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Abstract  
 

The market portfolio efficiency remains controversial. This paper develops a new test of 

portfolio mean-variance efficiency relying on the realistic assumption that all assets are risky. 

The test is based on the vertical distance of a portfolio from the efficient frontier. Monte Carlo 

simulations show that our test outperforms the previous mean-variance efficiency tests for 

large samples since it produces smaller size distortions for comparable power. Our empirical 

application to the U.S. equity market highlights that the market portfolio is not mean-variance 

efficient, and so invalidates the zero-beta CAPM.  

 

Keywords: Efficient portfolio, mean-variance efficiency, efficiency test.  
 
JEL codes: G11, G12, C12. 
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1. Introduction 

This paper proposes a new test of portfolio mean-variance (MV) efficiency based on the 

realistic assumption that all assets are risky. Testing the mean-variance (MV) efficiency of the 

market portfolio, or equivalently testing the validity of the Capital Asset Pricing Model 

(CAPM) of Sharpe (1964) and Lintner (1965), is a major task for financial econometricians. 

The debate on this issue dates back to the breakthrough theoretical contributions of Roll 

(1977) and Ross (1977) questioning the efficiency of the market portfolio. In the wake of 

these contributions, numerous empirical studies (Gibbons, 1982; Gibbons et al., 1989; 

MacKinlay and Richardson, 1991; among others) found that the market portfolio may indeed 

lie far away from the efficient frontier. Ironically, this debate was recently fuelled by Levy 

and Roll (2010), who published an article entitled “The market portfolio may be mean-

variance efficient after all”. We take a fresh look at this issue.  

All portfolio managers are—or should be—faced with the issue of checking whether a given 

portfolio is optimal within a predefined investment universe. For this purpose, MV efficiency, 

as defined by Markowitz (1952, 1959), remains the key optimality concept. Currently, the 

econometric literature offers a wide variety of tests for MV efficiency. Most are designed for 

universes that include a riskless asset.1 This represents a considerable constraint when it 

comes to practical implementation. By contrast, this paper focuses on MV efficiency tests that 

allow all assets to be risky.  

The assumption that all assets are risky is highly relevant given that riskless assets are no 

longer realistic in modern financial markets. The recent debt crisis has highlighted that even 

the supposedly safest assets, namely sovereign bonds issued by developed countries, are 

                                                 
1 When the investment universe includes a riskless asset, the efficient frontier is a straight line, which makes the 
derivations far simpler (Gourieroux et al., 1997). Tests falling in this category have been proposed by Gibbons 
(1982), Jobson and Korkie (1982), and MacKinlay and Richardson (1991), among others. The test introduced by 
Gibbons et al. (1989) has since then become the standard. Michaud (1989) and Green and Hollifield (1992) 
discuss the limitations of this framework. Besides, MV efficiency tests must be distinguished from MV spanning 
tests, which examine whether the efficient frontier built from a given set of assets intersects the frontier resulting 
from a larger set (see De Roon and Nijman (2001) for a survey).  
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exposed to default risk. In the same way, the freezing of the money markets and the Lehman 

Brothers’ bankruptcy underlined the counterparty and liquidity risks associated with money 

market investments (Bruche and Suarez, 2010; Krishnamurthy, 2010; Acharya et al., 2011). 

Investors can thus meet severe restrictions on borrowing (Black, 1972), and the riskless 

borrowing rate can largely exceed the Treasury bill rate (Brennan, 1971). For all these 

reasons, MV efficiency is better tested without assuming the availability of a riskless asset.  

Two broad classes of MV efficiency tests for risky-asset universes exist in the literature: 

likelihood-based tests and geometric tests. The likelihood-based tests are directly inspired by 

the formulation of the CAPM. While the riskless asset is needed to establish the original 

CAPM, further refinements by Black (1972) allow the riskless asset to be replaced by the 

zero-beta portfolio. To address the nonlinearities embedded in the Black CAPM, Gibbons 

(1982) builds a likelihood-ratio test statistic, for which Kandel (1984, 1986) derives the exact 

asymptotic chi-square distribution. However, because this test uses the Gauss-Newton 

algorithm, practical implementation turns out to be complex (Zhou, 1991). Moreover, 

Shanken (1985) shows that Gibbons’ (1982) test tends to over-reject MV efficiency in finite 

samples.2 Levy and Roll (2010) (henceforth, L&R) offer a novel likelihood-ratio test for MV 

efficiency. This test is based on implicitly estimating the zero-beta rate by determining the 

minimal changes to sample parameters that make a market proxy efficient.3  

On the other hand, the first geometric test of Basak, Jagannathan and Sun (2002) (henceforth, 

BJS) is based on the “horizontal distance” between the portfolio whose MV efficiency is in 

question and its same-return counterpart on the MV efficient frontier.4 Unfortunately, some 

portfolios lack such a counterpart (Gerard et al., 2007), which in turn limits the applicability 

                                                 
2 In reaction to these criticisms, several authors (Shanken, 1985, 1986; Zhou, 1991; Velu and Zhou, 1999; 
Beaulieu et al., 2008) provide lower and upper bounds to the test p-values.  
3 Small variations in expected returns and volatilities may indeed lead to significant changes in the MV efficient 
frontier (Best and Grauer, 1991; Britten-Jones, 1999). 
4 The null hypothesis is that the “horizontal distance” is zero. BJS derive the asymptotic distribution of this 
distance. Interestingly, the BJS test can be implemented with and without restrictions on short-selling. Besides, 
the BJS test can also be used to compare efficient frontiers (Ehling and Ramos, 2006; Drut, 2010).   
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of the BJS test. Moreover, while this horizontal test is particularly suitable in the case of 

investors seeking to minimize the risk of their investments with an expected return goal, this 

is not the case for all categories of investors. Some of them have instead a well-defined 

objective of risk they cannot afford to go beyond. They will thus try, given that risk 

constraint, to obtain the highest possible return. This is the case, for example, of benchmarked 

portfolio managers, which represent a substantial part of the asset management industry. Their 

objective is to maximize the excess return of the portfolio over the benchmark and at the same 

time make sure that the risks do not exceed a given “tracking error” fixed in the objectives of 

the funds (Roll, 1992; Jorion, 2003). The vertical test proposed in this paper allows to address 

an audience of investors with different objectives and circumvents the aforementioned 

limitations. It is based on the vertical inefficiency measure proposed by Kandel and 

Stambaugh (1995), Wang (1998), and Li et al. (2003), namely the difference between the 

portfolio’s expected return and the expected return of its same-variance counterpart on the 

MV efficient frontier. Both tests are in fact complementary. As for testing the efficiency of 

the market portfolio, where both dimensions (return and risk) should be simultaneously taken 

into account, the vertical and horizontal tests could be used simultaneously. 

Our contribution is twofold. First, we define the vertical test statistic for MV efficiency, 

establish its asymptotic distribution, and compare its size and power performances to those of 

the L&R and BJS tests through Monte Carlo simulations. While no clear hierarchy emerges 

for small samples, the vertical test outperforms its competitors for large samples as it exhibits 

equivalent power for a smaller size. Secondly, we re-examine the market portfolio MV 

efficiency using the three tests under review (L&R, BJS and the vertical tests). Irrespectively 

of the number of stocks in the universe, we find that the market portfolio is never MV 

efficient according to both the BJS and the vertical tests. For the L&R test, the conclusion 

depends on the value given to the coefficient α, which determines the relative weight assigned 
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to sample mean changes against standard deviation changes. In other words, the L&R test 

reaches no clear-cut and definitive conclusion regarding the market portfolio efficiency. 

Although still frail, the evidence points to the inefficiency of the market portfolio, supporting 

the Roll’s (1977) critique of the CAPM.  

The paper is organized as follows. Section 2 presents the vertical test and its asymptotic 

properties. Section 3 assesses the size and power of the vertical test and its two competitors. 

Section 4 tests the Black CAPM on the U.S. equity market. Section 5 concludes.  

 

2. The Vertical Test of Mean-Variance Efficiency 

Consider an investment universe composed of N primitive assets with stationary returns 

characterized by a N-dimensional vectorR , with µ=)(RE , and Σ=)(RCov . The tested 

portfolio, P, is composed of primitive assets. Let r denote its return, with β=)(rE  and 

2)( ν=rVar . 

Given a sample of returns of size T denoted TttR ..1)( =  for the N  primitive assets and Tttr ..1)( =  

for portfolio P, the empirical counterparts of parametersµ ,Σ , β , and 2ν  are respectively 

given by: 

 ∑
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where tR and tr  are the date-t returns on theN primitive assets and on portfolio P, 

respectively.   

Figure 1. Horizontal and vertical distances between portfolio P and the efficient frontier 
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As illustrated by Figure 1, the horizontal distance underlying the BJS test measures of 

portfolio P inefficiency is the difference between the variance of P and the variance of its 

same-expected-return counterpart on the efficient frontier.  

Our vertical test is conceived by transposing the BJS (2002) methodology to the vertical 

inefficiency measure introduced by Kandel and Stambaugh (1995), Wang (1998), and Li et al. 

(2003). Hence, the vertical test statistic5 is the distance between the expected return of 

portfolio P and the expected return of its same-variance MV efficient counterpart. The 

estimated distance, denoted by θ̂ , is the solution to the following program:    

                                                 
5 Another possibility would be to take the minimal Euclidian distance between portfolio P and the efficient 
frontier. This approach would certainly be more elegant, but would also be much more tedious as it would mix 
up first and second order parameters.   
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The following proposition states that, under the null that portfolio P is MV efficient, estimator 

θ̂  asymptotically follows a normal distribution.  

Proposition 1  

θ̂  asymptotically follows a normal distribution:   

                                                    ),0()ˆ( 2φθθ NT →−  as ∞→T .                                      (6) 

with 
VVT ∂

∂∆
∂
∂= →∞

θθφ
ˆˆ

lim2 , where ∆  is given by Equation (A2) in Appendix A and represents 

the asymptotic covariance matrix of the distinct elements of µ̂ , Σ̂ , β̂ , and ν̂ , and 










∂
∂
V

θ̂
is 

given by (A6) in Appendix A.  

Proof: See Appendix A. 

As for the BJS test, this asymptotic result does not require normality assumptions on the asset 

returns.6 Moreover, as demonstrated in Appendix A, this result holds both with and without 

short-selling restrictions.  

 

3. Power and Size Performances 

In this section, we assess the size and power of the vertical test and compare its performances 

to those of the BJS and L&R tests. To this end, we simulate series of returns drawn from the 

                                                 
6 Here, returns are assumed identically and independently distributed. The impact of autocorrelation and 
heteroskedasticity in returns could be investigated thanks to the block bootstrap methodology, along the lines of 
Topaloglou and Scaillet (2010).   
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investment universe imagined by Das et al. (2010), including three assets with jointly normal 

returns having the following parameters:  
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 (7) 

Das et al. (2010) interpret the first asset as a bond, the second as a low-risk stock, and the 

third as a highly speculative stock. For the sake of comparability,7 we focus here on the case 

where short-selling is allowed.  

We simulated 1,000 series of returns of lengths 60, 120, 180, and 240, respectively. In each 

case, two groups of portfolios were composed. The portfolios in the first group were 

generated on the efficient frontier in order to estimate the risk of type I error (false rejection of 

the true hypothesis that portfolios are mean-variance efficient). The portfolios in the second 

group were generated below the efficient frontier to estimate the risk of type II error (failure 

to reject the false hypothesis).  

We follow the assessment of statistical tests suggested by Wasserman (2004). This procedure 

is based on power maximization (i.e., minimization of the risk of type II error) for a given 

small size (i.e., risk of type I error). Figure 2 features all tested portfolios on a grid in the MV 

plane. To each of them, we successively apply the BJS, L&R, and vertical tests.  

 

                                                 
7 L&R solely apply their test to cases where short-selling is allowed. Actually, the performances of their test 
when short-selling is restricted have not been investigated so far.  
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Figure 2. Efficient frontier and tested portfolios 
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BJS measure the difference in variances λ  between the tested portfolio P and its MV efficient 

counterpart with same expected return. The estimated horizontal distance is the solution to the 

following program:  
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Under the null that portfolio P is MV efficient, λ̂  asymptotically follows a normal 

distribution: ( ) ),0(ˆ 2ελλ NT →−  as ∞→T .  
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The L&R test draws on the evidence that slight variations in the sample parameters may make 

a portfolio MV efficient. More precisely, the L&R test statistic is built from asset-return 

parameters ( )**,σµ  that minimize a given distance to the sample parameters( )σµ ˆ,ˆ  while 

making portfolio P MV efficient: 

 
( ) ( ) ( )( )σµσµσµ

σµ

ˆ,ˆ,,minarg**,
),(

d
NN





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 ℜ×ℜ∈ +
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 (9)
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and α  is a coefficient determining the relative weight assigned to deviations in means relative 

to the deviations in standard deviations.8  

For simplicity, L&R reduce the number of parameters to estimate by imposing that covariance 

matrix *Σ  computed from *)*,( σµ  is based on the sample correlation matrix:  
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where Ĉ  is the sample correlation matrix. In that way, only the variances have to be 

estimated. 

Under the hypothesis that the N original assets follow a jointly normal distribution, the 

likelihood ratio is given by:  

 ( )( )( )( )




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

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*

ˆ
log 1 µµµµtraceNT  (12) 

                                                 
8 See Equation (2) in L&R (2010). 
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This test statistic asymptotically follows a chi-square distribution with N2 degrees of 

freedom.9  

 The choice of the trade-off parameter α in Equation (10) is instrumental to the 

implementation of the L&R test. Indeed, a low (resp. high) value ofα  would create a bias 

towards standard deviations (resp. means). In extreme cases ( 0=α  and 1=α ), the asymptotic 

distribution of the L&R test statistic degenerates into a chi-square with N degrees of freedom. 

In our performance assessments, we follow L&R and set the value of α to 0.75.  

3.1. False Rejection of Efficient Portfolios 

We first assess the type I error. The four simulated efficient portfolios have expected returns 

of 10%, 15%, 20% and 25%, respectively. The rejection frequencies of the null of portfolio 

efficiency at the 5% probability level are displayed in Table 1.10 The results show that the size 

is uniformly the lowest for the vertical test, followed by the L&R test. Nevertheless, the 

vertical test, and to a lesser extent the L&R test, exhibit rejection frequencies that lie below 

the theoretical threshold of 5%.  

 

                                                 
9 It should be noticed that L&R do not take into account that *µ and *σ are sample-dependent (as is the case 

since the determination of *µ and *σ  results from the minimization of distance( )samD ),(),,( σµσµ , which 

depends on the sample). As a consequence, the fact that the asymptotic distribution of the test statistic should 
follow a chi-squared distribution may be questioned. 
10 The results for the 1% and 10% probability levels are given in Table B1 in Appendix B. 
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Table 1. Rejection frequencies (in percent) at the 5% probability level for the efficient 
portfolios 

 
T BJS Vertical L&R
60 7.6 0.6 3.7
120 5.5 0.4 1.8
180 5.1 0.4 1.4
240 4.1 0.2 1.3
60 6.1 0.6 2.9
120 6.4 0.4 1.9
180 5.1 0.0 1.3
240 4.6 0.0 1.5
60 8.6 0.6 3.1
120 5.8 0.4 1.7
180 5.4 0.3 1.5
240 4.6 0.2 1.6
60 6.4 0.6 2.8
120 6.3 0.4 1.7
180 5.6 0.0 1.5
240 4.9 0.0 0.0

10%

15%

20%

25%

E
xp

ec
te

d
 r

et
u

rn

 

Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T is the sample size. 

 

3.2. Rejection of Inefficient Portfolios 

We now apply the three MV efficiency tests under review to thirteen portfolios simulated as 

inefficient in order to assess the probability of falsely concluding that the portfolio was 

efficient. The results are given in Table 2 for 5% probability.11  

 

Table 2. Rejection frequencies (in percent) at the 5% probability level for the inefficient 
portfolios 

 

T BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R
60 89.8 49.1 66.6 94.4 62.0 76.4 96.8 69.0 76.7 96.8 70.3 79.9 98.2 72.3 80.6
120 99.2 85.4 93.9 100.0 93.4 96.4 100.0 94.7 96.2 100.0 96.6 95.9 99.7 96.4 96.1
180 100.0 96.7 99.1 100.0 98.9 99.6 100.0 99.5 99.7 100.0 99.3 99.3 100.0 99.9 99.4
240 100.0 99.5 99.9 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9
60 71.5 24.8 35.1 86.5 38.0 55.4 89.4 49.9 66.7 93.8 55.4 72.3
120 92.1 51.7 64.5 98.5 72.6 87.2 99.1 83.1 92.5 99.7 86.8 94.9
180 98.8 75.3 86.5 99.6 92.7 97.4 100.0 96.2 98.9 100.0 97.6 99.5
240 99.8 88.9 93.8 100.0 97.9 99.5 100.0 99.2 99.9 100.0 99.7 99.9
60 35.6 5.2 5.9 64.5 19.2 27.2 75.7 28.5 44.6
120 56.3 12.9 12.2 84.2 41.7 53.0 93.8 56.3 71.6
180 73.6 25.8 24.8 95.7 67.1 75.6 99.5 81.4 90.5
240 83.8 38.1 36.6 99.0 82.0 89.9 99.8 93.0 97.0
60 31.9 3.3 5.6
120 44.6 9.2 11.5
180 58.2 14.7 19.0
240 72.0 24.0 28.6

E
xp

ec
te

d
 r

et
u

rn

10%

15%

20%

25%

15% 20% 25%
Variance

5% 10%

 
Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T is the sample size. 

                                                 
11 The results corresponding to the 1% and 10% probability levels are given in Tables B2 and B3 in Appendix B, 
respectively. 
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For sample sizes below 180, the power is the lowest for the vertical test, and the highest for 

the BJS test. The powers of the vertical and L&R tests are also low for the expected returns 

and variances (20%, 15%) and (25%, 25%). This is likely due to the vertical proximity to the 

efficient frontier. However, for larger samples, the vertical test outperforms both the BJS and 

the L&R tests since its size is the lowest for an equivalent power. On the whole, Tables 1 and 

2 indicate that the vertical test rejects the null of MV efficiency less frequently than the two 

other tests.  

The differences in power and size between the vertical test and the BJS test might look 

surprising since both are similar in spirit, namely they are both built from a geometric one-

dimensional measure of inefficiency in the MV plane. This counterintuitive result stems from 

the fact that the standard deviation of the vertical measure of inefficiency is higher than the 

standard deviation of the horizontal measure used in the BJS test. Indeed, the standard 

deviations of both tests depend on the absolute values of the weighting loads of the tested-

portfolio efficient counterpart (see equations A6 and A7 in Appendix A). However, the 

efficient “vertical counterparts” are mostly located on the top of the efficient frontier while 

the efficient “horizontal counterparts” are mostly located at the bottom of the efficient 

frontier. Since absolute weighting loads are typically higher on the top of the efficient frontier 

(riskier portfolios are less diversified), the vertical distance is subject to higher standard 

deviations than the horizontal BJS test. Consequently, the t-statistic generally takes lower 

values for the vertical test than for the BJS test, and hence the former rejects MV efficiency 

less frequently than the latter. This feature is particularly relevant when short-selling 

restrictions are imposed (see Best and Grauer, 1991; Green and Hollifield, 1992; Britten-

Jones, 1999).  
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3.3. Robustness Checks on the Slope of the Efficient Frontier  

Both the horizontal and vertical measures of portfolio inefficiency are restricted to a single 

dimension in the MV plane. They are, therefore, sensitive to the slope of the efficient frontier. 

For this reason, we check the robustness of our previous findings by substantially modifying 

the slope of the efficient frontier. This is achieved by running simulations under two 

alternative scenarios for the expected return on the speculative stock (15% and 35% 

respectively instead of 25%) while keeping all other parameters in Equation (7) unchanged. 

As Figure 3 shows, the first case (15%) produces a flatter efficient frontier, whereas the 

second (35%) leads to a steeper MV efficient frontier. The minimum-variance portfolios of 

the three efficient frontiers still remain very close to each other. As previously, we apply the 

three efficiency tests to a grid of efficient and non-efficient simulated portfolios.  

Figure 3. The three efficient frontiers under consideration 
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The results are reported in Tables C1 to C4 in Appendix C. They can be summarized as 

follows. For the flat efficient frontier, the BJS test produces the highest size distortions, while 

the vertical test exhibits the lowest. Given that the BJS test outperforms the other two tests in 

terms of power irrespective of the sample size, a reasonable procedure for practical use is to 
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combine the BJS and the vertical tests when the MV efficient frontier is flat. In the case of a 

steep efficient frontier, the results are similar to those obtained in the benchmark case. The 

vertical test exhibits the lowest size distortions, and its power strongly increases in 

comparison to the benchmark case, especially for small samples. On the whole, our results 

show that the vertical test is preferable when the efficient frontier is steep and samples are 

large.  

 

4. Is the Market Portfolio Efficient? 

In this section, we apply the BJS, the L&R, and the vertical tests of MV efficiency to the 

capitalization-weighted market portfolio made up of the 100 largest U.S. stocks12 by market 

capitalizations as measured on December 31, 2010. The data are monthly returns over the 

period January 1988 – December 2010 (276 observations). To gauge the sensitivity of our 

results with respect to the number of available stocks,13 we also run the tests in stock 

universes of different sizes ( 100,,20,10 K=N ).14 In each case, we select the largest stocks 

of the sample. For the L&R test we follow the original paper when assessing MV efficiency 

and use a value of α equal to 0.75. As robustness checks, we also (i) test the MV efficiency 

for a value α (0.98)—which gives a similar importance to deviations from variance and 

mean15—and (ii) apply the three tests to equally-weighted portfolios.  

Figure 4 shows the efficient frontiers (without short-selling restrictions) made of 10, 50 and 

100 assets, respectively, and the corresponding market portfolios. Noticeably, the MV 

characteristics of the market portfolio are stable with respect to the number of assets, but the 

                                                 
12 We selected the 100 largest stocks of the S&P 500 index.  
13 The data are extracted from the Datastream database. Descriptive statistics are given in Appendix D. 
14 In reality, individual investors rarely hold portfolios containing 100 assets (Barber and Odean, 2000; 
Polkovnichenko, 2005; Goetzmann and Kumar, 2008). The diversification benefits tend to be exhausted once an 
equity portfolio contains several tens of stocks (Evans and Archer, 1968; Elton and Gruber, 1977; Statman, 
1987). 
15 This value is actually very close to the 0.98-value considered in L&R as more realistic than the 0.75 used to 
test the MV efficiency. 
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efficient frontier becomes steeper when N increases. In particular, this feature shows that all 

configurations explored in Section 3 are realistic.  

Table 3 summarizes the outcomes of the three tests. Two findings stand out. Firstly, for all 

sample sizes, both the BJS and the vertical tests reject the null of market portfolio efficiency. 

Regardless of the number of stocks in the universe, the market portfolio is never MV 

efficient. Similar results are found for equally-weighted portfolios (see Table 4).  

Figure 4. Efficient frontiers and market portfolios for the 10, 50 and 100 largest U.S. 
stocks, respectively. January 1988 – December 2010 
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Secondly, for all values of N, the L&R test does not reject market portfolio efficiency for α = 

0.75, confirming the findings of L&R.16 However, for α = 0.98 the L&R test rejects market 

portfolio efficiency. This indicates that the L&R test is sensitive to the value taken by 

parameter α. In fact, for α higher than 0.902, MV efficiency is always rejected by the L&R 

test. 

 

                                                 
16 Even though our sample period is longer than in L&R. 
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Table 3. MV efficiency tests for the capitalization-weighted market portfolio 

Nb. of 

stocks 

Annualized 

Expected 

Return  

(in %) 

Volatility 

(in %) 
BJS test Vertical test 

L&R test 

(αααα = 0.75) 

L&R test 

(αααα = 0.98) 

10 14.84 15.49 -3.11(0.00) 1.28 (0.10) 6.09 (1.00) 161.27 (0.00) 

20 15.55 16.36 -4.58 (0.00) 2.14 (0.02) 15.54 (1.00) 579.43 (0.00) 

30 14.92 15.63 -4.67 (0.00) 2.32 (0.01) 18.87 (1.00) 773.40 (0.00) 

40 15.21 15.64 -5.25 (0.00) 2.94 (0.00) 28.49 (1.00) 1597.15 (0.00) 

50 15.05 15.48 -5.54 (0.00) 3.25 (0.00) 37.61 (1.00) 2562.73 (0.00) 

60 15.20 15.54 -5.90 (0.00) 3.78 (0.00) 48.73 (1.00) 3357.71 (0.00) 

70 15.27 15.40 -6.56 (0.00) 4.46 (0.00) 65.54 (1.00) 3106.69 (0.00) 

80 15.33 15.31 -6.53 (0.00) 4.58 (0.00) 76.76 (1.00) 3491.16 (0.00) 

90 15.23 15.22 -6.83 (0.00) 4.74 (0.00) 89.71 (1.00) 3542.50 (0.00) 

100 15.25 15.22 -7.17 (0.00) 5.05 (0.00) 
102.27 

(1.00) 
4045.07 (0.00) 

Coefficient α denotes the MV trade-off in the L&R test statistic. p-values are given in parentheses. 
 

Table 4. MV efficiency tests for the equally-weighted market portfolio 

Nb. of 

stocks 

Annualiz

ed 

Expected 

Returns  

(in %) 

Volatility 

(in %) 
BJS test Vertical test 

L&R test 

(αααα = 0.75) 

L&R test 

(αααα = 0.98) 

10 
14.29 14.95 -3.22 (0.00) 1.33 (0.09) 6.78 (1.00) 197.70 (0.00) 

20 
15.34 16.79 -4.56 (0.00) 2.18 (0.01) 15.75 (1.00) 706.71 (0.00) 

30 
14.32 15.50 -4.54 (0.00) 2.39 (0.01) 19.37 (1.00) 979.52 (0.00) 

40 
15.17 15.72 -4.99 (0.00) 2.90 (0.00) 28.48 (1.00) 1771.03 (0.00) 

50 
14.79 15.47 -5.27 (0.00) 3.23 (0.00) 36.90 (1.00) 2681.93 (0.00) 

60 15.22 15.76 -5.65 (0.00) 3.75 (0.00) 47.80 (1.00) 3381.66 (0.00) 
70 

15.39 15.46 -6.14 (0.00) 4.36 (0.00) 64.71 (1.00) 3453.09 (0.00) 
80 

15.53 15.28 -6.00 (0.00) 4.45 (0.00) 75.95 (1.00) 3938.86 (0.00) 
90 

15.21 15.13 -6.29 (0.00) 4.60 (0.00) 89.03 (1.00) 4137.95 (0.00) 

100 
15.30 15.17 -6.68 (0.00) 4.92 (0.00) 

102.12 
(1.00) 4535.09 (0.00) 

Coefficient α denotes the MV trade-off in the L&R test statistic. p-values are given in parentheses. 
 

The large difference in the results depending on whether one considers the vertical and 

horizontal tests on one side, and the L&R test on the other (the latter depending crucially on 
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the value of α  chosen), is striking. Two possible issues in the L&R test might however 

explain this difference. First, L&R do not acknowledge that *µ and *σ are sample-

dependent. Indeed, *µ and *σ  are derived from the minimization of distance 

( )( , ), ( , )samd µ σ µ σ in Eq. (10), where ( , )samµ σ  is made of sample parameters. As a 

consequence, the asymptotic distribution of the test statistic could deviate from the chi-

squared distribution. Despite this, the L&R test is applied as if *µ and *σ  were simple 

numbers.  

Second, to prove the efficiency of the market portfolio, L&R argue that their test should not 

reject the null for at least one value of α  between 0 and 1. To illustrate their point they 

choose forα  a value very close to 1, namely α = 0.98. This raises additional issues regarding 

the power of their likelihood-test. More precisely, the number of degrees of freedom of the 

chi-square variable used in the L&R test is equal to (2 N + 2) when 0 < α < 1, but reduces to 

(N + 2) when 1=α . The case α = 0.98 is borderline. Indeed, as displayed by Figures E1 and 

E2 in Appendix E, for α = 0.98 the modified asset mean returns change dramatically, whereas 

standard deviations remain almost unchanged. L&R report a likelihood-ratio test statistic 

equal to 156.8 (L&R, p. 2472). This number corresponds to the 0.011 fractile of the chi-

square distribution with 200 degrees of freedom, but also to the 0.9998 fractile of the chi-

square distribution with 100 degrees of freedom. This huge difference suggests that the L&R 

test has low power for α = 0.98, which favors the argument of mean variance efficiency. 

On the whole, while the conclusion of the L&R test depends on the trade-off coefficient α, the 

two other tests unequivocally conclude that the market portfolio is never MV efficient. The 

validity of the zero-beta CAPM, relying on the efficiency of the market portfolio, is thus 

strongly called into question. In a nutshell, the fundamental contributions of both Roll (1977) 

and Ross (1977) remain highly relevant for portfolio management.  
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5. Conclusion  

Our new test of portfolio MV efficiency is based upon the vertical distance of a portfolio from 

the efficient frontier. While the evidence is mixed for small samples, our test outperforms the 

previous MV efficiency tests proposed by Basak et al. (2002) and Levy and Roll (2010) for 

large samples since it produces lower size distortions for comparable power. The empirical 

analysis shows that the L&R test is sensitive to the value taken by the nuisance parameter 

determining the relative weight assigned to sample-mean changes against standard-deviation 

changes. Furthermore, both the vertical and horizontal tests are based on intuitive measures in 

the MV plane and are, therefore, easy to visualize, which makes them more appealing than the 

L&R test.  

The ideally balanced distance in the MV plane remains, however, the orthogonal distance. 

Even though a test based on this distance is feasible in theory, deriving its closed-form 

asymptotics could prove challenging. We leave this for further work. Meanwhile, the best 

alternative for practitioners to test portfolio efficiency is probably the dual approach 

combining the vertical and horizontal tests. In the final decision, the weight to be allocated to 

each test could then take into account the curvature of the efficient frontier and may depend 

on the investor’s sensitivity to the risk or return’s dimension of his investment. 

Both vertical and horizontal MV efficiency tests could of course be improved. Implementing 

the jackknife-type estimator of the covariance matrix developed by Basak et al. (2009) could 

offer a promising extension since this estimator produces a more accurate covariance matrix 

than the sample one.  

Lastly, our empirical application to the U.S. equity market highlights that the market portfolio 

is not MV efficient, invalidating the zero-beta CAPM. Consequently, our findings indicate 

that scepticism on the validity of the CAPM seems to survive the recent rehabilitation 

attempts made by Levy and Roll (2010).  
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Appendix A: Proof of Proposition 1 
 
We first derive the asymptotic distribution of the vertical distance, θ̂ , defined in Equation (5) 

in the case where short-selling is forbidden. At the end of this Appendix, we extend the results 

to the case where short-selling is allowed  

Let xbe a k-dimensional vector, and denote )',...,,( 1
)(

kii
i xxxx += . Consider a symmetric 

matrix B  of order k, and ]:...::[ 21 kBBBB = where iB is the thi column of B . Let )(Bvec  be 

the stacked vector of the columns of B:   

 )',,,()( )'()'2(
2

)'1(
1

k
kBBBBvec K=   

Next, let V  be the vector formed by stacking the sample mean of tR , the elements of 

)cov( tR , the sample mean of tr  , and the sample variance of tr : 

 )'^,ˆ,))'ˆ((,'ˆ( 2vvecV βµ Σ=   

Vector V  thus summarizes the first and second moments of the sample returns. Similarly to 

BJS (2002), we express vector V  as a function of the sample non-central first and second 

moments of tR  and tr . The transformed vector, tU , is defined by: 

 )',,',()',,))''((,( '2'
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and its sample mean,U , is: 
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By applying the delta method, when T tends to the infinite, we have:  
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where                                                      '0DDΛ=∆        (A2) 
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iipi IK µµ ; iµ̂  stands 

for the i th element of µ̂ , and ZI  stands for the identity matrix of rank Z. 

 

The asymptotic distribution of vector V is given by (A1). Let us now move to the vertical 

distance, θ̂ , which is a differentiable function of vector V . Consequently, the delta method 

establishes that the asymptotic variance 2φ  of θ̂  is 
VVT ∂

∂∆
∂
∂

∞→
θθ ˆˆ

lim , where derivative
V∂

∂θ̂
 

needs to be computed. With this aim, we express that θ̂ minimizes the following Lagrangian 

function:  
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By differentiation, we have:  
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From the first order condition applied to (A4), we obtain: 
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And consequently: 
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Combining the results in (A1), (A4) and (A6), we obtain the asymptotic variance 2φ of the 

vertical distance θ̂ : 
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(A7) 

When there are no short-selling restrictions, the efficient frontier is modified because the sole 

constraint applied toω is that its components add up to one. Let *θ̂  denote the vertical 

distance in this case. The modified Lagrangian function is:    
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By differentiating both sides of (A7), we get: 

( ) [ ]1:0:²)::²:2::2:2:²(:00:1:0:'
*

2131211121 −+−=
∂
∂

×× ppppvV

l ωωωωωωωωωδω KK  (A9) 

Substituting 
V

l

∂
∂ *

 in (A8) by 
V

l

∂
∂ *

from (A5) gives the asymptotic variance *2φ of the vertical 

distance *θ̂  when there are no short-selling restrictions. Its expression stands as:  

                                                       VVT ∂
∂∆

∂
∂= ∞→

*ˆ*ˆ
lim*2 θθφ                                                  

(A10) 
 
Lastly, as mentioned by BJS, bringing all the variables in the same scale by imposing 

constraint 2ˆˆ' νωω =Σ  would likely improve the test efficiency and reduce the 
corresponding bias. 



 28 

Appendix B: Rejection Frequencies at the 1% and 10% Probability Levels 
 
 
Table B1. Rejection frequencies (in percent) at the 1% and 10% probability levels for 

the efficient portfolios 
 

T BJS Vertical L&R BJS Vertical L&R
60 1.7 0.0 2.2 16.7 2.2 4.7
120 0.9 0.0 0.6 12.3 1.3 3.0
180 0.6 0.0 0.7 12.8 1.3 2.6
240 0.5 0.0 0.4 11.2 1.2 2.1
60 2.2 0.0 1.7 13.6 2.3 4.0
120 1.6 0.0 0.7 14.2 1.5 2.7
180 1.3 0.0 0.5 12.4 1.6 2.3
240 0.9 0.0 0.4 12.1 1.0 1.8
60 2.4 0.0 1.7 17.8 2.3 4.1
120 1.0 0.0 0.6 14.5 1.3 2.9
180 0.8 0.0 0.6 13.7 1.3 2.3
240 0.8 0.0 0.4 12.1 1.2 2.1
60 2.2 0.0 1.4 14.1 2.4 4.1
120 1.5 0.0 0.7 14.3 1.6 2.9
180 1.3 0.0 0.5 12.5 1.4 2.2
240 0.9 0.0 0.0 12.2 1.1 0.0

10%

15%

20%

1% probability error 10% probability error 

25%
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rn

 
Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T denotes the 
sample size. 

 

Table B2. Rejection frequencies (in percent) at the 1% probability level for the 
inefficient portfolios 

 

T BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R
60 78.5 14.7 55.3 86.8 24.4 65.8 92.0 32.4 70.4 92.7 35.7 73.2 95.3 38.8 75.4
120 96.8 44.1 87.6 99.5 65.4 92.6 99.6 71.1 92.8 99.7 75.0 93.2 99.5 76.5 91.4
180 99.7 75.2 97.7 99.9 89.2 99.0 100.0 93.0 99.0 99.9 93.2 98.5 100.0 95.6 98.5
240 99.9 91.1 99.7 100.0 97.9 99.5 100.0 98.5 100.0 100.0 99.0 100.0 100.0 98.7 99.8
60 49.8 3.2 23.8 68.1 9.0 42.4 78.3 18.0 55.8 84.8 17.7 61.2
120 76.1 13.7 51.6 92.2 30.7 77.3 96.2 42.9 86.5 98.4 51.2 89.3
180 91.1 31.9 75.2 98.0 59.2 95.1 99.6 75.2 97.1 99.8 79.2 98.7
240 96.8 47.5 89.0 99.7 79.6 98.5 100.0 90.5 99.3 100.0 96.0 99.9
60 17.1 0.7 3.1 41.9 2.5 16.3 56.4 4.9 31.0
120 32.6 0.7 5.0 64.6 8.3 39.3 81.5 18.6 56.4
180 46.3 3.1 12.1 83.7 19.1 63.6 95.0 40.9 83.4
240 59.6 6.5 19.4 94.3 38.2 80.0 98.6 60.5 94.9
60 13.9 0.1 3.6
120 20.4 0.8 4.9
180 31.7 0.9 9.0
240 44.0 2.0 14.2
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10%

15%

20%

25%

Variance
5% 10% 15% 20% 25%

 
Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T denotes the sample 
size. 
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Table B3. Rejection frequencies (in percent) at the 10% probability level for the 
inefficient portfolios 

 

T BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R
60 94.7 70.6 71.8 96.8 79.5 79.7 98.8 84.5 80.7 98.6 86.8 83.6 98.9 87.9 83.1
120 99.9 95.1 95.6 100.0 98.7 98.1 100.0 98.7 97.9 100.0 99.2 96.9 99.9 98.9 97.6
180 100.0 99.4 99.6 100.0 100.0 99.8 100.0 100.0 99.8 100.0 99.7 99.6 100.0 100.0 99.9
240 100.0 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
60 81.3 45.0 42.9 91.5 60.8 63.0 93.2 69.9 71.3 96.2 76.0 76.4
120 96.5 74.8 72.4 99.6 89.8 90.8 99.8 94.0 94.9 99.8 96.2 97.2
180 99.6 90.4 90.1 100.0 97.7 98.2 100.0 99.6 99.4 100.0 99.5 99.6
240 99.9 97.0 96.4 100.0 99.3 99.6 100.0 99.9 99.9 100.0 100.0 100.0
60 50.3 15.7 8.8 75.4 37.7 34.0 83.3 51.8 51.0
120 71.3 35.1 19.4 91.0 66.0 61.8 96.7 77.5 78.8
180 84.3 48.7 33.5 98.1 84.8 82.8 99.9 93.9 93.5
240 92.0 63.9 46.2 99.8 95.5 94.0 99.8 98.4 98.4
60 43.7 14.0 7.8
120 59.8 22.8 15.4
180 72.3 34.6 25.0
240 82.9 49.2 37.1

10% 15%
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20%

25%

20% 25%
Variance

5%

 
Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T denotes the 
sample size. 
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Appendix C: Robustness Checks  
 

Table C1. Flat efficient frontier. Rejection frequencies (in percent) at the 5% probability 
level for the efficient portfolios 

 

 

T BJS Vertical L&R
60 14.8 0.6 5.9
120 10.0 0.2 2.7
180 8.3 0.1 1.2
240 8.9 0.3 1.2
60 15.5 0.7 3.9
120 10.7 0.5 2.4
180 9.8 0.1 1.5
240 8.6 0.1 0.9
60 16.2 1.0 6.5
120 11.4 0.5 2.4
180 9.7 0.3 2.0
240 9.5 0.6 1.4
60 15.1 0.5 4.3
120 11.3 0.2 2.4
180 9.8 0.3 2.1
240 8.8 0.1 0.6
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25%

10%

15%

20%

 
Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T denotes the 
sample size. 
 

 
Table C2. Flat efficient frontier. Rejection frequencies (in percent) at the 5% probability 
level for the inefficient portfolios 

 

T BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R
60 50.8 10.6 24.2 73.1 19.5 21.3 76.7 28.2 30.2 79.4 32.8 35.4 81.3 33.3 37.9

120 67.7 16.1 20.7 88.3 41.2 30.2 94.1 53.2 43.9 95.2 59.6 51.3 95.1 59.1 53.0
180 81.2 30.4 31.3 95.9 63.5 51.2 98.4 70.8 60.6 99.0 80.1 71.5 99.4 79.3 71.0
240 87.6 41.7 42.6 97.9 76.8 67.1 99.3 83.6 76.5 99.8 89.7 84.4 99.9 91.4 85.2
60 14.5 0.5 3.5 37.5 3.3 15.9 48.7 9.6 15.9 58.5 12.9 15.6

120 11.9 0.3 2.0 44.8 6.9 19.2 67.8 17.9 21.3 77.2 23.9 15.0
180 9.7 0.3 1.6 56.3 10.8 21.8 78.9 28.9 31.2 88.4 41.6 27.4
240 9.5 0.1 0.9 60.5 13.4 25.3 86.5 38.2 39.6 94.8 54.3 41.0

Variance
5% 10% 15% 20% 25%
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15%

 
Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T denotes the 
sample size. 
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Table C3. Steep efficient frontier. Rejection frequencies (in percent) at the 5% 
probability level for the efficient portfolios  

 

T BJS Vertical L&R
60 3.0 0.2 4.2
120 2.1 0.2 3.5
180 2.6 0.3 3.1
240 1.0 0.0 1.9
60 4.1 0.3 5.3
120 3.5 0.3 3.4
180 3.5 0.3 3.3
240 3.6 0.0 3.1
60 3.6 0.1 5.3
120 4.5 0.3 4.1
180 3.6 0.0 4.1
240 2.5 0.3 2.5
60 4.2 0.5 4.1
120 3.4 0.2 3.3
180 3.4 0.4 3.2
240 2.6 0.0 2.2
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20%

 
Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T denotes the 
sample size. 

 

Table C4. Steep efficient frontier. Rejection frequencies (in percent) at the 5% 
probability level for the inefficient portfolios 

 

T BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R BJS Vertical L&R
60 99.7 91.2 98.0 99.6 96.1 98.2 100.0 95.2 98.3 99.9 96.7 97.5 99.6 96.1 98.2

120 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
180 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
240 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
60 85.4 44.6 78.2 97.5 76.8 94.8 99.3 88.0 97.8 99.9 92.1 98.4 99.6 89.5 98.5

120 98.8 81.3 96.7 100.0 99.2 100.0 100.0 99.8 100.0 100.0 99.8 100.0 100.0 99.9 100.0
180 99.7 97.2 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
240 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
60 78.8 37.3 68.8 92.2 61.9 88.2 97.7 74.1 93.9 97.9 80.5 94.7

120 96.2 71.9 93.9 99.9 94.2 99.6 100.0 97.4 99.9 99.9 99.0 99.9
180 99.4 93.0 99.4 100.0 99.7 100.0 100.0 99.9 100.0 100.0 100.0 100.0
240 100.0 98.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
60 57.9 19.2 46.1 81.2 40.6 73.5 92.5 61.6 87.9

120 87.5 53.0 79.9 98.2 83.8 97.3 99.5 94.0 99.6
180 96.2 75.7 94.4 99.9 96.5 99.7 100.0 99.7 99.9
240 99.1 92.8 98.5 100.0 99.5 100.0 100.0 100.0 100.0
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Variance
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Note: BJS: Basak et al. (2002) test; Vertical: vertical test; L&R: Levy and Roll (2010) test. T denotes the 
sample size. 
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Appendix D: Descriptive Statistics for the Considered U.S. stocks 
 
Table D1. Descriptive statistics of the stocks’ monthly returns over the period January 
1988 – December 2010 
 

Company Annualized 
mean return 

(in %) 

Annualized 
volatility (in %) 

Market 
capitalization 
in billion USD 

as of 
December 31, 

2010 
EXXON MOBIL 9.8 16.1 368.7 
APPLE 26.9 47.8 295.9 
MICROSOFT 24.6 34.6 238.8 
GENERAL ELECTRIC 10.3 25.9 194.9 
WAL MART STORES 14.8 23.5 192.1 
CHEVRON 11.1 19.7 183.6 
INTERNATIONAL 
BUS.MCHS. 

11.3 28.6 182.3 

PROCTER & GAMBLE 13.2 20.8 180.1 
AT&T 7.7 23.8 173.6 
JOHNSON & JOHNSON 13.2 20.5 169.9 
JP MORGAN CHASE & CO. 13.9 34.9 165.8 
WELLS FARGO & CO 17.1 29.9 162.7 
ORACLE 34.6 49.0 158.1 
COCA COLA 14.0 22.0 152.7 
PFIZER 11.9 24.4 140.3 
CITIGROUP 12.7 41.6 137.4 
BANK OF AMERICA 12.0 39.4 134.5 
INTEL 22.3 39.3 117.3 
SCHLUMBERGER 15.2 30.1 113.9 
MERCK & CO. 10.1 26.5 111.0 
PEPSICO 13.4 21.3 103.5 
VERIZON 
COMMUNICATIONS 

6.1 23.6 101.1 

CONOCOPHILLIPS 13.1 25.2 100.1 
HEWLETT-PACKARD 15.1 35.3 92.2 
MCDONALDS 14.0 22.4 81.1 
OCCIDENTAL PTL. 12.4 26.3 79.7 
ABBOTT LABORATORIES 11.3 20.0 74.1 
UNITED TECHNOLOGIES 15.2 23.9 72.7 
WALT DISNEY 12.5 26.3 71.0 
3M 9.8 20.4 61.7 
CATERPILLAR 16.0 31.1 59.4 
HOME DEPOT 22.0 29.6 57.5 
FORD MOTOR 12.8 46.3 57.1 
AMGEN 25.4 35.6 51.9 
US BANCORP 15.7 29.2 51.7 
AMERICAN EXPRESS 13.2 33.0 51.7 
ALTRIA GROUP 15.4 26.7 51.4 
BOEING 12.2 28.0 47.9 
CVS CAREMARK 10.8 26.2 47.2 
EMC 33.5 52.1 47.2 
UNION PACIFIC 12.8 23.7 45.7 
COMCAST 'A' 15.2 32.8 45.7 
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Company Annualized 
mean return 

(in %) 

Annualized 
volatility (in %) 

Market 
capitalization 
in billion USD 

as of 
December 31, 

2010 
E I DU PONT DE NEMOURS 8.7 24.9 45.5 
BRISTOL MYERS SQUIBB 6.8 23.2 45.3 
APACHE 21.4 35.3 43.5 
EMERSON ELECTRIC 10.9 22.1 43.0 
TARGET 17.2 28.1 42.6 
HONEYWELL INTL. 13.1 30.2 41.5 
ELI LILLY 9.3 27.1 40.4 
MEDTRONIC 17.7 26.0 39.8 
UNITEDHEALTH GP. 30.6 35.1          39.7    
DOW CHEMICAL 8.6 35.4          39.6    
COLGATE-PALM. 14.5 23.2          38.8    
TEXAS INSTS. 19.0 41.8          38.2    
ANADARKO PETROLEUM 16.6 34.7          37.7    
BANK OF NEW YORK MELLON 13.6 30.9          37.5    
HALLIBURTON 15.0 37.5          37.1    
WALGREEN 16.9 26.3          35.9    
DEERE 15.8 29.5          35.1    
LOWE'S COMPANIES 22.7 35.7          34.6    
DEVON ENERGY 25.5 39.3          33.9    
NIKE 'B' 24.8 33.6          33.2    
SOUTHERN 8.8 17.5          32.1    
PNC FINL.SVS.GP. 8.8 29.1          31.9    
DANAHER 23.1 28.5          30.8    
CORNING 19.7 52.0          30.2    
NEWMONT MINING 10.9 38.9          29.9    
BAXTER INTL. 10.3 24.8          29.5    
FEDEX 14.6 31.0          29.3    
CARNIVAL 17.6 34.6          28.0    
CELGENE 37.1 68.4          27.8    
EXELON 8.6 22.9          27.5    
GENERAL DYNAMICS 13.8 26.1          26.8    
AFLAC 20.1 32.1          26.6    
ILLINOIS TOOL WORKS 14.2 24.5          26.5    
JOHNSON CONTROLS 16.4 29.7          25.9    
HESS 13.6 28.9          25.8    
KIMBERLY-CLARK 9.1 20.2          25.7    
TRAVELERS COS. 9.8 25.9          25.6    
FRANKLIN RESOURCES 22.6 34.2          25.4    
DOMINION RES. 5.9 17.3          25.2    
BAKER HUGHES 12.2 35.7          24.7    
CSX 13.0 26.8          24.2    
DUKE ENERGY 6.1 20.4          23.6    
STATE STREET 17.6 32.8          23.3    
NORFOLK SOUTHERN 11.9 26.8          22.8    
AUTOMATIC DATA PROC. 12.2 21.5          22.8    
GENERAL MILLS 10.1 18.3          22.6    
THERMO FISHER 
SCIENTIFIC 

17.3 30.9          22.0    

CUMMINS 20.4 39.0          21.8    
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Company Annualized 
mean return 

(in %) 

Annualized 
volatility (in %) 

Market 
capitalization 
in billion USD 

as of 
December 31, 

2010 
NEXTERA ENERGY 6.9 18.5          21.6    
STRYKER 23.5 32.6          21.3    
MOTOROLA SOLUTIONS 11.5 36.9          21.3    
PACCAR 18.3 31.8          20.9    
CHARLES SCHWAB 30.7 45.3          20.4    
PREC.CASTPARTS 20.2 34.6          19.9    
AIR PRDS.& CHEMS. 13.0 26.4          19.5    
ARCHER-DANLS.-MIDL. 12.2 27.9          19.2    
BECTON DICKINSON 13.6 24.0          19.1    
NORTHROP GRUMMAN 10.6 30.0          18.9    
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Appendix E: Sample versus modified parameters in the L&R paper 
 

Figure E1. Sample vs. modified expected returns in the L&R paper 
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Figure E2. Sample vs. modified standard deviations in the L&R paper 
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