

2000 to June 2018.
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Table 6: Risk-Aversion and Utility Gains

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

A. γ = 3

WGNN (macro+news) 0.00 −0.12 −0.11 −0.04 −0.16 0.05 0.52 1.15 1.37

WGNN (macro) −0.00 −0.39 −0.72 −0.77 −1.16 −1.01 −0.39 −0.73 −0.87

PCA (macro) 0.00 0.11 0.25 0.38 0.58 0.60 0.14 −0.90 −2.01

Ridge (macro) 0.00 0.01 −0.12 −0.23 −0.01 −0.23 −0.90 −2.39 −3.80

Elastic Net (macro) 0.00 −0.15 −0.35 −0.39 −0.88 −1.88 −2.59 −4.27 −6.96

Random Forest (macro) 0.00 −0.16 −0.46 −0.77 −0.51 −0.46 −0.95 −2.58 −4.01

B. γ = 8

WGNN (macro+news) −0.09 −0.07 −0.12 0.19 0.73 0.90 0.81 0.52 0.52

WGNN (macro) −0.22 −0.27 −0.11 0.81 0.46 0.06 −0.78 −1.47 −1.21

PCA (macro) 0.17 0.25 −0.00 −1.21 −2.31 −2.23 −1.59 −0.86 −0.95

Ridge (macro) 0.04 −0.13 −0.34 −1.27 −2.53 −3.84 −4.77 −4.54 −6.67

Elastic Net (macro) −0.04 0.01 −0.17 −0.41 −2.18 −5.42 −11.78 −12.72 −15.77

Random Forest (macro) −0.02 −0.47 −0.60 −1.09 −2.95 −4.16 −4.54 −4.04 −4.55

Note: This table reports the annualized percentage utility gains for forecasting overlapping excess bond

returns for a mean-variance investor who can leverage her investments, i.e., w ∈ [-1, 8]. We consider two

types of investors: one is slightly risk averse, that is, γ = 3, and the other is strongly risk averse, that is,

γ = 8. Only those deep/machine learning models that can generate the overall out-of-sample R2s larger

than 2% are taken into account. The out-of-sample period ranges from December 2000 to June 2018.
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Figure 3: Time Series of Excess Bond Returns

Note: The figure presents the time series of overlapping and non-overlapping excess bond returns for matu-

rities of two, five, seven, and ten years. All excess bond returns are computed using the Liu and Wu (2021)

yield curve dataset. The data are at the monthly frequency and range from January 1984 to June 2018.
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Figure 4: Importance of Economy News in WGNN

Note: This figure displays the importance of economy news topic attention trained in the Weighted Group

Neural Network (WGNN) for overlapping bond returns.To alleviate randomness in training deep learning

models and to make group importance measure robust, we repeat the above procedure 30 times using the

most recent data and report the average gradient values.
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Figure 5: Importance of Politics and Culture News in WGNN

Note: This figure displays the importance of political and cultural news topic attention trained in the

Weighted Group Neural Network (WGNN) for overlapping bond returns.To alleviate randomness in training

deep learning models and to make group importance measure robust, we repeat the above procedure 30

times using the most recent data and report the average gradient values.
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Figure 6: Time Series of Unrestricted Portfolio Weights

Note: This figure presents the unrestricted portfolio weights at each time in the out-of-sample period in

WGNN, PCA, and Elastic Net for forecasting overlapping bond returns. The bold horizontal lines are

the upper bound of 8 of the portfolio weights. The coefficient of relative risk-aversion is equal to 5. The

out-of-sample period ranges from December 2000 to June 2018.
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Appendix

A. List of Macro Variables and News Attention

Table A1 presents a detailed description of the real-time macro variables used in the paper.

The real-time macro data are downloaded from the Archival Federal Reserve Economic

Database (ALFRED). For each macro variable, we provide the ALFRED mnemonic (Fred),

variable description, and the transformation code (Tcode) used to stationarize the data as

in McCracken and Ng (2016), that is, 1 for level (no transformation needed), 2 for first

difference, 3 for second difference, 4 for natural log, 5 for first difference of natural log, 6 for

second difference for natural log, and 7 for first difference of percentage change. All macro

variables are classified into eight groups (Group).

Table A2 contains the description of the news attention variables used in the paper.

Bybee et al. (2021) propose an approach to measuring the state of the economy using the

full-text content of Wall Street Journal articles from 1984 to 2017. The monthly data of

topic attention is downloaded from their website <http://structureofnews.com/>.
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Table A1: List of Macro Variables

No. Tcode Fred Description Group
1 5 RPI Real Personal Income 1
2 5 W875RX1 Real personal income ex transfer receipts 1
3 5 DPCERA3M086SBEA Real personal consumption expenditures 4
4 5 CMRMTSPLx Real Manu. and Trade Industries Sales 4
5 5 RETAILx Retail and Food Services Sales 4
6 5 INDPRO IP Index 1
7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies 1
8 5 IPFINAL IP: Final Products (Market Group) 1
9 5 IPCONGD IP: Consumer Goods 1
10 5 IPDCONGD IP: Durable Consumer Goods 1
11 5 IPNCONGD IP: Nondurable Consumer Goods 1
12 5 IPBUSEQ IP: Business Equipment 1
13 5 IPMAT IP: Materials 1
14 5 IPDMAT IP: Durable Materials 1
15 5 IPNMAT IP: Nondurable Materials 1
16 5 IPMANSICS IP: Manufacturing (SIC) 1
17 5 IPFUELS IP: Fuels 1
18 2 CUMFNS Capacity Utilization: Manufacturing 1
19 2 HWI Help-Wanted Index for United States 2
20 2 HWIURATIO Ratio of Help Wanted/No. Unemployed 2
21 5 CLF16OV Civilian Labor Force 2
22 5 CE16OV Civilian Employment 2
23 2 UNRATE Civilian Unemployment Rate 2
24 2 UEMPMEAN Average Duration of Unemployment (Weeks) 2
25 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 2
26 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 2
27 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over 2
28 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks 2
29 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over 2
30 5 CLAIMSx Initial Claims 2
31 5 PAYEMS All Employees: Total nonfarm 2
32 5 USGOOD All Employees: Goods-Producing Industries 2
33 5 CES1021000001 All Employees: Mining and Logging: Mining 2
34 5 USCONS All Employees: Construction 2
35 5 MANEMP All Employees: Manufacturing 2
36 5 DMANEMP All Employees: Durable goods 2
37 5 NDMANEMP All Employees: Nondurable goods 2
38 5 SRVPRD All Employees: Service-Providing Industries 2
39 5 USTPU All Employees: Trade, Transportation & Utilities 2
40 5 USWTRADE All Employees: Wholesale Trade 2
41 5 USTRADE All Employees: Retail Trade 2
42 5 USFIRE All Employees: Financial Activities 2
43 5 USGOVT All Employees: Government 2
44 1 CES0600000007 Avg Weekly Hours : Goods-Producing 2
45 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing 2
46 1 AWHMAN Avg Weekly Hours : Manufacturing 2
47 4 HOUST Housing Starts: Total New Privately Owned 3
48 4 HOUSTNE Housing Starts, Northeast 3
49 4 HOUSTMW Housing Starts, Midwest 3
50 4 HOUSTS Housing Starts, South 3
51 4 HOUSTW Housing Starts, West 3
52 4 PERMIT New Private Housing Permits (SAAR) 3
53 4 PERMITNE New Private Housing Permits, Northeast (SAAR) 3
54 4 PERMITMW New Private Housing Permits, Midwest (SAAR) 3
55 4 PERMITS New Private Housing Permits, South (SAAR) 3
56 4 PERMITW New Private Housing Permits, West (SAAR) 3
57 5 ACOGNO New Orders for Consumer Goods 4
58 5 AMDMNOx New Orders for Durable Goods 4
59 5 ANDENOx New Orders for Nondefense Capital Goods 4
60 5 AMDMUOx Unfilled Orders for Durable Goods 4
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No. Tcode Fred Description Group
61 5 BUSINVx Total Business Inventories 4
62 2 ISRATIOx Total Business: Inventories to Sales Ratio 4
63 6 M1SL M1 Money Stock 5
64 6 M2SL M2 Money Stock 5
65 5 M2REAL Real M2 Money Stock 5
66 6 TOTRESNS Total Reserves of Depository Institutions 5
67 7 NONBORRES Reserves Of Depository Institutions 5
68 6 BUSLOANS Commercial and Industrial Loans 5
69 6 REALLN Real Estate Loans at All Commercial Banks 5
70 6 NONREVSL Total Nonrevolving Credit 5
71 2 CONSPI Nonrevolving consumer credit to Personal Income 5
72 5 S&P 500 S&P500 Common Stock Price Index: Composite 8
73 5 S&P: indust S&P500 Common Stock Price Index: Industrials 8
74 2 S&P div yield S&P500 Composite Common Stock: Dividend Yield 8
75 5 S&P PE ratio S&P500 Composite Common Stock: Price-Earnings Ratio 8
76 2 FEDFUNDS Effective Federal Funds Rate 6
77 2 CP3Mx 3-Month AA Financial Commercial Paper Rate 6
78 2 TB3MS 3-Month Treasury Bill: 6
79 2 TB6MS 6-Month Treasury Bill: 6
80 2 GS1 1-Year Treasury Rate 6
81 2 GS5 5-Year Treasury Rate 6
82 2 GS10 10-Year Treasury Rate 6
83 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield 6
84 2 BAA Moody’s Seasoned Baa Corporate Bond Yield 6
85 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 6
86 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 6
87 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6
88 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 6
89 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 6
90 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 6
91 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 6
92 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 6
93 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate 6
94 5 EXJPUSx Japan / U.S. Foreign Exchange Rate 6
95 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate 6
96 5 EXCAUSx Canada / U.S. Foreign Exchange Rate 6
97 6 WPSFD49207 PPI: Finished Goods 7
98 6 WPSFD49502 PPI: Finished Consumer Goods 7
99 6 WPSID61 PPI: Intermediate Materials 7
100 6 WPSID62 PPI: Crude Materials 7
101 6 OILPRICEx Crude Oil, spliced WTI and Cushing 7
102 6 PPICMM PPI: Metals and metal products: 7
103 6 CPIAUCSL CPI : All Items 7
104 6 CPIAPPSL CPI : Apparel 7
105 6 CPITRNSL CPI : Transportation 7
106 6 CPIMEDSL CPI : Medical Care 7
107 6 CUSR0000SAC CPI : Commodities 7
108 6 CUSR0000SAD CPI : Durables 7
109 6 CUSR0000SAS CPI : Services 7
110 6 CPIULFSL CPI : All Items Less Food 7
111 6 CUSR0000SA0L2 CPI : All items less shelter 7
112 6 CUSR0000SA0L5 CPI : All items less medical care 7
113 6 PCEPI Personal Cons. Expend.: Chain Index 7
114 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods 7
115 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 7
116 6 DSERRG3M086SBEA Personal Cons. Exp: Services 7
117 6 CES0600000008 Avg Hourly Earnings : Goods-Producing 2
118 6 CES2000000008 Avg Hourly Earnings : Construction 2
119 6 CES3000000008 Avg Hourly Earnings : Manufacturing 2
120 2 UMCSENTx Consumer Sentiment Index 4
121 6 MZMSL MZM Money Stock 5
122 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 5
123 6 DTCTHFNM Total Consumer Loans and Leases Outstanding 5
124 6 INVEST Securities in Bank Credit at All Commercial Banks 5
125 1 VXOCLSx VXO 8
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Table A2: List of News Topic Attention Variables

No. Topic label Metatopic label Group
1 IPOs Financial Markets 9
2 Bond yields Financial Markets 9
3 Short sales Financial Markets 9
4 Small caps Financial Markets 9
5 Treasury bonds Financial Markets 9
6 International exchanges Financial Markets 9
7 Exchanges/composites Financial Markets 9
8 Currencies/metals Financial Markets 9
9 Share payouts Financial Markets 9
10 Bear/bull market Financial Markets 9
11 Commodities Financial Markets 9
12 Trading activity Financial Markets 9
13 Options/VIX Financial Markets 9
14 M&A Buyouts & Bankruptcy 9
15 Control stakes Buyouts & Bankruptcy 9
16 Drexel Buyouts & Bankruptcy 9
17 SEC Buyouts & Bankruptcy 9
18 Bankruptcy Buyouts & Bankruptcy 9
19 Corporate governance Buyouts & Bankruptcy 9
20 Takeovers Buyouts & Bankruptcy 9
21 Real estate Buyouts & Bankruptcy 9
22 Convertible/preferred Buyouts & Bankruptcy 9
23 Mutual funds Asset Managers/I-Banks 9
24 Accounting Asset Managers/I-Banks 9
25 Investment banking Asset Managers/I-Banks 9
26 Acquired investment banks Asset Managers/I-Banks 9
27 Private equity/hedge funds Asset Managers/I-Banks 9
28 NASD Asset Managers/I-Banks 9
29 Savings & loans Banks 9
30 Nonperforming loans Banks 9
31 Credit ratings Banks 9
32 Financial crisis Banks 9
33 Bank loans Banks 9
34 Mortgages Banks 9
35 Record high Economic Growth 9
36 Economic growth Economic Growth 9
37 Federal Reserve Economic Growth 9
38 European sovereign debt Economic Growth 9
39 Recession Economic Growth 9
40 Product prices Economic Growth 9
41 Optimism Economic Growth 9
42 Macroeconomic data Economic Growth 9
43 Steel Oil & Mining 9
44 Mining Oil & Mining 9
45 Machinery Oil & Mining 9
46 Oil drilling Oil & Mining 9
47 Agriculture Oil & Mining 9
48 Oil market Oil & Mining 9
49 Profits Corporate Earnings 9
50 Revised estimate Corporate Earnings 9
51 Earnings losses Corporate Earnings 9
52 Small changes Corporate Earnings 9
53 Financial reports Corporate Earnings 9
54 Earnings forecasts Corporate Earnings 9
55 Earnings Corporate Earnings 9
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No. Topic label Metatopic label Group
56 Soft drinks Industry 9
57 Small business Industry 9
58 Cable Industry 9
59 Fast food Industry 9
60 Competition Industry 9
61 Chemicals/paper Industry 9
62 Venture capital Industry 9
63 Tobacco Industry 9
64 Subsidiaries Industry 9
65 Credit cards Industry 9
66 Couriers Industry 9
67 Foods/consumer goods Industry 9
68 Insurance Industry 9
69 Luxury/beverages Industry 9
70 Casinos Industry 9
71 Revenue growth Industry 9
72 Internet Technology 9
73 Mobile devices Technology 9
74 Electronics Technology 9
75 Phone companies Technology 9
76 Computers Technology 9
77 Software Technology 9
78 Microchips Technology 9
79 Executive pay Labor/Income 10
80 Job cuts Labor/Income 10
81 Unions Labor/Income 10
82 Health insurance Labor/Income 10
83 Pensions Labor/Income 10
84 Government budgets Labor/Income 10
85 Fees Labor/Income 10
86 Taxes Labor/Income 10
87 Connecticut Management 10
88 C-suite Management 10
89 Mid-level executives Management 10
90 Management changes Management 10
91 Natural disasters Trans/Defense/Local 10
92 Police/crime Trans/Defense/Local 10
93 Mid-size cities Trans/Defense/Local 10
94 NY politics Trans/Defense/Local 10
95 Rail/trucking/shipping Trans/Defense/Local 10
96 California Trans/Defense/Local 10
97 Rental properties Trans/Defense/Local 10
98 Disease Trans/Defense/Local 10
99 US defense Trans/Defense/Local 10
100 Pharma Trans/Defense/Local 10
101 Aerospace/defense Trans/Defense/Local 10
102 Automotive Trans/Defense/Local 10
103 Airlines Trans/Defense/Local 10
104 Retail Trans/Defense/Local 10
105 Political contributions Government 10
106 Regulation Government 10
107 Environment Government 10
108 Private/public sector Government 10
109 State politics Government 10
110 Watchdogs Government 10
111 Utilities Government 10
112 Safety administrations Government 10
113 National security Government 10
114 Justice Department Courts 10
115 Indictments Courts 10
116 Courts Courts 10
117 Lawsuits Courts 10
118 Clintons Political Leaders 10
119 US Senate Political Leaders 10
120 Reagan Political Leaders 10
121 Bush/Obama/Trump Political Leaders 10
122 Elections Political Leaders 10
123 European politics Political Leaders 10
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No. Topic label Metatopic label Group
124 Middle east Terrorism/Mideast 10
125 Nuclear/North Korea Terrorism/Mideast 10
126 Terrorism Terrorism/Mideast 10
127 Iraq Terrorism/Mideast 10
128 Russia International Affairs 10
129 Trade agreements International Affairs 10
130 Latin America International Affairs 10
131 Japan International Affairs 10
132 Canada/South Africa International Affairs 10
133 China International Affairs 10
134 Southeast Asia International Affairs 10
135 Germany International Affairs 10
136 France/Italy International Affairs 10
137 UK International Affairs 10
138 Music industry Entertainment 10
139 Broadcasting Entertainment 10
140 Publishing Entertainment 10
141 Marketing Entertainment 10
142 Movie industry Entertainment 10
143 Economic ideology Social/Cultural 10
144 Schools Social/Cultural 10
145 Sales call Social/Cultural 10
146 Cultural life Social/Cultural 10
147 Arts Social/Cultural 10
148 Immigration Social/Cultural 10
149 Positive sentiment Social/Cultural 10
150 Humor/language Social/Cultural 10
151 Gender issues Social/Cultural 10
152 Changes Challenges 10
153 Key role Challenges 10
154 Problems Challenges 10
155 Challenges Challenges 10
156 Small possibility Challenges 10
157 Spring/summer Challenges 10
158 Long/short term Challenges 10
159 Research Science/Language 10
160 Scenario analysis Science/Language 10
161 Programs/initiatives Science/Language 10
162 Biology/chemistry/physics Science/Language 10
163 Space program Science/Language 10
164 Systems Science/Language 10
165 Size Science/Language 10
166 Wide range Science/Language 10
167 Activists Activism/Language 10
168 Announce plan Activism/Language 10
169 Major concerns Activism/Language 10
170 Futures/indices Activism/Language 10
171 Corrections/amplifications Activism/Language 10
172 Buffett Activism/Language 10
173 Mexico Activism/Language 10
174 Restraint Negotiations 10
175 News conference Negotiations 10
176 Company spokesperson Negotiations 10
177 People familiar Negotiations 10
178 Agreement reached Negotiations 10
179 Committees Negotiations 10
180 Negotiations Negotiations 10
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B. Training WGNN

We train the WGNN model described in Figure 1 and Equation (12) using optimizer Adap-

tive Moment Estimation (Adam), which is straightforward to implement, is computationally

efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients,

and is well suited for problems that are large in terms of data and/or parameters. The com-

puting platform we used to conduct all model training, including this example, is GNU/Linux

5.4.0-81-generic x86 64.

Here, to illustrate how to train a WGNN, we provide an example to predict the cor-

responding overlapping bond excess return with macro vintage variables and news topic

attentions as of June 2010. The fixed and tuning parameters are set in Table A3. Figure

A1 shows how the loss decreases in training with epochs. Choosing an epoch of 800 and a

learning rate of 0.0002 can reduce the loss to a sufficiently low and stable level. The tuning

parameters selected by the cross-validation in Figure 2 are as follows: λ1 = e3, λ2 = e−8,

and λ3 = e8. The real and predicted bond excess returns are compared in Table A4.

Table A3: WGNN Parameters for Training Overlapping Bond Excess Returns

Parameters
Epochs 800
Batch size 120
Learning rate 0.0002
λ1 [e−1, e0, e1, e2, e3, e4, e5]
λ2 [e−11, e−10, e−9, e−8, e−7, e−6]
λ3 [e−10, e−9, e−8, e−7]

Table A4: Predicted Overlapping Bond Excess Return Using WGNN

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y
rxt+12 (%) 0.59 1.58 2.90 3.55 4.04 3.67 3.41 3.95 3.72
r̂xt+12 (%) 0.84 1.59 2.22 2.69 3.24 3.66 4.05 4.45 4.81
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Figure A1: WGNN Loss and Epochs for Training Overlapping Bond Excess Returns

C. Forecasting Using News Topic Attention Alone

This section presents out-of-sample results using only news topic attention variables. Panel I

in Table A5 offers the out-of-sample R2s for forecasting non-overlapping excess bond returns,

and Panel II is for overlapping excess bond returns. For non-overlapping cases, Elastic Net

exhibits predictive ability for 2-year bond excess return with R2 1.41 reaching 5% significance

level. However, for overlapping cases, the R2 of all machine learning models are negative,

indicating that they have little predictive ability when using news data.

Table A6 presents out-of-sample R2 improvements resulting from combining news-based

information together with real-time macro vintage data for forecasting overlapping excess

bond returns.
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Table A5: Bond Return Predictability Using News Topic Attention

Panel I: Non-overlapping Bond Return

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Deep Learning Models

NN −0.04 0.00 0.01 −0.03 0.00 −0.01 0.03∗∗∗ 0.00 −0.02 −0.01

GNN 0.04 −0.01 0.03 −0.03 0.11 0.08 0.11∗∗ −0.04 0.13 0.06∗∗

WGNN −1.82 −1.97 −1.51 −1.17 −1.04 −0.87 −0.68 −0.50 −0.60 −0.78

B. Machine Learning Models

AutoEncoder −1.39 −1.91 −1.96 −1.96 −1.88 −1.65 −1.62 −1.48 −1.38 −18.91

PCA −1.27 −1.83 −1.89 −1.89 −1.82 −1.61 −1.57 −1.45 −1.36 −17.26

PLS −8.91 −7.99 −7.27 −6.51 −5.93 −5.28 −5.07 −4.48 −4.09 −31.80

Lasso regression −0.75 −0.96 −1.68 −0.57 −0.24 −0.47 −0.21 −0.10 −0.07 −24.83

Ridge −0.48 −1.65 −2.00 −1.70 −1.55 −1.41 −1.39 −1.44 −1.39 −20.29

Elastic Net 1.41∗∗ −0.51 −1.25 −0.42 −0.48 −0.89 −0.36 −0.14 −0.09 −28.72

Boosted Tree −3.77 −5.99 −9.28 −9.16 −7.83 −8.21 −12.04 −12.79 −11.10 −40.96

Random Forest −1.37 −1.92 −2.09 −2.17 −2.18 −2.16 −2.12 −2.07 −2.00 −13.44

Panel II: Overlapping Bond Return

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Deep Learning Models

NN −0.15 −1.25 0.26 2.03∗∗∗ 3.36∗ 3.40∗ 3.15 2.88 1.13 2.31∗∗

GNN −0.03 −0.06 −0.13 −0.15 −0.03 0.25∗∗∗ 0.55∗∗ 0.91∗∗ 1.22∗ 0.58∗∗∗

WGNN 13.77∗∗∗ 6.54∗∗ 3.94∗ 1.91 2.03 1.54 2.15 2.08 0.76 1.97∗∗∗

B. Machine Learning Models

AutoEncoder −12.55 −21.02 −22.59 −23.48 −23.04 −20.35 −18.04 −17.16 −16.36 −1.60

PCA −9.94 −18.64 −20.28 −21.41 −20.97 −18.63 −16.45 −15.67 −15.08 −1.55

PLS −35.49 −41.73 −43.00 −41.67 −40.45 −34.96 −30.36 −27.43 −24.79 −5.07

Lasso regression −47.68 −39.21 −36.53 −30.71 −29.92 −29.81 −22.16 −20.29 −19.35 −0.29

Ridge regression −24.82 −28.46 −24.20 −23.96 −23.97 −22.84 −20.29 −18.21 −16.22 −1.46

Elastic Net −45.08 −33.88 −30.90 −33.41 −29.86 −33.27 −26.63 −26.71 −25.97 −0.35

Boosted Tree −26.04 −31.36 −39.05 −35.40 −43.14 −40.61 −43.09 −38.30 −44.50 −10.57

Random Forest −15.73 −19.74 −19.45 −18.44 −16.70 −15.37 −12.99 −11.06 −9.92 −2.08

Note: This table reports out-of-sample R2 resulting from the deep/machine learning predictive models for

forecasting non-overlapping and overlapping excess bond returns using only news topic attention. The last

column presents the aggregate performance by combining bond returns of all maturities together to compute

out-of-sample R2. The out-of-sample R2 is computed using Equation (16), and its statistical significance is

evaluated using the method of Clark and West (2007). *, **, and *** denote significance at the 10%, 5%,

and 1% significance levels. The out-of-sample period ranges from December 2000 to June 2018.
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Table A6: R2 Improvements by News Topic Attentions for Overlapping Bond Returns

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

NN 13.51∗∗∗ 7.61∗∗ 5.87∗∗ 4.67∗∗ 4.03∗∗ 2.59∗ 1.34 1.07 0.02 2.19∗∗∗

GNN 0.01∗ 0.00∗∗∗ 0.06∗∗∗ 0.13∗∗ 0.25∗∗ 0.30∗ 0.27∗ 0.27 0.23 0.23∗∗∗

WGNN −1.47 0.78 2.26∗∗ 2.32∗∗ 2.03∗ 1.56 1.34 0.67 1.15 1.34∗∗∗

Note: This table reports out-of-sample R2 improvements resulting from combining news-based information

together with real-time macro vintage data for forecasting overlapping excess bond returns. The last column

presents the overall improvement by combining bond returns of all maturities. *, **, and *** denote

significance at the 10%, 5%, and 1% significance levels. The benchmark is using macro vintage data alone.
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Table A7: Bond Return Predictability Using Linear Deep Learning Models (Removing ReLU)

Panel I: Non-overlapping Bond Return

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Macro

NN-linear −0.06 0.02 0.00 −0.02 −0.05 −0.05 −0.04 −0.02 0.00 −0.02

GNN-linear 0.08 0.77∗∗∗ −0.10 −0.04 0.20 0.01 0.13 −0.12 −0.05 0.01

WGNN-linear 3.01∗∗∗ −1.08 −2.00 −3.22 −3.33 −3.95 −4.93 −4.85 −4.45 −4.13

B. Macro + News

NN-linear −0.03 0.06∗ 0.04 0.02 0.00 0.02 0.03∗ 0.02 0.02 0.02∗∗

GNN-linear 0.78∗∗ 0.95∗ 0.57 −0.60 −0.48 −0.61 0.26 −0.42 −0.15 −0.20

WGNN-linear 0.16∗ 0.05∗∗ 0.01∗ 0.01 0.01 0.00 0.00 0.00 0.00 0.01

Panel II: Overlapping Bond Return

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Macro

NN-linear −90.09 −84.10 −73.55 −55.80 −41.55 −32.89 −24.28 −16.36 −10.65 −28.88

GNN-linear 0.00 0.00 0.06∗∗∗ 0.26∗∗∗ 0.89∗∗ 1.28∗∗ 1.88∗∗ 2.24∗ 2.22∗ 1.59∗∗∗

WGNN-linear 8.18∗∗∗ 0.42 −4.47 −4.62 −3.99 −4.24 −1.81 −1.02 −2.21 −2.49

B. Macro + News

NN-linear −0.45 −0.23 −1.87 −1.58 −0.01 0.69 2.02 2.44∗ 2.36∗ 1.28∗∗

GNN-linear −0.01 0.00 0.06∗∗∗ 0.19∗∗∗ 0.60∗∗∗ 0.90∗∗∗ 1.30∗∗∗ 1.56∗∗∗ 1.71∗∗ 1.10∗∗∗

WGNN-linear 10.57∗∗∗ 6.49∗∗ 5.02∗∗ 3.64∗∗ 3.42∗ 2.89∗ 2.76∗ 2.39∗ 1.90 2.88∗∗∗

Note: This table reports out-of-sample R2 resulting from the linear deep learning predictive models that

removing ReLU directly for forecasting non-overlapping and overlapping excess bond returns using both

macro variables and news topic attention. The last column presents the aggregate performance by combining

bond returns of all maturities together to compute out-of-sample R2. The out-of-sample R2 is computed

using Equation (16), and its statistical significance is evaluated using the method of Clark and West (2007).

*, **, and *** denote significance at the 10%, 5%, and 1% significance levels. The out-of-sample period

ranges from December 2000 to June 2018.
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Table A8: Bond Return Predictability Using Linear Deep Learning Models (Replacing ReLU)

Panel I: Non-overlapping Bond Return

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Macro

NN-linear −0.04 0.06 0.20∗∗∗ 0.05 0.07∗∗ 0.07∗∗ 0.04 −0.03 −0.01 0.03∗

GNN-linear −1.59 −0.94 −0.07 −0.18 0.16 0.18∗ −0.05 −0.36 −0.02 −0.10

WGNN-linear 2.00∗ 0.94 0.41 −0.24 −0.25 −1.18 −1.40 −1.78 −1.59 −1.17

B. Macro + News

NN-linear −0.07 0.01 0.01 −0.02 −0.03 0.01 −0.05 0.02 0.00 −0.01

GNN-linear −1.37 0.37 0.08 0.31 0.01 −0.06 −0.10 −0.17 −0.11 −0.07

WGNN-linear 3.24∗ 1.57 1.61 1.19 0.73 0.50 0.47 0.25 −0.23 0.41∗∗

Panel II: Overlapping Bond Return

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y All

A. Macro

NN-linear −65.64 −73.35 −58.46 −45.58 −36.50 −28.57 −18.71 −12.76 −8.15 −23.62

GNN-linear 0.08∗∗ 0.09 0.52∗ −0.04 0.38 0.83 0.94 1.66∗ 1.86 1.12∗∗

WGNN-linear 11.93∗∗∗ 6.82∗∗ 4.45 2.96 2.29 2.51 2.28 1.63 0.85 2.80∗∗∗

B. Macro + News

NN-linear −0.49 −1.13 −2.59 −1.06 0.73∗∗ 1.73∗∗∗ 2.39∗∗ 3.09 2.71∗∗ 1.76∗∗∗

GNN-linear 0.11 0.59∗∗ 0.80∗ 2.01∗∗∗ 2.08∗ 0.12 1.85 1.54 1.90 1.51∗∗

WGNN-linear 11.89∗∗∗ 6.84∗∗ 6.05∗∗ 4.08∗ 3.72∗ 3.03∗ 3.10∗ 3.21∗ 2.49 3.40∗∗∗

Note: This table reports out-of-sample R2 resulting from the linear deep learning predictive models that

replacing ReLU by a linear transformation for forecasting non-overlapping and overlapping excess bond

returns using both macro variables and news topic attention. The last column presents the aggregate

performance by combining bond returns of all maturities together to compute out-of-sample R2. The out-

of-sample R2 is computed using Equation (16), and its statistical significance is evaluated using the method

of Clark and West (2007). *, **, and *** denote significance at the 10%, 5%, and 1% significance levels.

The out-of-sample period ranges from December 2000 to June 2018.
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