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Abstract 



1. Introduction

The expectation hypothesis of the term structure of interest rates asserts that the ex-

pected one-period return on bonds is equal to the one-period interest rate plus a risk

premium, which is constant over time. A large number of empirical studies have explored

whether risk premia on treasury bonds are indeed constant. A standard way to test the

expectations hypothesis is to run predictability regressions of excess bond returns on some

predetermined predictors. Empirical investigations have uncovered some evidence of bond

return predictability. Fama and Bliss (1987) and Campbell and Shiller (1991) find that

excess bond returns are predictable by forward spreads or yield spreads. Cochrane and

Piazzesi (2005) find that information contained in the entire term structure of interest

rates can capture more than 30% of the variation of excess bond returns over the period

from January 1964 to December 2003. Recently, empirical studies by Ludvigson and Ng

(2009), Cooper and Priestly (2009), Huang and Shi (2014), and Joslin, Priebsch, and

Singleton (2014) show that macroeconomic variables contain rich information on future

excess bond returns beyond information only in yield curve.

However, most evidence found in the above studies is in-sample. Investors in markets

may be more concerned about whether there exists out-of-sample evidence of bond return

predictability and whether such out-of-sample statistical predictability can translate into

their economic gains. Thornton and Valente (2012) find that information contained in

forward rates can not generate systematic economic value to an investor who has mean-

variance preferences. Sarno, Schneider, and Wagner (2016) find that under affine term

structure model framework the evident statistical predictability of bond risk premia rarely

turns into investors’ economic gain. However, in a recent study, Gargano, Pettenuzzo,

and Timmermann (2017) use non-overlapping excess bond returns and Bayesian Markov

Chain Monte Carlo (MCMC) methods and find that statistically significant out-of-sample

predictability can translate into economic value for a real-time investor.

In this paper, we revisit this seemingly contentious issue. We consider a Bayesian
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investor who faces the same learning problems as confronted by the econometrician.

Except the expectations hypothesis that takes the historical mean as the optimal forecast,

she has access to additional predictive models that may feature stochastic volatility. She

takes parameters, state variables, and predictive models as unknowns and updates her

beliefs using Bayes rule sequentially at each time when new information becomes available.

Our Bayesian investor computes the predictive return distribution at each time based

on what she has learned and maximizes her expected utility by taking into account all

relevant uncertainties. We implement Bayesian learning on predictive models by following

the marginalized resample-move approach proposed by Fulop and Li (2013). One of key

implications from Bayesian learning is that it generates persistent and long-term changes

to the investor’s beliefs. Our treatment here is similar to that of Johannes, Korteweg, and

Polson (2014) who investigate effects of sequential learning on stock return predictability.

We take forward spreads from Fama and Bliss (1987), the forward factor proposed

by Cochrane and Piazzesi (2005), and the macro factor proposed by Ludvigson and Ng

(2009) as three predictors and refer to them as FB, CP, and LN. The predictive models are

built by using any non-empty subsets of these three predictors. Furthermore, we consider

both constant and stochastic volatility cases. Putting together, there are in total 14

individual predictive models to be considered. We also consider four model combination

schemes based on boh statistical and economic evidence.

We construct monthly bond excess returns on US zero-coupon bonds with maturity

2-, 3-, 4-, and 5-year using the updated dataset of Gurkaynak, Sack, and Wright (2007).

Most studies in bond return predictability focus on predictive regressions for annual excess

bond returns at monthly forecasting frequency. Bauer and Hamilton (2017) argue that

the bond returns with overlapping holding-period may induce strong serial correlations

in the error terms and may raise additional econometric problems when predictors are

persistent. Therefore, similar to Gargano, Pettenuzzo, and Timmermann (2017), we

consider one-month holding period and construct non-overlapping monthly excess bond
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returns. Our data range from January, 1962 to December, 2011, in total 600 months.

We first explore statistical evidence of out-of-sample bond return predictability. Based

on out-of-sample R-square, R2
OS, in the sense of Campbell and Thompson (2008), we

find statistically significant out-of-sample predictability and notice that introduction of

stochastic volatility boosts predictive performance of the models to a large extent. We

also find that the models that take LN as a predictor almost alway perform better than

the other models, no matter whether stochastic volatility is present or not. This result

indicates that the macro factor extracted from a large panel of macroeconomic variables

contains rich information on future excess bond returns.

We then investigate whether statistical evidence of bond return predictability even-

tually translates into investor’s economic gains. Our investor is Bayesian. At each time,

she maximizes her expected power utility over the one-period value of a portfolio consist-

ing of a risk-free asset and a treasury bond by accounting for all sources of uncertainty.

Given these portfolios, we compute certainty equivalence return (CER) for each model

to measure its economic performance. Our results based on CER’s are consistent with

those based on R2
OS, indicating that statistical predictability does translate into economic

gains to our Bayesian investor.

The previous literature has predominantly adopted a weight constraint in testing the

economic evidence. The usual lower and upper weight bounds are -1 and 2, respectively,

allowing the possibility of shorting and borrowing. Our initial tests on economic gains

also use these constraints. However, while such bounds seem natural for equity markets,

government bonds are much less risky, resulting for instance in much lower margins in

repo transactions backed by these securities. Hence, sophisticated fixed income investors

may be able to achieve much more aggressive short and especially long positions than

implied by these bounds. Therefore, we redo the asset allocation exercises without setting

any weight constraints. Interestingly, we find much more pronounced economic evidence,

associated with more aggressive long or short positions. We dig a bit deeper and try to
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understand whether the periods when our investment strategy implies extreme weights

have something special about them. In particular, we use two market pressure indices

introduced by He, Kelly, and Manela (2017) and Hu, Pan, and Wang (2013) to test if

there pressure from intermediary sector’s own balance-sheet or lack of arbitrage capital

when the investors require aggressive weights. Results show that indeed this is the case

for large positive weights. Hence exactly when market conditions would suggest extreme

portfolio positions, such positions may not be that easy to implement.

Finally, we turn to investigate model combinations. In general, such methods perform

remarkably well both statistically and economically. All the four schemes proposed gen-

erate positive and statistically significant R2
OS and positive certainty equivalent returns

for our Bayesian investor. Furthermore, we document that a simple CER-based model

combination works quite well in forecasting long-term excess bond returns.

The above results are robust to investors with different risk aversion, to the choice of

different out-of-sample periods, and to the investor’s initial beliefs.

Our work makes two main contributions to the literature. First, we provide a generic

econometric framework that allows real-time Bayesian learning about bond return pre-

dictability. Such a Bayesian learning simultaneously takes into account belief-updating,

parameter uncertainty, and model risk. Thornton and Valente (2012) and Sarno, Schnei-

der, and Wagner (2016) follow classical approaches and therefore ignore parameter and

model uncertainties. Gargano, Pettenuzzo, and Timmermann (2017) employ Bayesian

MCMC methods and do allow for parameter and model uncertainties. However, to in-

vestigate out-of-sample predictability, MCMC needs to be repeatedly run at each time,

leading to a large computational cost. Our Bayesian learning approach is tailor-made

for sequential inference and is naturally parallel, allowing the use of parallel hardware.

Furthermore, in our Bayesian learning method, the only model-dependent requirement is

a filtering mechanism for the model in question that provides at least an unbiased like-

lihood estimate, hence it may be customised to different forecasting models more easily
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compared to MCMC methods.

Second, our results suggest that statistical predictability of excess bond returns can

translate into economic gains for a Bayesian investor who learns parameters, hidden

states, and models over time with respect to information accumulation. In particular, we

find that without any weight constraints the economic gains are much more evident but

there is also more market pressure when investors require extreme long positions. We

suspect that placing weight constraints could be a potential reason why some previous

papers do not find the link between statistical and economic evidence.

The remainder of the paper is organized as follows. Section 2 presents the predictive

models to be considered and introduces Bayesian learning approach. Section 3 discusses

how to statistically and economically evaluate predictive performance of each model. Sec-

tion 4 provides data and main empirical results. Section 5 implements several robustness

checks. Finally, section 6 concludes the paper.

2. Bayesian Learning and Bond Return Predictability

2.1. Predictive Models

In line with the existing literature, we define the log-yield of an n-year bond as

y
(n)
t ≡ − 1

n
p
(n)
t , (1)

where p
(n)
t = lnP

(n)
t , and P

(n)
t is the nominal price of an n-year zero-coupon bond at time

t. A forward rate is defined as

f
(n−m,n)
t ≡ p

(n−m)
t − p

(n)
t , (2)

and the excess return of an n-year bond is computed as the difference between the holding

period return from buying an n-year bond at time t and selling it m-period later and the
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yield on a m-period T-bill rate at time t,

rx
(n)
t+m = p

(n−m)
t+m − p

(n)
t −m · y(m)

t , (3)

where m is the holding period and y
(m)
t is the annualized T-bill rate. In this paper, we

assume m is one-month, and n can be 2, 3, 4, or 5 years.

The standard approach to investigate bond return predictability usually takes a model

of the form

rx
(n)
t+1 = α + βXt + ϵt+1, (4)

where Xt is a set of the pre-determined predictors, ϵt ∼ N(0, σ2
rx) is a mean-zero constant

variance error term, and the coefficients α, β, and σrx are unknown fixed parameters.

Bear in mind that rx
(n)
t+1 represents the excess return after one month, as our forecasting

frequency is monthly.

However, there is considerable evidence that suggests that bond return volatility is

time-varying (Gray, 1996; Bekaert, Hodrick, and Marshall, 1997; Bekaert and Hodrick,

2001). Therefore, except the standard model (4), we also introduce the stochastic volatil-

ity model, which takes the form of

rx
(n)
t+1 = α + βXt + eht+1ϵt+1, (5)

where ϵt ∼ N(0, 1) is a standard normal noise, and ht+1 is the log-volatility at time t+1,

which is assumed to follow

ht+1 = µ+ ϕht + vt+1, (6)

where ht is stationary and mean-reverting when |ϕ| < 1, and vt ∼ N(0, σ2
h). For simplicity,

we assume independence between ϵt and vt.

Empirical studies have found that forward rates or forward spreads have ability to

forecast bond returns. Fama and Bliss (1987) find that the forward-spot spread has
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predictive power for excess bond returns and that its forecasting power increases as the

forecasting horizon becomes long. Cochrane and Piazzesi (2005) show that the whole

term structure of forward rates can capture more than 30% of the variation of excess

bond returns over the period from January 1964 to December 2003. Joslin, Priebsch, and

Singleton (2014) provide evidence that macroeconomic variables contain rich information

on yields. Recently, Ludvigson and Ng (2009) extract macro factors from a large set of

132 macroeconomic variables and show that these factors have predictive power for excess

bond returns.

Therefore, in this paper, we consider three predictors from Fama and Bliss (1987),

Cochrane and Piazzesi (2005), and Ludvigson and Ng (2009) and refer to them as FB,

CP, and LN, respectively. Specifically, FB is the forward spread,

FB
(n,m)
t = f

(n−m,n)
t −m · y(m)

t . (7)

We construct the CP factor following Cochrane and Piazzesi (2005). At each time t,

average excess bond return across maturities is regressed on the one-year bond yield and

the full term structure of forward rates,

rxt+1 = γ0 + γft + et+1, (8)

where rxt+1 =
1
4

∑5
n=2 rx

(n)
t+1 and ft = [f

(1−1/12,1)
t , f

(2−1/12,2)
t , f

(3−1/12,3)
t , f

(4−1/12,4)
t , f

(5−1/12,5)
t ].

Then the CP factor is computed as

CPt = γ̂0 + γ̂ft. (9)

Finally, the LN factor is extracted from a large set of macroeconomic variables using

principal component analysis. It is a linear combination of the estimated principal com-
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ponents, F̂t = [F̂1,t, F̂
3
1,t, F̂3,t, F̂4,t, F̂8,t],

LNt = γ̂0 + γ̂F̂t, (10)

where γ̂0 and γ̂ are estimated in the following regression

rxt+1 = γ0 + γF̂t + et+1. (11)

We can see that both CP and LN are in-sample predictors. So in the out-of-sample

forecasting exercise, CP and LN are reconstructed at each time t using the information

available only up to time t in order to avoid any hindsight problems. We take Xt in Equa-

tions (4) and (5) as any non-empty subset of {FBt, CPt, LNt}. There are in total 7 such

non-empty subsets, that is, {FBt}, {CPt}, {LNt}, {FBt, CPt}, {FBt, LNt}, {CPt, LNt},

and {FBt, CPt, LNt}, suggesting that there are in total 14 models, 7 constant volatil-

ity models and 7 stochastic volatility models. We name each model using the name(s)

of its predictor(s) followed by the abbreviation of constant volatility (CV) or stochastic

volatility (SV). For example, a model that takes CP and LN as its predictors and assumes

stochastic volatility has a name of CPLN-SV. In model (4), when β = 0, no predictor

is used, and the optimal forecast of excess bond returns is simply the historical mean.

This case is in fact the expectations hypothesis, which will be taken as a benchmark for

comparison with the above 14 predictive models.

2.2. Bayesian Learning and Belief Updating

We assume a Bayesian investor who faces the same belief updating problem as the econo-

metrician (Hansen, 2007). She simultaneously learns about parameters, latent states,

and models sequentially over time when new information arrives.

For a given predictive model Mi, there is a set of unknown static parameters, Θ,

and/or a vector of the hidden state, ht, when stochastic volatility is introduced. The ob-
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servations include a time series of excess bond returns and predictors, y1:t = {rx(n)1:t , X
t
1:t}.

To account for the fact that the whole time series of CP and LN are changing at each time

point in the out-of-sample period, we use X t2
1:t1

(where t2 ≥ t1) to denote the predictor

time series from time 1 to t1, with the information set at t2. It is important to note that

for CP and LN in the out-of-sample period, X t1
1:t1

and X t2
1:t1

may be totally different due

to different regression results. In our learning algorithm, we take this into consideration

and update the whole time series of CP and LN at each out-of-sample time point. So at

each time t, Bayesian learning consists of forming the joint posterior distribution of the

static parameters and the hidden state based on information available only up to time t,

p(ht,Θ|y1:t,Mi) = p(ht|Θ, y1:t,Mi)p(Θ|y1:t,Mi), (12)

where p(ht|y1:t,Θ,Mi) solves the state filtering problem, and p(Θ|y1:t,Mi) addresses the

parameter inference issue. Updating of investor’s beliefs therefore corresponds to updat-

ing this posterior distribution.

For the linear predictive model (4), Bayesian learning is straightforward using the

particle-based algorithm proposed by Chopin (2002). However, when stochastic volatility

is introduced, the model becomes non-linear and state-dependent. Therefore, for the

purpose of state filtering and likelihood estimation, we rely on a particle filter whose

detailed algorithm is given in Appendix A. We note that the decomposition (12) suggests

a hierarchical framework for model inference and learning. At each time t, for a given

set of model parameters proposed from some proposal, we can run a particle filter, which

delivers the empirical distribution of the hidden states, p(ht|Θ, y1:t,Mi), and the estimate

of the likelihood, p(rx
(n)
1:t |Θ,Mi), that can be used for parameter learning, p(Θ|y1:t,Mi) ∝

p(y1:t|Θ,Mi)p(Θ|Mi). To achieve this aim, we rely on the marginalized resample-move

approach developed by Fulop and Li (2013). The key point here is that the likelihood

estimate from a particle filter is unbiased (Del Moral 2004). Furthermore, in contrast to

traditional Bayesian methods, our Bayesian learning approach can be easily parallelized,
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making it computationally fast and convenient to use in practice.

The above Bayesian learning approach provides as natural outputs the predictive

distribution of excess bond returns

p(rx
(n)
t+1|y1:t,Mi) =

∫
p(rx

(n)
t+1|ht,Θ, y1:t,Mi)p(ht|Θ, y1:t,Mi)p(Θ|y1:t,Mi)dhtdΘ, (13)

and an estimate of the marginal likelihood,

p(rx
(n)
1:t |Mi) =

t−1∏
s=1

p(rx
(n)
s+1|y1:s,Mi). (14)

Both Equations (13) and (14) account for all uncertainties related to parameters and

state. Equation (14) summarizes model fit over time (model learning) and can be used to

construct a sequential Bayes factor for sequential model comparison. For any two models

Mi and Mj, the Bayes factor at time t has the following recursive formula

BFt ≡
p(rx

(n)
1:t |Mi)

p(rx
(n)
1:t |Mj)

=
p(rx

(n)
t |y1:t−1,Mi)

p(rx
(n)
t |y1:t−1,Mj)

BFt−1, (15)

which is completely out-of-sample, and can be used for sequential comparison of both

nested and non-nested models.

Bayesian learning and belief updating generate persistent and long-term shocks to the

agent beliefs. To see this, define θt = E[θ|y1:t] as the posterior mean of a parameter θ

obtained using information up to time t. The iterated expectation indicates

E[θt+1|y1:t] = E[E[θ|y1:t+1]|y1:t] = E[θ|y1:t] = θt. (16)

Therefore, θt is a martingale, indicating that shocks to the agent beliefs on this param-

eter are not only persistent but also permanent. Thus, in Bayesian learning, the agent

gradually updates her beliefs that the value of a parameter is higher or lower than that

previously thought and/or that a model fits the data better than the other.
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The Bayesian learning process is initialized by an agent’s initial beliefs or the prior

distributions. We move the fixed parameters in one block using a Gaussian mixture pro-

posal. Given that in our marginalized approach the likelihood estimate is a complicated

nonlinear function of the fixed parameters, conjugate priors are not available. For pa-

rameters that have supports of real line, we assume normal distributions for the priors.

However, if a parameter under consideration has a finite support, we take a truncated

normal as its prior, and if a parameter under consideration needs to be positive, we take

a lognormal as its prior. The hyper-parameters of the prior distributions are calibrated

using a training sample, that is, an initial dataset is used to provide information on the

location and scale of the parameters. The training-sample approach is a common way

to generate the objective prior distributions (O’Hagan 1994). We find that the model

parameters are not sensitive to the selection of the priors. Therefore, we give flat priors

to the model parameters. Set one in Table 1 provides details of the selection of functional

forms and hyper-parameters for the priors.

2.3. Model Combinations

Model combination is an important tool to handle model uncertainty. Timmermann

(2006) argues that model combination can be viewed as a diversification strategy that

improves predictive performance in the same manner that asset diversification improves

portfolio performance. Rapach, Strauss, and Zhou (2010) and Dangle and Halling (2012)

show that model combinations can generate better forecasts than the individual models in

forecasting stock returns. In this section, we introduce four model combination schemes

for forecasting bond excess returns.

2.3.1. Sequential Best Model

Sequential best model (SBM) selects the model with the largest marginal likelihood at

each time t, i.e., it gives a weight of one to the model that has the largest marginal
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likelihood and a weight of zero to other models,

pSBM(rx
(n)
t+1|y1:t) = max

{
p(rx

(n)
t+1|y1:t,Mi)

}N

i=1
, (17)

where N is the number of models considered. The best model may change over time,

suggesting that a different model may be used for forecasting at each time.

2.3.2. Equal-weighted Model Average

Equal-weighted model average (EMA) assumes equal weight on each model, that is,

pEMA(rx
(n)
t+1|y1:t) =

N∑
i=1

wi,t × p(rx
(n)
t+1|y1:t,Mi), (18)

where wi,t = 1/N for all i and all t. One advantage of this simple scheme is that the

combining weights do not need to be estimated.

2.3.3. Bayesian Model Average

It could be beneficial to determine combining weights according to model performance.

Bayesian model averaging (BMA) provides a coherent mechanism for this purpose (Hoet-

ing et al., 1999). It is a model combination approach based on the marginal likelihood of

each model,

pBMA(rx
(n)
t+1|y1:t) =

N∑
i=1

wi,t × p(rx
(n)
t+1|y1:t,Mi), (19)

where wi,t = p(Mi|y1:t), and p(Mi|y1:t) is the posterior probability of model i,

p(Mi|y1:t) =
p(y1:t|Mi)p(Mi)∑N
j=1 p(y1:t|Mj)p(Mj)

, (20)

in which p(y1:t|Mi) denotes the marginal likelihood of model i, and p(Mi) is the prior

probability of model i. In implementation, we assume equal prior probability for each

model.
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2.3.4. CER-based Model Average

The above model combination schemes basically use statistical evidence to construct

combining weights, wi,t. However, investors are more concerned about whether the sta-

tistical evidence of predictability could translate into real economic gains. Therefore, it

is tempting to construct combining weights according to models’ economic performance.

We will see in the next section that our investor is Bayesian and tries to maximize her ex-

pected utility using the predictive distribution of excess bond returns. Models’ economic

performance is then evaluated using the certainty equivalence returns (CER). Therefore,

we propose a simple utility-based model average scheme (UMA) that constructs combing

weights using CER’s at each time. Specifically,

pUMA(rx
(n)
t+1|y1:t) =

N∑
i=1

wi,t × p(rx
(n)
t+1|y1:t,Mj), (21)

where wi,t = p(Mi|y1:t) and is given by

p(Mi|y1:t) =
CERi,t∑N
j=1CERj,t

, (22)

in which CERi,t is the certainty equivalent return computed using Equation (32) for

the period from the beginning date of out-of-sample to the current time t. In empirical

implementation, we find that this simple scheme works quite well.

3. Assessing Out-of-Sample Performance

3.1. Statistical Evaluation

Given the predictive distribution of excess bond returns, we can compute the posterior

mean to obtain the point forecast at each time t for each model or model combination.

Denote this point forecast as r̂x
(n)
t+1 and define the sum of squared forecast errors (SSE)
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from initial time of the out-of-sample period to time t as

ŜSE(t) =
t∑

s=1

(rx
(n)
s+1 − r̂x

(n)
s+1)

2. (23)

Furthermore, the expectations hypothesis states that the optimal forecast of excess bond

returns is the historical mean, that is, rx
(n)
t+1 =

1
t

∑t
j=1 rx

(n)
t . Then the SSE for expectation

hypothesis model is given by

SSE(t) =
t∑

s=1

(rx
(n)
s+1 − rx

(n)
s+1)

2. (24)

A natural measure of the model predictive performance is the out-of-sample R-square,

R2
OS, proposed by Campbell and Thompson (2008). The R2

OS statistic is computed as

R2
OS = 1− ŜSE(T )

SSE(T )
, (25)

where T denotes the end of the out-of-sample period. The R2
OS is analogous to the

standard in-sample R2 and measures the proportional reduction in prediction errors of

the forecast from the predictive model relative to the historical mean. It is clear that

when R2
OS is positive, the predictive model statistically outperforms the expectations

hypothesis. We can further test whether this outperformance is statistically significant

using the statistic developed by Clark and West (2007). The Clark-West statistic adjusts

the well-known Diebold and Mariano (1995) and West (1996) statistic and generates

asymptotically valid inference when comparing nested model forecasts. Clark and West

(2007) show that this statistic performs very well in terms of power and size properties.

Moreover, to trace the predictive performance of each model over time, Goyal and

Welch (2008) recommend to use the cumulative difference of squared forecast errors be-

tween the expectation hypothesis and a predictive model,

cumSSE(t) = SSE(t)− ŜSE(t). (26)
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A positive and increasing cumSSE curve indicates that the predictive model always

outperforms the historical mean.

3.2. Economic Value and Certainty Equivalent Returns

In evaluating the economic predictability, we consider a real-time investor who construct

a portfolio consisting of a risk-free zero-coupon bond and a risky bond with maturity n

and maximizes her expected utility over the next period portfolio value, Wt+1,

max
ω

E[U(Wt+1)|y1:t,Mi], (27)

where U(·) represents the investor’s utility function and the portfolio value evolves ac-

cording to

Wt+1 = (1− ω
(n)
t ) exp(rft ) + ω

(n)
t exp(rft + rx

(n)
t+1), (28)

where rft is the risk-free rate, and ω
(n)
t is the portfolio weight on the risky bond with

maturity n.

We assume that our investor has a power utility with the relative risk aversion con-

trolled by γ,

U(Wt+1) ≡ U(ω
(n)
t , rx

(n)
t+1) =

W 1−γ
t+1

1− γ
. (29)

The expected utility can be computed for each model as follows,

E[U(Wt+1)|y1:t,Mi] =

∫
U(ω

(n)
t , rx

(n)
t+1)p(rx

(n)
t+1|y1:t,Mi)drx

(n)
t+1, (30)

where the predictive distribution of excess bond returns, p(rx
(n)
t+1|y1:t,Mi), is given by

Equation (13).

Our investor is Bayesian. When computing expected utility in Equaiton (30), she takes

into account all relevant uncertainties. At each time, the investor choose the portfolio

weight to maximize her expected utility. In our Bayesian learning, we have M particles

16



for each variable at each time. Then the optimal weight can be obtained by

ŵ
(n)
t = argmax

1

M

M∑
j=1


[
(1− ω

(n)
t ) exp(rft ) + ω

(n)
t exp(rft + rx

(n),j
t+1 )

]1−γ

1− γ

 . (31)

The above portfolio weight in Equation (31) is then used to compute the investor’s

realized utility at each time t. We denote the realized utility from a predictive model

as Ût and denote the realized utility from the EH benchmark as Ūt. Then the certainty

equivalence return (CER) for each predictive model is defined as a value that equates the

average realized utility from the model to that from the expectations hypothesis over the

forecasting period. Following Pettenuzzo, Timmermann, and Valkanov (2014), we have

CER =

(∑T
t=1 Ût∑T
t=1 Ūt

) 1
1−γ

− 1. (32)

In addition, similar to cumSSE, we construct the cumulative sum of CER over time,

cumCER(t) =
t∑

s=1

log(1 + CERs). (33)

where CERt captures the real-time CER of a model and is given by CERt =
(
Ût/Ūt

) 1
1−γ−

1. A positive and increasing cumCER curve suggests that the model always economically

performs better than the historical mean.

4. Empirical Results

4.1. Data

We construct monthly yields on US zero-coupon bonds with maturity 2-, 3-, 4-, and 5-year

using the updated dataset of Gurkaynak, Sack, and Wright (2007).1 Most studies in bond

return predictability focus on predictive regressions for annual excess bond returns in

1 The data is from: https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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monthly forecasting frequency, that is,m is one year in Equation (3). Bauer and Hamilton

(2017) argue that the overlapping bond returns induce strong serial correlations in the

error terms in predictive regressions, and may raise additional econometric problems when

predictors are persistent. Therefore, similar to Gargano, Pettenuzzo, and Timmermann

(2017), we consider one-month holding period and construct non-overlapping monthly

excess bond returns. This implies that m is equal to one month in Equations (2) and (3).

Our sample spans from January, 1962 to December, 2011. In total, there are 600

months. Table 2 presents summary statistics for full-sample excess bond returns and pre-

dictors. Panel A shows that both mean and standard deviation of the annualized monthly

excess returns increase with respect to maturity. For example, the mean excess return is

about 1.41% with a standard deviation of 2.97% for the 2-year bond, whereas it increases

to 2.19% with a standard deviation of 6.23% for the 5-year bond. Furthermore, we notice

that both skewness and kurtosis decreases with respect to maturity. For example, the

skewness and kurtosis for the 2-year excess bond returns are 0.50 and 14.9, respectively,

whereas they are only 0.01 and 6.58, respectively, for the 5-year returns. This suggests

that the short-maturity excess bond returns are more right-skewed and more leptokurtic

than the long-maturity ones. Both short- and long-maturity excess bond returns are

very weakly autocorrelated, as the first-order autocorrelations range from 0.12 (5-year)

to 0.17 (2-year). Figure 1 plots the time series of excess returns for 2-, 3-, 4-, and 5-year

bonds. We can see that all excess returns are quite volatile during the period of 1980-

1983, whereas during the period of the recent global financial crisis, return volatility is

by no means comparable.

Panel B presents summary statistics for the three predictors: FB, CP, and LN. We

find that (1) the FB factors are left-skewed and their kurtosis’s are close to 3, whereas

both CP and LN are right-skewed and their kurtosis’s are larger than 3, 5.3 and 5.6,

respectively; (2) the FB factors are much more persistent than both CP and LN, and

LN is the least persistent with the first-order autocorrelation being about 0.43. Panel C
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reports correlations between predictors. The FB factors are highly correlated with each

other, with the correlation ranging from 0.88 between 2- and 5-year FB’s to 0.99 between

4- and 5-year FB’s. The CP factor has relatively small correlations with the FB factors,

ranging from 0.46 with 2-year FB to 0.50 with 5-year FB. LN is almost not correlated

with FB and CP. Its correlation with FB varies from -0.09 to 0.02, and its correlation

with CP is only about 0.2.

It needs to emphasize that when we implement Bayesian learning, both CP and LN

are reconstructed at each time t using the information available only up to time t in order

to avoid any hindsight problems.

4.2. Parameter Learning and Sequential Model Comparison

Different from batch estimation methods, our Bayesian learning approach provides us

with the whole picture of how parameter posteriors evolve over time with respect to ac-

cumulation of information for each. In this section, we focuses on a stochastic volatility

model and a constant volatility model, both of which take the LN factor as their only

predictor (LN-SV and LN-CV). Figure 2 presents the sequential learning of the fixed pa-

rameters for LN-SV, and Figure 3 presents the sequential learning of the fixed parameters

for LN-CV, on 3-year excess bond returns. For each parameter, the posterior mean (solid

line) and the 5th and 95th percentile credible interval (dashed lines) are reported.

There are a number of notable features from these two figures. First, the investor’s

beliefs on parameters are quite uncertain in the beginning as the 5th and 95th percentile

credible intervals are very large for all parameters. Then, as information accumulates,

the credible intervals become narrower over time, and parameter uncertainty diminishes.

Second, the speed of learning is different across parameters. For the expected return

parameters, α and β, learning is faster for α than for β in both LN-SV and LN-CV. It

takes only several years for α to reach small credible intervals, whereas it takes more than

10 years for β to have relatively small credible intervals. This evidence is particularly
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striking in LN-SV. For the parameters governing volatility, µ, ϕ, and σh, the learning

speed for σh is much slower than the others. Its posterior mean is slowly going up in the

beginning, and then is slowly going down after around 1970. Moreover, it takes very long

time for its 5th and 95th percentile credible interval to get sufficiently narrowed.

Third, the last panel of Figure 2 presents the sequential estimates of volatility. Con-

sistent with the investor’s beliefs on parameters, her belief on volatility is quite uncertain

in the beginning, whereas after a short period, she becomes quite certain on volatility

dynamics, mirrored by very narrow 5th and 95th percentile credible intervals.

Fourth, the learning process of σrx in LN-CV reveals evidence of misspecification of

the constant volatility model, as its learned value slowly drifts up and reaches its highest

value around 1982 when bond returns are very volatile, and then it keeps going down up

to the end of the sample.

Moreover, thanks to its recursive nature, our Bayesian learning approach produces the

sequential marginal likelihood at each time t for each model i as shown in Equation (14).

We can then construct the sequential Bayes factors and use them for real-time model

analysis and comparison. The last panel of Figure 3 presents the sequential log Bayes

factors between LN-SV and LN-CV. It gives us a richer picture of model performance over

time. First, no matter which maturity is considered, when market information is scarce

and the variation of excess bond returns is very small (see Figure 1) in the beginning of the

sample, LN-SV performs nearly the same as LN-CV. Second, as the market information

accumulates over time, the data begin to strongly favour the stochastic volatility model.

Third, most of the up-moves in Bayes factors happen during market turmoils. This

phenomenon is particularly striking around 1982 when all four time series of excess bond

returns have high volatility and indicates that the investors mainly update their beliefs on

model specifications during market turmoils. Fourth, before 1982, the stochastic volatility

model performs particularly better than the constant volatility model on the 5-year excess

bond returns, whereas after 1982, its performance becomes much stronger on the 2-year
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excess bond returns.

4.3. Predictive Performance of Individual Models

We use the second half of the sample as the out-of-sample evaluation period, that is, the

out-of-sample period is from January 1987 to December 2011, in total, 300 months.

4.3.1. Statistical Evidence

At each time t, our Bayesian learning approach provides us with the full predictive density

for each model, p(rx
(n)
t+1|y1:t,Mi), based on which we take its posterior mean as the point

forecast to construct R2
OS and cumSSE for evaluating its predictive performance. Table

3 presents R2
OS’s for all the 14 models considered. Panel A is for the constant volatility

models, and Panel B for the stochastic volatility models. We have the following notable

findings. First, in the 2-year excess bond returns, there is significant statistical evidence

of predictability in LN-CV and FBLN-CV. For example, LN-CV generates an R2
OS of

2.42%, and FBLN-CV generates an R2
OS of 1.07%, Both are highly statistically significant.

Second, when moving to 3-, 4-, and 5-year excess bond returns, we find that all constant

volatility models that take LN as a predictor generate statistically significantly positive

R2
OS, and in general, predictability of these models improves with respect to maturity. For

example, FBCPLN-CV has an R2
OS of 0.35% in the 3-year excess bond returns, whereas

its R2
OS increases to 1.52% in the 4-year excess bond returns and further increases to

1.93% in the 5-year excess bond returns.

Third, when stochastic volatility is introduced, the predictability of most of the models

dramatically improves, especially for those models that take LN as a predictor. For

example, in 3-year excess bond returns, R2
OS is about 2.64% in FBLN-CV, whereas it

becomes 4.58% in FBLN-SV. This suggests that stochastic volatility is an important

feature of bond return dynamics. Fourth, among constant volatility models, LN-CV

performs the best no matter which maturity is concerned, and among stochastic volatility
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models, LN-SV outperforms the other models in 2- and 3-year excess bond returns and

FBLN-SV stands out in 4- and 5-year excess bond returns. This result suggests that

the macro factor extracted from a large panel of macroeconomic variables contains rich

information on the yield curve.

We can also check how each model performs over time in forecasting excess bond

returns by taking look at cumSSE recommended by Goyal and Welch (2008). Figure 4

presents cumSSE’s for four models: CP-CV, CP-SV, LN-CV, and LN-SV. According to

R2
OS’s in Table 3, the models that take CP as the predictor performs almost the worst,

whereas the models that take LN as the predictor performs almost the best. We see from

Figure 4 that cumSSE’s for LN-CV and LN-SV are always positive and increasing over

time no matter which maturity is concerned, whereas cumSSE’s for CP-CV and CP-SV

are almost negative for all the four maturities. We also see that LN-CV performs better

than LN-SV for predicting 2- and 3-year excess bond returns over time before the recent

financial crisis in 2008, whereas LN-CV outperforms LN-SV for predicting 4- and 5-year

excess bond returns almost all over time, even after the 2008 financial crisis.

4.3.2. Economic Evidence

The statistical evidence of predictability does not necessarily translate into economic gains

for investors. Our investor is Bayesian, who takes into account all relevant uncertainty

when maximizing her expected utility in Equation (27). In empirical implementation, we

restrict the portfolio weight, ω
(n)
t , between -1 and 2 as in Thornton and Valente (2012) and

Sarno, Schneider, and Wagner (2016) to prevent extreme investments (Goyal and Welch,

2008; Ferreira and Santa-Clara, 2011). In fact, the above restrictions on portfolio weight

allow the investor to take full short sales. We assume that the coefficient of investor’s

relative risk aversion, γ, is equal to 5, and compute the corresponding certainty equivalent

return (CER) for each model using formula (32). To test if the annualized CER values

are statistically greater than zero, we use a Diebold-Mariano test similar to that used in
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Gargano, Pettenuzzo, and Timmermann (2017)2

Table 3 presents the annualized CER values for all the 14 models considered. CER’s

deliver almost the same implications as R2
OS’s do. We do find economic gains from

bond return predictability. No matter whether constant volatility models or stochastic

volatility models are considered, the economic gains increase with respect to maturities.

In general, introduction of stochastic volatility improves economic gains to a large extent.

However, we find that among all models, LN-CV generates the largest CER’s in 2-, 4-,

and 5-year excess bond returns, which are about 0.63%, 2.57%, and 2.83%, respectively,

whereas LN-SV produces the largest economic gain in 3-year excess bond returns, which

is about 1.91%.

Figure 5 presents the cumulative sum of CER’s over time for the four models: CP-CV,

CP-SV, LN-CV, and LN-SV. We see that LN-CV and LN-SV perform much better than

CP-CV and CP-SV over time. The cumCER’s of LN-CV and LN-SV have increasing

tendency over time, though this tendency in 2-year excess bond returns is not as strong

as that in the other maturities. However, the cumCER of CP-CV is alway negative and

almost decreasing over time in all four time series of excess bond returns. In spite of

evidence that the cumCER of CP-SV slightly increases over time, it is too weak.

4.4. Unbounded Weights and Economic Value

The above economic evidence is examined by limiting the weight on risky bond between

-1 and 2. However, investors in fixed income markets may be able to borrow or short

with more extreme positions, facilitated by Repo agreements for instance. In light of this,

we allow the investor to take her investment decision without any weight bounds. In the

out-of-sample period from 1987 to 2012, we still assume a risk aversion of 5 and report

the new CER values in Table 4.

For risky bonds with maturities of 2, 3, 4, and 5 years, the maximum weights are

2We run the regression, Ui,t+1 − UEH,t+1 = α + ϵt+1, where Ui,t and UEH,t are the realized utilities
at time t+ 1 for model i and EH, and test if α equals zero.
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about 44, 29, 31, and 16, respectively; the minimum weights are about -23, -13, -9 and

-6, respectively; the average weights are about 4.91, 2.74, 1.96 and 1.54, respectively,

decreasing with maturity; and the associated average annualized CERs are about 5.37%,

4.02%, 3.22% and 2.49%, respectively. If we compare Table 4 with Table 3, almost all

CER values increase dramatically. Some of the high CER’s are not significant because

the associated realized utilities have high standard deviations. Without imposing any

weight constraints, the economic evidence is much more pronounced, especially for the

short-maturity risky bonds. The investment on the 2-year bond is now the most profitable

across all maturities. We recall that bounding the weights is a common practice in almost

all previous papers, so we suspect that this could be one reason why some studies do not

identify the link between statistical evidence and economic value.

This seems a new result in the literature on fixed income predictability and seems to

contrast with the general finding on equities where constraints on the portfolio weights

tend to improve out-of-sample performance (see, for example, Pettenuzzo, Timmermann,

and Valkanov, 2014). The reason may be that government bonds are much less risky

compared to equity and even small fluctuations in the conditional expected returns sug-

gest wildly varying portfolio weights. Of course, such highly levered positions may be

sensitive to the funding liquidity conditions in the market, i.e., when the investor would

like to take up an extreme position, finding financing may get harder.

One reason could relate to financial intermediaries, who play crucial roles in many

asset markets. The intermediary sector’s net worth (or equivalently, its equity capital

ratio) is a key determinant of its marginal value of wealth and is an important indicator

for any markets, as documented in He, Kelly, and Manela (2017, HKM henceforth).

Borrowing their analogy, we argue that when the investment decision is extreme, primary

dealers are unwilling to facilitate the trade because they face much more pressure from

their own balance sheet. We select the three best performing models from Table 3 and

Table 4 and use quantile regressions to see the potential relations between market pressure
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and portfolio weights at different weight quantiles. We regress the unbounded portfolio

weights of long-term bonds on the market pressure index 1/HKM (the leverage in the

intermediary balance-sheet) from 1987 to 2012.3 Results are reported in Table 5. We find

that all coefficients are significant at 1% level. Coefficients generally increase from low

quantile to high quantile. The results on the high quantiles (extreme long positions) are

in line with our conjecture. When investors seek high leveraged positions, primary dealers

are under more pressure from their own balance sheet and thus they may be reluctant to

provide more liquidity. However, the same mechanics do not seem to show for extreme

short positions (low quantiles of weight distributions), where changes in funding liquidity

are only weakly related to the weights.

Another reason could be the shortage of arbitrage capital, as argued by Hu, Pan, and

Wang (2013, HPW henceforth). They state that when there is no sufficient arbitrage

forces in the market, assets’ prices could deviate significantly away from the fundamental

values. Thus, price deviations can be seen as a proxy of market illiquidity. When liquidity

dries up, it becomes difficult to implement extreme investment actions. Therefore, we

use the illiquidity measure from HPW and perform a similar quantile regression as for

HKM measure. We regress the unbounded portfolio weights for risky bonds on the HPW

measure.4 Results are reported in Table 6. Apart from a few exceptions in stochastic

volatility models, results in the high quantiles show that when investors require extreme

long positions from the market, there is a tightening of liquidity due to the lack of

arbitrage capital.

4.5. Model Combinations and Predictive Performance

We now move on to take a look at statistical evidence and economic gains of bond return

predictability in model combinations. From here on, we still bound the weight at -1 and

2 in asset allocation. Table 7 presents both R2
OS’s and CER’s resulting from the four

3The data is from Asaf Manela’s website: http://apps.olin.wustl.edu/faculty/manela/data.html
4The data is from Jun Pan’s website: http://www.mit.edu/∼junpan/
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model combination schemes introduced previously. We have the following main findings.

First, all the four combination schemes generate highly statistically significant R2
OS’s and

positive CER’s, no matter which maturity is concerned. Statistically significant R2
OS and

positive CER’s indicate that there exists evidence of bond return predictability which also

has economic value. Second, having compared these model combination schemes, we find

that in 2-year excess bond returns, SBM performs the best according to R2
OS, whereas

BMA performs the best according to CER. However, in 3-, 4-, and 5-year excess bond

returns, UMA outperforms the other three schemes according to both R2
OS and CER. For

example, UMA generates an R2
OS of 4.20% and a CER of 1.50% in 3-year excess bond

returns, an R2
OS of 4.44% and a CER of 2.32% in 4-year excess bond returns, and an R2

OS

of 4.60% and a CER of 2.87% in 5-year excess bond returns.

Figure 6 presents the cumulative sum of squared errors, and Figure 7 presents the

cumulative sum of CER’s, for these four model combination schemes. These two figures

give us a full picture how these four combinations perform over time. The cumSSE’s for

both SBM and UMA are always positive and have stronger increasing tendency than the

other two. Similar pattern can also be found in Figure 7.

5. Robustness Checks

5.1. Risk Aversion and Predictability

We assume in our main analysis in Section 4 that the coefficient of investor’s relative

risk aversion is equal to 5. To see how sensitive our results are to this coefficient, we

also consider another two scenarios: lower risk aversion, γ = 3, and higher risk aversion,

γ = 10. In this section, we constrain all investment weights between -1 and 2.

Table 8 presents CER’s resulted from using these two parameters of risk aversion. In

general, we see that when the investor’s risk aversion becomes lower, the economic gains

become smaller, whereas when risk aversion becomes higher, the economic gains become

larger. For example, when γ = 3, the CER generated from LN-SV is reduced from 0.47%
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to 0.36; and when γ = 10, the CER generated by the same model is much higher, about

1.49%. Also, as we lower the value of risk aversion, CER decreases on average. This is

mainly due to the fact that with lower γ, the weights on the risky asset reach more often

the upper bound, for both the EH benchmark and other predictive models, thus making

it more difficult to differentiate between these models.

However, our main results remain unchanged. First, no matter whether γ = 3 or

γ = 10, the models that take LN as a predictor always perform much better. For

example, among constant volatility models, LN-CV generates the highest CER’s in most

cases except that FBLN-CV generates the highest CER when γ = 10 in 5-year excess

bond returns; and among stochastic volatility models, the model with LN as the predictor

again performs the best in most cases. Second, when stochastic volatility is introduced,

the economic gains generally become much stronger. Third, model combinations improve

economic gains in general, and among the four combination schemes, UMA performs the

best in most cases, and SBM is runner-up.

5.2. Different Out-of-Sample Periods

In Section 4, we take the second half of the sample as the out-of-sample period. In this

section, we explore whether our results are sensitive to the choice of out-of-sample periods.

There is substantial evidence that the Federal Reserve changes its policy rule during the

early 1980s. We therefore choose an out-of-sample period that starts in January 1982 and

ends in December 2011. Gargano, Pettenuzzo, and Timmermann (2017) set the out-of-

sample period ranging from January 1990 to December 2011. We then take this period

as another out-of-sample period for robustness check.

Table 9 presents R2
OS’s and CER’s resulted from all the models and model combina-

tions for the out-of-sample period ranging from January 1982 to December 2011. We find

that in general with comparison to results in Table 3, the overall predictive performance

of the individual models and model combinations improve a lot in this period accord-

27



ing to both R2
OS and CER. For example, in 2-year excess bond returns, the FBLN-CV

model generates an R2
OS of 5.96% and a CER of 0.73%, whereas these two values are

only 1.07% and 0.13%, respectively, in Table 3. However, our main results still hold.

The models with LN as a predictor perform better than other models; introduction of

stochastic volatility dramatically improves predictive performance of the models; and all

model combinations generate positive and highly significant R2
OS’s, which finally translate

into positive economic gains.

Table 10 presents statistical and economic evidence of predictabiliy resulted from all

the models and model combinations for the out-of-sample period ranging from January

1990 to December 2011. The results are very similar to what we have see in Table 3

and Table 9. We therefore conclude that our main results are robust to the choice to

out-of-sample period.

5.3. Sensitivity to Priors

Our Bayesian learning is initialized by the investor’s priors on model parameters. We

then test whether our results are robust to alternative priors. We use the second set of

priors Table 1, which assumes a normal distribution for a parameter that has support

of real line, and assumes a truncated normal distribution for a parameter that has finite

support. The hyper-parameters are chosen such that the priors are not informative. We

assume that the coefficient of investor’s relative risk aversion is equal to 5, and take the

second half of the sample as the out-of-sample period.

We obtain exactly the same results as those in Table 3 and Table 7. Therefore, we

conclude that our results are not sensitive to the choice of priors at all.

6. Concluding Remarks

The paper finds statistically and economically significant evidence of out-of-sample bond

return predictability for a Bayesian investor who learns about parameters, hidden states,

28



and models at each time when new information becomes available. We compare the

performance of the expectation hypothesis model and predictive models. We take forward

spreads of Fama and Bliss (1987), the forward factor of Cochrane and Piazzesi (2005),

and the macro factor of Ludvigson and Ng (2009) as predictors and build in total 14

individual models and 4 model combination schemes.

Most studies in bond return predictability focus on predictive regressions for annual

excess bond returns in monthly data. Such overlapping returns induce strong serial

correlations in the error terms and may raise additional econometric problems when

predictors are persistent (Bauer and Hamilton, 2017). Therefore, similar to Gargano,

Pettenuzzo, and Timmermann (2017), we consider one-month holding period and con-

struct non-overlapping monthly excess bond returns. Our data range from January, 1962

to December, 2011, in total 600 months. Both out-of-sample R2 and certainty equivalent

returns suggest that predictability improves with respect to bond maturities and that

introducing stochastic volatility in a model can enhance its predictive performance to

a large extent. Interestingly, economic evidence is much more pronounced when we do

not impose any weight constraints. Therefore, bounding investment weights may be a

potential reason why some previous papers do not identify significant economic evidence.

We use quantile regressions to show that the pressure from intermediary sector’s balance-

sheet and shortage of arbitrage capital could be the forces that may constrain investors

in implementing such positions. Furthermore, we find that the factor extracted from a

large panel of macroeconomic variables contains rich information on future excess bond

returns. We also document that a simple utility-based combination scheme works well in

forecasting long-term bond returns.
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Appendix

A. Particle Filter Algorithm

Our state-space model takes the form:

rxt+1 = α + βXt + exp(ht+1)ϵrx,t+1, (34)

ht+1 = µ+ ϕht + σhϵh,t+1, (35)

where rxt and Xt are observations of excess returns and predictors. The first equation is

the observation equation and second is the state transition equation.

Denote the parameter set θ = {α, β, µ, ϕ, σh}. We employ a bootstrap particle filter

as follows:

Step 1: We initialize the filter and set state particles to be: h(i) = µ/(1 − ϕ), i =

1, ...,M and give each particle a weight 1/M. Note that there is a lag between the excess

return and the predictor.

For time t=2,...,T:

Step 2: We run the particle filter on the new observation. Run one step forward

to sample new states using the transition equation to get ψ(h
(i)
t |h(i)t−1, θ). Compute the

particle weight by: w
(i)
t ∼ Normal(rxt − α− βXt−1, exp(h

(i)
t )). Normalize the weight by

π
(i)
t = w

(i)
t /
∑M

k=1w
k
t .

Step 3: Stratified resample step: first draw i.i.d. uniform random numbers U
(i)
t , i =

1, ...,M , then draw new particle indices by inverting the cumulative distribution function

(CDF) of the multinomial characterized by π
(i)
t at the stratified uniforms

i+U
(i)
t

M
. Update

and draw state particles population according to the new indices and the new sample is

equally weighted now. The marginal likelihood can be computed as: p(rxt|rx1:t, X1:t, θ) =

1
M

∑M
k=1 p(rxt|rx1:t−1, X1:t, h

k
t ).
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Table 1: The Prior Distributions

Set One Set Two

α N(0, 10) N(0, 10)

β N(0, 10) N(0, 10)

σrx log(σrx) ∼ N(-2, 5) Truncated Normal: N(0, 10), σrx > 0

µ N(0, 5) N(0, 5)

ϕ Truncated Normal: N(0, 5), ϕ ∈(-1, 1) Truncated Normal: N(0, 5), ϕ ∈(-1, 1)
σh log(σh) ∼ N(-2, 5) Truncated Normal: N(0, 15), σh > 0

The table shows two sets of prior distributions we consider. The linear model is given in equation (4).

Parameters for linear models are: α, β, σrx The SV model is given in equation (5) and (6). Parameters

for SV models are: α, β, µ, ϕ, σh.
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Table 2: Summary Statistics

Panel A: Execess Bond Returns

2-Year 3-Year 4-Year 5-Year

Mean 1.415 1.732 1.987 2.194

St.dev 2.971 4.156 5.217 6.225

Skew 0.500 0.208 0.057 0.015

Kurt 14.86 10.65 7.900 6.580

AC(1) 0.169 0.153 0.138 0.124

Panel B: Predictors

FB

2-Year 3-Year 4-Year 5-Year CP LN

Mean 0.108 0.129 0.145 0.158 0.153 0.153

St.dev 0.100 0.116 0.129 0.138 0.213 0.308

Skew -0.072 -0.238 -0.223 -0.143 0.785 0.841

Kurt 3.756 3.378 3.041 2.755 5.288 5.613

AC(1) 0.878 0.899 0.913 0.923 0.673 0.428

Panel C: Correlations

FB2 FB3 FB4 FB5 CP LN

FB2 1.000 0.973 0.926 0.879 0.460 -0.093

FB3 1.000 0.987 0.961 0.472 -0.055

FB4 1.000 0.993 0.490 -0.016

FB5 1.000 0.500 0.017

CP 1.000 0.187

LN 1.000

This table presents the summary statistics of bond excess returns and full-sample predictors. Panel A

shows the mean, standard deviation, skewness, kurtosis and first-order autocorrelation of annualized

monthly excess returns (in percentage). Panel B shows the mean, standard deviation, skewness, kurtosis

and first-order autocorrelation of predictors. Panel C shows the correlation matrix of predictors. Full-

sample data is from Jan, 1962 to Dec, 2011.
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Table 3: Out-of-Sample Predictability

Panel A: Constant Volatility Models

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

FB 0.02 -0.95 1.14 -0.36 1.51** 0.28 1.66** 0.54

CP -4.62 -1.06 -2.53 -0.96 -1.27 -0.90 -0.64 -0.79

LN 2.42*** 0.63 3.73*** 1.58** 4.97*** 2.57*** 4.79*** 2.83***

FBCP -4.25 -0.17 -2.39 -0.81 -0.56 -0.09 -0.17* 0.07

FBLN 1.07*** 0.13 2.64*** 0.86* 3.15*** 1.68* 3.31*** 2.11*

CPLN -2.09*** -0.08 0.92*** 0.62* 2.36** 1.59* 3.11** 2.08*

FBCPLN -1.71*** -0.03 0.35*** 0.28 1.52*** 0.81 1.93*** 1.21

Panel B: Stochastic Volatility Models

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

FB -1.33 -1.00 0.21* -0.67 1.25** 0.20 1.43** 0.49

CP -0.81 0.07 -0.39 0.11 0.41 0.35 0.86 0.68

LN 5.43*** 0.47 4.64*** 1.91*** 4.21*** 2.49*** 3.71** 2.66***

FBCP -0.63 -0.77 0.41* -0.37 1.26** 0.48 1.85** 0.81

FBLN 5.03*** 0.36 4.58*** 1.16* 4.53*** 1.90** 4.18*** 2.11*

CPLN 3.40*** 0.46 3.34*** 1.24* 4.04*** 2.08** 4.11** 2.73***

FBCPLN 4.21*** 0.35 3.69*** 0.96 4.03*** 1.54* 3.97*** 2.16*

This table presents the out-of-sample R-2 and annualized CERs for linear and stochastic volatility fore-

casting models. Linear or Stochastic models can use different combinations of predictors: one predictor

(FB, CP, LN), two predictors (FBCP, FBLN, CPLN), or three predictors (FBCPLN). The OOS − R2

is given in equation (25). The statistical significance measure is from Clark and West (2007). * means

significance at 10% level. ** means significance at 5% level. *** means significance at 1% level. The

CER is given in equation (32). Risk aversion is 5. The out-of-sample period is from Jan, 1987 to Dec,

2011.
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Table 4: Out-of-Sample CERs: unbounded weight case

2-year 3-year 4-year 5-year

Panel A: Constant Volatility Models

FB 0.79 1.51 1.93 2.06

CP -0.45 -0.43 -0.26 -0.21

LN 7.45*** 6.25*** 5.87*** 4.72**

FBCP 0.08 0.11 0.87 0.72

FBLN 8.30*** 7.52*** 6.52** 5.13

CPLN 6.00*** 4.98** 4.03* 3.12

FBCPLN 7.17*** 5.96** 4.97 3.61

Panel B: Stochastic Volatility Models

FB 0.02 0.07 -0.06 0.42

CP 1.96 0.96 0.98 1.06

LN 12.27*** 8.17*** 5.63** 4.51**

FBCP 1.25 0.51 0.42 0.65

FBLN 10.70*** 7.69*** 5.03* 2.88

CPLN 9.95*** 6.62** 4.83* 3.10

FBCPLN 9.67*** 6.37* 4.32 3.13

Average 5.37 4.02 3.22 2.49

The table presents out-of-sample annualized CER values for model combinations in the out-of-sample

period from Jan, 1987 to Dec, 2011. No bound is imposed on the weights of risky and riskless assets.

Risk-aversion is 5.
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Table 5: Quantile Regression - HKM (2017)

Quantile 0.10 0.25 0.50 0.75 0.90

Panel A: Constant Volatility Models

2Y LN 0.20*** 0.25*** 0.40*** 0.50*** 0.51***

FBLN 0.41*** 0.44*** 0.54*** 0.61*** 0.59***

CPLN 0.44*** 0.43*** 0.55*** 0.63*** 0.68***

3Y LN 0.12*** 0.18*** 0.26*** 0.33*** 0.41***

FBLN 0.29*** 0.28*** 0.39*** 0.47*** 0.47***

CPLN 0.30*** 0.28*** 0.37*** 0.43*** 0.47***

4Y LN 0.08*** 0.12*** 0.18*** 0.26*** 0.32***

FBLN 0.23*** 0.22*** 0.33*** 0.38*** 0.37***

CPLN 0.21*** 0.23*** 0.28*** 0.33*** 0.36***

5Y LN 0.07*** 0.09*** 0.16*** 0.19*** 0.27***

FBLN 0.20*** 0.20*** 0.29*** 0.34*** 0.34***

CPLN 0.18*** 0.18*** 0.22*** 0.27*** 0.33***

Panel B: Stochastic Volatility Models

2Y LN 0.30*** 0.27*** 0.35*** 0.53*** 0.73***

FBLN 0.70*** 0.51*** 0.57*** 0.63*** 0.84***

CPLN 0.50*** 0.43*** 0.53*** 0.54*** 0.80***

3Y LN 0.15*** 0.15*** 0.23*** 0.35*** 0.30***

FBLN 0.41*** 0.29*** 0.29*** 0.49*** 0.54***

CPLN 0.27*** 0.25*** 0.29*** 0.33*** 0.33***

4Y LN 0.09*** 0.09*** 0.14*** 0.21*** 0.24***

FBLN 0.26*** 0.19*** 0.24*** 0.31*** 0.33***

CPLN 0.15*** 0.17*** 0.21*** 0.28*** 0.27***

5Y LN 0.05*** 0.05*** 0.08*** 0.15*** 0.16***

FBLN 0.19*** 0.13*** 0.19*** 0.25*** 0.30***

CPLN 0.09*** 0.08*** 0.13*** 0.19*** 0.15***

This table presents results from quantile regression of weight on market pressure measure (1/HKM) for

the 3 best performing models. *** means significance at 1% level. ** means significance at 5% level. *

means significance at 1% level. Out-of-sample period is from Jan, 1987 to Dec, 2011.
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Table 6: Quantile Regression - HPW (2013)

Quantile 0.10 0.25 0.50 0.75 0.90

Panel A: Constant Volatility Models

2Y LN 0.22 0.27** 0.94*** 1.74*** 2.02***

FBLN 0.73*** 0.73*** 1.49*** 2.10*** 2.09***

CPLN 0.97*** 1.12*** 1.49*** 2.21*** 2.37***

3Y LN 0.05 0.22*** 0.61*** 1.18*** 1.22***

FBLN 0.55*** 0.49*** 1.15*** 1.48*** 1.24***

CPLN 0.63*** 0.68*** 1.02*** 1.45*** 1.37***

4Y LN 0.07 0.14*** 0.45*** 0.94*** 0.92***

FBLN 0.45*** 0.42*** 0.91*** 1.34*** 1.42***

CPLN 0.49*** 0.51*** 0.77*** 1.14*** 1.04***

5Y LN 0.05 0.09* 0.38*** 0.74*** 0.85***

FBLN 0.39*** 0.38*** 0.75*** 0.96*** 0.78***

CPLN 0.37*** 0.40*** 0.59*** 0.89*** 0.86***

Panel B: Stochastic Volatility Models

2Y LN 0.63* 0.19 0.35 0.60 0.06

FBLN 1.39*** 0.87*** 0.83*** 0.67** 0.63

CPLN 1.07*** 0.81*** 0.99*** 0.79** 0.27

3Y LN 0.34** 0.25*** 0.28*** 0.40* 0.45

FBLN 0.79*** 0.55*** 0.46*** 0.47*** 0.22

CPLN 0.56*** 0.58*** 0.57*** 0.56*** 0.22

4Y LN 0.24*** 0.12** 0.30*** 0.50*** 0.30*

FBLN 0.60*** 0.33*** 0.38*** 0.38*** 0.39**

CPLN 0.47*** 0.41*** 0.43*** 0.59*** 0.43**

5Y LN 0.08 0.04 0.19*** 0.32*** 0.30**

FBLN 0.41*** 0.28*** 0.31*** 0.45*** 0.44***

CPLN 0.28*** 0.24*** 0.24*** 0.39*** 0.34***

This table presents results from quantile regression of weight on market pressure measure (HPW) for

the 3 best performing models. *** means significance at 1% level. ** means significance at 5% level. *

means significance at 1% level. Out-of-sample period is from Jan, 1987 to Dec, 2011.
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Table 7: Model Combinations and Predictability

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

SBM 5.74*** 0.50 4.08*** 1.16* 3.39*** 1.77** 3.55*** 2.84***

EMA 4.47*** 0.07 4.07*** 0.70 4.31*** 1.49 4.24*** 2.11*

BMA 5.24*** 0.58 2.78*** 0.15 3.06*** 0.92 2.65*** 0.93

UMA 4.00*** 0.56 4.20*** 1.50** 4.44*** 2.32*** 4.60*** 2.87***

The table presents out-of-sample R-squared and CER results for model combinations in the out-of-sample

period. The OOS −R2 is given in equation (25). The statistical significance measure is from Clark and

West (2007). * means significance at 10% level. ** means significance at 5% level. *** means significance

at 1% level. The CER is given in equation (32). Risk-aversion is 5. Out-of-sample period is from Jan,

1987 to Dec, 2011.
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Table 8: Out-of-Sample Predictability: Risk Aversions

Panel A: Constant Volatility Models

2-Year 3-Year 4-Year 5-Year

γ = 3 γ = 10 γ = 3 γ = 10 γ = 3 γ = 10 γ = 3 γ = 10

FB -1.11 -0.03 -1.14 0.58 -0.50 0.93 0.07 1.03

CP -1.05 -0.50 -1.66 -0.31 -1.52 -0.22 -1.72 -0.22

LN 0.49 1.34*** 0.78 1.93*** 1.95** 2.21*** 2.66** 2.01**

FBCP -1.12 -0.28 -1.55 -0.09 -0.90 0.31 -0.15 0.30

FBLN 0.12 1.05** -0.08 1.90*** 0.57 2.20** 1.28 2.32**

CPLN -0.13 0.84** -0.22 1.44** 0.48 1.57** 1.35 1.49

FBCPLN -0.11 0.69 -0.50 1.34* -0.21 1.75* 0.33 1.79

Panel B: Stochastic Volatility Models

2-Year 3-Year 4-Year 5-Year

γ = 3 γ = 10 γ = 3 γ = 10 γ = 3 γ = 10 γ = 3 γ = 10

FB -1.19 -0.03 -1.68 0.25 -0.66 0.50 -0.08 0.44

CP 0.02 0.71** -0.56 0.40 -0.56 0.51 0.20 0.62

LN 0.36 1.49*** 1.10 2.34*** 1.90* 2.33*** 2.42** 2.02***

FBCP -0.92 0.10 -1.18 0.30 -0.32 0.63 0.44 0.68

FBLN 0.31 1.18*** 0.45 1.79*** 1.03 2.00** 1.36 1.71

CPLN 0.45 1.27*** 0.40 1.84*** 1.15 2.18*** 2.23** 2.12**

FBCPLN 0.28 1.18*** 0.25 1.65** 0.73 1.89** 1.56 1.76

Panel C: Model Combinations

2-Year 3-Year 4-Year 5-Year

γ = 3 γ = 10 γ = 3 γ = 10 γ = 3 γ = 10 γ = 3 γ = 10

SBM 0.33 1.47*** 0.35 1.92*** 0.86 1.68* 2.28** 1.80*

EMA 0.15 0.94** -0.19 1.53*** 0.46 1.74** 1.09 1.58*

BMA 0.53 1.46*** -0.73 1.02 0.08 1.07 0.51 0.67

UMA 0.47 1.30*** 0.74 2.10*** 1.45* 2.17*** 2.16** 1.92**

The table presents a robustness check of Certainty Equivalent Returns for linear models, stochastic

volatility models and model combination schemes, relative to the EH benchmark, in the out-of-sample

period. The CER is given in equation (32). Risk aversion coefficient γ is 3 or 10. Out-of-sample period

is from Jan, 1987 to Dec, 2011.
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Table 9: Out-of-Sample Predictability: 1982-2011

Panel A: Constant Volatility Models

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

FB 3.87*** -0.10 3.36*** 0.89 3.48*** 1.79* 3.45*** 2.16*

CP -3.69 -1.17 -2.08 -0.89 -0.99 -0.61 -0.39 -0.46

LN 2.77*** 0.65 3.48*** 1.94** 4.29*** 3.10*** 3.98*** 3.28***

FBCP 1.17** -0.39 1.43** 0.24 2.27** 1.10 2.51*** 1.39

FBLN 5.96*** 0.73 5.48*** 1.87** 5.61*** 3.18*** 5.63*** 3.86***

CPLN -0.18*** 0.25 1.39*** 1.25 2.39*** 2.31** 2.71*** 2.63**

FBCPLN 3.84*** 0.69 4.31*** 1.66* 4.64*** 2.55** 4.79*** 3.13**

Panel B: Stochastic Volatility Models

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

FB 3.16** -0.25 3.41*** 0.34 3.73*** 1.25 3.46*** 1.47

CP -1.27 -0.14 -0.30 0.20 0.28 0.51 0.69 0.85

LN 5.05*** 0.37 4.09*** 1.71** 4.06*** 2.46*** 3.38*** 2.56***

FBCP 3.32*** -0.22 3.60*** 0.50 3.90*** 1.44 4.12*** 1.78

FBLN 9.05*** 1.06** 7.30*** 2.12*** 6.79*** 2.87*** 5.98*** 2.94***

CPLN 4.05*** 0.56 3.97*** 1.62** 4.29*** 2.32*** 3.97*** 2.84***

FBCPLN 8.52*** 1.09** 7.12*** 2.11*** 6.65*** 2.70** 6.08*** 3.04**

Panel C: Model Combinations

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

SBM 6.62*** 0.99** 3.93*** 1.38* 3.88*** 2.49*** 4.76*** 3.71***

EMA 6.41*** 0.70 5.47*** 1.70** 5.19*** 2.38*** 4.90*** 2.84***

BMA 5.13*** 0.54 4.85*** 0.94 4.39*** 1.70* 4.08*** 1.70

UMA 5.27*** 0.63 5.03*** 1.78** 4.90*** 2.46*** 4.88*** 2.88***

This table presents the out-of-sample R-squared and CERs for linear models,stochastic volatility fore-

casting models and model combinations. The R2 is given in equation (25). The statistical significance

measure is from Clark and West (2007). * means significance at 10% level. ** means significance at 5%

level. *** means significance at 1% level. The CER is given in equation (32). Risk aversion is 5. The

out-of-sample period is from Jan, 1982 to Dec, 2011.
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Table 10: Out-of-Sample Predictability: 1990-2011

Panel A: Constant Volatility Models

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

FB 0.87* -0.79 2.23** 0.10 2.69** 0.91 2.93** 1.31

CP -1.81 -1.08 -0.11 -0.64 0.31 -0.42 0.65 -0.30

LN 1.61*** 0.33 3.78*** 1.46** 5.01*** 2.39*** 5.08*** 2.75***

FBCP -0.70* -0.94 0.76* -0.27 2.04** 0.65 2.40** 1.07

FBLN -0.04*** 0.02 2.72*** 0.97 3.48*** 2.00** 4.00*** 2.75**

CPLN -1.94*** -0.08 1.97*** 0.95 3.43** 2.05** 3.90** 2.46**

FBCPLN -1.59*** 0.01 1.55*** 0.77 2.78*** 1.58 3.42*** 2.23

Panel B: Stochastic Volatility Models

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

FB -1.14 -0.76 1.02* -0.15 1.91** 0.90 2.31** 1.44

CP 0.24 0.12 0.68 0.61 0.93 0.79 1.32 1.05

LN 5.94*** 0.32 5.24*** 1.82** 4.68*** 2.49*** 4.04*** 2.66***

FBCP 0.31* -0.55 1.73** 0.18 2.54** 1.20 3.14** 1.74

FBLN 5.81*** 0.31 5.84*** 1.72** 5.47*** 2.57*** 5.31*** 3.05***

CPLN 4.85*** 0.54 4.76*** 1.71*** 5.09*** 2.66*** 5.18** 3.40***

FBCPLN 5.37*** 0.39 5.45*** 1.53** 5.51*** 2.32** 5.39*** 3.19***

Panel C: Model Combinations

2-Year 3-Year 4-Year 5-Year

R2
OS CER R2

OS CER R2
OS CER R2

OS CER

SBM 6.58*** 0.51 4.89*** 1.34** 4.00** 1.92** 4.04** 3.08***

EMA 5.70*** 0.10 5.34*** 1.13** 5.24*** 2.01** 5.28*** 2.58***

BMA 5.79*** 0.55 4.19*** 0.75 4.13** 1.73* 3.67** 1.75

UMA 4.20*** 0.27 4.88*** 1.29** 5.37*** 2.37*** 5.51*** 2.65**

This table presents the out-of-sample R-squared and CERs for linear models,stochastic volatility fore-

casting models and model combinations. The R2 is given in equation (25). The statistical significance

measure is from Clark and West (2007). * means significance at 10% level. ** means significance at 5%

level. *** means significance at 1% level. The CER is given in (32). Risk-aversion is 5. The out-of-sample

period is from Jan, 1990 to Dec, 2011.

43



1962 1972 1982 1992 2002 2012
-10

-5

0

5

10
2-Year

1962 1972 1982 1992 2002 2012
-10

-5

0

5

10
3-Year

1962 1972 1982 1992 2002 2012
-10

-5

0

5

10
4-Year

1962 1972 1982 1992 2002 2012
-10

-5

0

5

10
5-Year

Figure 1: The Time Series of Excess Bond Returns

This figure plots the time series of 4 excess bond returns (in percentage), from Jan, 1962 to Dec, 2011.
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Figure 2: Parameter Learning for LN-SV

The figure shows time series parameter estimates of stochastic volatility model with LN predictor for

3-year bond excess returns. The estimation is based on full-sample information. The model form is

given in equation (5) and (6). The last panel shows the stochastic volatility estimate. The two dashed

lines are 5-th and 95-th percentiles of estimate distribution. The solid line is the mean estimate for each

parameter. Full-sample is from Jan, 1962 to Dec, 2011.
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Figure 3: Parameter Learning for LN-CV and Log Bayes Factors

The figure shows time series parameter estimates of constant volatility model with LN predictor for

3-year bond excess returns. The estimation is based on full-sample information. The linear model form

is given in equation (4). The last panel shows the log Bayes factor of LN-SV and LN-CV models, for all

4 maturities. The two dashed lines are 5-th and 95-th percentiles of estimate distribution. The solid line

is the mean estimate for each parameter. Full-sample is from Jan, 1962 to Dec, 2011.
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Figure 4: The cumSSE’s for Individual Models

This figure shows cumSSE’s for CP-CV, CP-SV, LN-CV and LN-SV models. cumSSE is given in

equation (26). Out-of-sample period is from Jan, 1987 to Dec, 2011.
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Figure 5: The cumCER’s for Individual Models

This figure shows cumCER’s for CP-CV, CP-SV, LN-CV and LN-SV models. cumCER is given in

equation (33) and equation (??). Out-of-sample period is from Jan, 1987 to Dec, 2011.
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Figure 6: The cumSSE’s for Model Combinations

This figure shows cumSSE’s for four model combination schemes. cumSSE is given in equation (26).

Out-of-sample period is from Jan, 1987 to Dec, 2011.
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Figure 7: The cumCER’s for Model Combinations

This figure shows cumCER’s for four model combination schemes. cumCER is given in equation (33)

and (??). Out-of-sample period is from Jan, 1987 to Dec, 2011.

50



       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chief Editors: 

Pascal Blanqué 

Chief Investment Officer  

Philippe Ithurbide 

Global Head of Research, Strategy and Analysis 



 

 research-center.amundi.com 

 

Amundi Working Paper  
 
WP-069-2017 
 
June 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Written by Amundi. 

Amundi is a French joint stock company (société anonyme) with a registered capital of €1,086,262,605. 

An investment management company approved by the French Securities Authority (Autorité des Marchés Financiers - 

“AMF”) under No. GP04000036. Registered office: 90, boulevard Pasteur 75015 Paris-France. 437 574 452 RCS Paris. 

In each country where they carry on investment business, Amundi and its affiliates are regulated by the local regulatory 

authority. This information contained herein is not intended for distribution to, or use by, any person or entity in any 

country or jurisdiction where to do so would be contrary to law or regulation or which would subject Amundi or its 
affiliates to any registration requirements in these jurisdictions. The information contained herein is produced for 
information purposes only and shall not be considered as an investment advice nor the sole basis for the evaluation of 

any Amundi’s product. Any data provided herein is based on assumptions and parameters that reflect our good faith 
judgment or selection and therefore no guarantee is given as to the accuracy, completeness or reasonableness of any 
such data. No examination has been executed by us with respect to the financial, legal, tax, regulatory – and any 

related aspects thereof – situation of any addressee of the information here in. 

Photo credit: Thinkstock by Getty Images 


