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1 Introduction

Mutual funds may increase their size through incoming financial resources provided by in-

vestors. Correspondingly, fund portfolio managers need make a decision about the way they

invest new cash holdings. A first option is to simply upscale all positions already held keeping

weights unchanged. Alternatively, they may alter portfolio proportions keeping investing in

the same assets. A third possibility they have is to increase the set of investments which

necessarily involves portfolio weights rebalancing. These three alternatives all entail different

results on funds performance, notably due to the existence of liquidity frictions.

Empirical literature has extensively dealt with the effects of fund size increase on perfor-

mance in the active money management industry. Grinblatt and Titman (1989) find some

evidence that gross fund returns decline with fund size. Indro et al. (1999) established that

fund performance behaves in a concave manner with fund size as it first increases and then

diminishes. Considering various performance benchmarks, Chen et al. (2004) document

that fund returns decline with lagged fund size. Using an alternative performance measure-

ment methodology than that of Chen et al. (2004), the paper by Yan (2008) corroborates a

significant inverse relation between fund size and fund performance.

Most investigations explain the adverse relation between fund size and fund performance by

the presence of market liquidity issues. Perold and Salomon (1991) contend that large trans-

actions in active fund management cause important price impacts leading to diseconomies

of scale. Chen et al. (2004) find that the inverse relation between size and performance is

stronger among small-cap funds. This supports the hypothesis that fund size erodes perfor-

mance to the extent that small-cap stocks are less liquid. In addition, Yan (2008) documents

that the inverse relation is more pronounced for funds that hold less liquid portfolios.

However, liquidity by itself is not sufficient to explain that fund size affects performance

negatively. Chen et al. (2004) show that in addition to liquidity issues, organizational

diseconomies related to hierarchy costs also play an important role in performance reduction.

Further, Chan and Lakonishok (1995) and Keim and Madhavan (1997) document that funds

with high demands for immediacy are associated with larger market impact and greater
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trading costs. Relying on these results, Yan (2008) provides the evidence that the negative

relation between fund size and fund performance is more pronounced among growth and high

turnover funds that tend to have high demands for immediacy.

Pollet and Wilson (2008) examine how size affects mutual fund behavior rather than directly

performance. They document that growing funds primarily increase ownership shares in

companies they already own. This suggests that portfolio managers seek new investment

opportunities only when liquidity constraints become siginificant. This behavior is presented

as the proximate cause of diminishing returns to scale for mutual funds. An other finding

in Pollet and Wilson (2008) is that the beneficial effect of diversification on performance is

more pronounced for funds that invest in the small-cap sector. These results support liquidity

constraints as an explanation for why large-cap funds diversify more slowly in response to

growth in assets under management (Pollet and Wilson, 2008).

The exposed literature thus clarifies how funds do react to size upgrading and assesses the

impact on their performance. Little attention seems to have been paid on how funds should

react to size-driven liquidity frictions. This problem entails modelling the logical linkage

connecting investment size, portfolio composition, and liquidity effects on value and per-

formance. We develop in this paper a model which enables incorporating market liquidity

frictions in performance assessment. This model recovers the stylized fact that liquidity

frictions entail a negative relation between size and performance. Its main contribution is

to prescribe how funds’ portfolio managers should invest incoming funds among alternative

investment opportunities in the presence of liquidity issues.

We propose a theoretical setup that enables comparing mean-variance maximizing allocations

in two alternative settings. A first setting, that we refer to as marked-to-market is insensitive

to market liquidity frictions and its output is the usual mean-variance maximizing portfolio

choice. An other setting, which is assigned the attribute liquidity-adjusted, incorporates

market liquidity frictions in optimal portfolio choice. In our modelling market liquidity

frictions are driven by fund size, which entails that there is an optimal allocation specific

to each fund size. Two items generate liquidity frictions in the model. First, it relies on

the critical concept of risk rule which requires fund’s positions to fulfill some specific risk
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constraints. The requirement for the fund to satisfy the risk rule may lead to buying or

selling units of selected assets which entails an update of invested weights. Trading activity

then appeals the second item called supply-demand curve, which for each equity assigns a

transaction price to any quantity that is traded. The model is tested through a number

of experiments undertaken in a controlled environment designed for analyzing comparative

statics among varying assumptions of the underlying parametric setting.

As a next step we estimate the model on a large dataset of stock trades. These stocks

are the constituents of the S&P 600 index. The model is then used to conduct a number

of calibrated experiments. In particular, we investigate optimal allocation behavior under

fund size increase for varying widths of the set of investment opportunities. Comparative

statics and calibrated experiments yield the following main outcomes. First, in the liquidity-

adjusted setting portfolio diversification within stocks is enhanced compared to the setting

where market liquidity is not considered and increases concomitantly with fund size. This

diversification increase means that liquidity-adjusted allocation alters weights as fund size

rises to restrict the negative effect of liquidity frictions on ex-ante performance. Next, given

a certain fund size augmentation, diversification enhancement within stocks may occur in

two different manners. First, it can be achieved by a revision of weights in already existing

investments. Alternatively, weights may be altered by new investments in assets belonging

to the considered set of investment opportunities. We find that this latter behavior usually

occurs for large funds which is in line with the empirical finding by Pollet and Wilson (2008)

that managers seek new investment opportunities only when liquidity constraints become

significant. Finally, proportion of wealth invested in the risk-free asset augments with fund

size. This behavior becomes particularly significant for large funds that invest in a restricted

set of investment opportunities.

We previously exposed the main contribution of this paper to extant literature which is that

it prescribes how fund portfolio managers should invest incoming capital among alternative

investment opportunities in the presence of liquidity issues. It also contributes to two others

streams of existing literature.

First, it enriches the modelling of liquidity problems by linking market liquidity to funds’
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internal rules or regulatory constraints applying to portfolios. This recalls Brunnermeier

and Pedersen (2008) who put forward a model which relates an asset’s market liquidity to

traders’ funding liquidity. In their paper, funding liquidity is affected by capital margins on

risky securities. They notably show that under certain conditions both kinds of liquidities

are mutually reinforcing which leads to liquidity spirals. Our approach differs in the fact

that assets’ market liquidity is exogeneous and may be assessed on market data. Further,

liquidity frictions are driven by the requirement for fund’s positions to fulfill some internal

rules or regulatory risk constraints which involves trading.

Next, it expands literature dealing with portfolio management under liquidity issues. Brown

et al. (2010) analyze the problem of an investor who needs to unwind a portfolio in the face

of recurring and uncertain liquidity needs with a model that accounts for the price impact of

trading. While they deal with optimal liquidation, the present paper contrariwise addresses

the question of optimal allocation under fund size increase in the presence of liquidity fric-

tions. An other contribution by Longstaff (2001) solves an investor’s intertemporal portfolio

choice problem under liquidity constraints where liquidity constraints are modelled as trading

strategies of bounded variation. It is obtained that a liquidity-constrained investor acts as if

facing borrowing and short-selling constraints, and may take riskier positions than in liquid

markets. The current paper retains an alternative path as it models internal risk manage-

ment rules which affect liquidity of the portfolio. Hence optimal allocation is adjusted to

both market liquidity and risk rules.

The remainder of the paper is organized as follows. Section 2 develops the theoretical frame-

work. In section 3 we test the economic relevance of the model by conducting a number of

numerical experiments under a variety of parametrizations (comparative statics). Section 4

introduces the data and details data preparation required prior to model calibration. The

methodology put forward to estimate model parameters is presented in section 5 and esti-

mates are also provided. A number of empirical experiments are conducted in section 6.

Finally, section 7 concludes the paper.
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2 Theoretical setup

Consider the case of an investment fund who needs to allocate financial resources between

the different assets composing a given set of investment opportunities. Letting this latter

set be composed of one risk-free asset and N risky assets, a portfolio is then any vector

q = (q0, q1, ..., qN) where qi ∈ R denotes the quantity of asset i ∈ {0, 1, ..., N} held. Since

asset i = 0 is the risk-free asset, q0 denotes an amount of cash holdings. To allocate its

wealth, the fund maximizes a mean-variance performance metric over a one-period time

interval. Time 0 denotes present time, that is the time at which the allocation is performed.

Time 1 is the last day of the management period, that is the time horizon under which the

allocation of wealth is conducted. The duration between time 0 and time 1 is given by ∆.

For any time t ∈ {0, 1}, the mid-price of equity i is denoted by Sit . At time 0, the time 1

mid-price of equity i is random and given by

Si1 = Si0 exp
{

(µi − (σi)2/2)∆ + σi
√

∆εi
}

(1)

where µi ∈ R and σi > 0 denote respectively drift and volatility of the mid-price and where

εi is a standard normal random variable. The risk-free asset delivers an annual interest rate

rf which is continuously compounded. Letting E[.] and V [.] denote respectively expectation

and variance and R any random return, mean-variance is defined by MV[R] := E [R] −
θ
2V [R] where θ > 0 denotes investors’ risk aversion. An overview of the subsequent model

presentation is pictorially depicted by figure 8 in appendix A.

2.1 Marked-to-market optimal allocation

Let us first derive the optimal allocation problem when market liquidity frictions are not

taken into consideration by the fund’s portfolio manager. This setting, referred to as marked-

to-market setting, is used as benchmark in the present study. It makes sense to consider

marked-to-market valuation when a portfolio is not currently traded as it is then not exposed

to market liquidity frictions. For any portfolio q, the time 0 marked-to-market value is given
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by a function V M
0 : RN+1 → R defined by V M

0 (q) := q0 + ∑N
i=1 q

iSi0 with Si0 being the mid-

price of equity i ∈ [1, N ]. Remark that V M
0 increases linearly on RN+1 which reflects the

absence of liquidity frictions in the marked-to-market setting. Given the risk-free yield and

the variation of mid-prices over period ∆, for any portfolio q chosen at time 0 the time 1

marked-to-market value is given by V M
1 (q) = q0 exp(rf∆) +∑N

i=1 S
i
1q
i.

To allocate fund’s wealth at time 0, the portfolio manager maximizes mean-variance of portfo-

lio marked-to-market return where the latter is defined byRM
∆ (q) := (V M

1 (q)−V M
0 (q))/V M

0 (q).

Then, letting C(., .) denote date 0 covariance between any two random variables, portfolio

mean-variance is given by MV[RM
∆ (q)] = E[RM

∆ (q)]− θ
2V [RM

∆ (q)] with

E[RM
∆ (q)] = q0(exp(rf∆)− 1) +∑N

i=1 q
i (E[Si1]− Si0)

q0 +∑N
i=1 S

i
0q
i

and

V0[RM
∆ (q)] = 1(

q0 +∑N
i=1 S

i
0q
i
)2 ×

 N∑
i=1

(qi)2V0(Si1) + 2
N∑
i 6=j

qiqjC(Si1, S
j
1)
 .

Finally, the optimal portfolio choice problem in the marked-to-market setting consists in

determining within the set of investment opportunities the asset holdings that maximize

ex-ante performance. Assume that at time 0 fund wealth that must be allocated between

the different investment opportunities is given by W0. Then, the optimal allocation is the

portfolio qM which is the maximizing argument of the problem:

Max
q∈RN+1

MV
[
RM

∆ (q)
]
subject to V M

0 (q) = W0, q
i ≥ 0, i ∈ [0, N ]. (2)

Notice that the optimal allocation problem only allows for long positions.

2.2 Liquidity-adjusted optimal allocation

Let us now consider the problem of optimal wealth allocation in a setting that incorporates

market liquidity frictions, that we refer to as liquidity-adjusted setting. In this setting the

portfolio manager still allocates wealth by maximizing ex-ante mean-variance of portfolio
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return between dates 0 and 1. However, for risk management purposes, he acts in a forward-

looking way and carries out an adjustment to time 1 value given information available at

time 0. Several items must be introduced to derive time 1 liquidity-adjusted value that we

detail in the following paragraphs.

A first critical notion of the model is the concept of supply-demand curve. The supply-demand

curve assigns to any traded quantity the transaction price that is obtained for this quantity.

Let S denote the mid-price, that is the price quoted when there is no trade. Traded quantity

is indicated by x ∈ R where we use the convention that x > 0 is a sell order and x < 0 a buy

order. Then, an asset’s supply-demand curve is a function S(.) defined by S(x) := S − αx

where α is a strictly positive parameter describing the asset’s liquidity. Note that when no

trade occurs (x = 0) the price of the considered asset is given by the mid-price.

Contrarily to the marked-to-market setting, the liquidation setting assumes the sale of all

positions held in the portfolio. Precisely, the liquidation value gives the proceeds (resp.

expenses) stemming from portfolio liquidation (resp. purchase) and incorporates market

liquidity frictions. For any portfolio q, the time 1 liquidation value is given by a map V L
1 :

RN+1 → R defined by V L
1 (q) := q0+∑N

i=1 q
iS i1(qi) where S i1(.) denotes asset i’s supply-demand

curve at time 1. Replacing S i1(qi) by its expression, liquidation value may be rewritten as

V L
1 (q) = q0 +∑N

i=1 q
iSi1 −

∑N
i=1 α

i(qi)2. This latter expression unveils the nonlinear shape of

V L
1 on RN+1 especially due to the quadratic term ∑N

i=1 α
i(qi)2 which represents the cost of

liquidity.

Marking-to-market is the most optimistic approach as it ignores liquidity frictions and hence

provides the highest value a portfolio may attain at a given point of time. By contrast,

the liquidation value provides portfolio value in a worst-case scenario where all positions

are sold thus exposing the portfolio to severe liquidity frictions. But the fair portfolio value

actually ranges between the marked-to-market value and the liquidation value and depends

to a large extent on constraints the portfolio is required to satisfy. We consider two different

risk management constraints that we introduce below.

The first constraint that is considered is referred to as size rule. The size rule requires from

the portfolio manager that portfolio positions remain beneath a certain quantity threshold
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settled by the fund’s risk management team. This internal rule reflects aversion towards

market liquidity frictions and avoids holding excessively large positions. Formally, the size

rule is defined by RS :=
{
q ∈ RN+1 : qi ≤ τi, i ∈ [1, N ]

}
where τi denotes a positive quantity

threshold the position invested in asset i should not exceed.

The second constraint we put forward is called Value-at-Risk (VaR) rule. Recall that

given some management horizon, VaR is defined as the largest loss a portfolio may un-

dergo at a certain confidence level. Let γ ∈ (0, 1) denote a fixed confidence level and

X the random value discrepancy of a portfolio over a given time period. VaR is then

defined by VaRγ(X) := − inf {y ∈ R : P[X ≤ y] ≥ 1 − γ} where P denotes the his-

torical probability distribution of random variable X. Let δ denote the time period over

which VaR is assessed and let Xδ be given by Xδ = St+δ − St where t is any point of

time. Then, under the previously made assumption that mid-price S is driven by a ge-

ometric brownian motion with drift µ and standard deviation σ, it is easily shown that

VaRγ(Xδ) = St
(
1− exp{(µ− 0.5σ2)δ + σ

√
δΦ−1(1− γ)

)
where Φ(.) is the cumulative prob-

ability distribution of a standard normal random variable.

Before determining liquidity-adjusted allocation, the fund’s portfolio manager acts in a

forward-looking way and wishes to derive the fair time 1 portfolio value under the VaR

rule. The VaR rule, that we denote RV , requests that for each position that is held, present

(time 0) expectation of time 1 VaR must remain below a certain risk limit. It entails that the

VaR rule is formally defined by RV :=
{
q ∈ RN+1 : E0[VaRγ(X i

δq
i)] ≤ ρ, i ∈ [1, N ]

}
where

ρ ≥ 0 denotes a fixed risk threshold. According to the VaR formula derived in the previous

paragraph, the VaR rule may also be rewritten as

RV =
{
q ∈ RN+1 : E0[Si1]× (1− exp{(µ− 0.5σ2)δ + σ

√
δΦ−1(1− γ)) ≤ ρ, i ∈ [1, N ]

}
.

Let us now introduce the main concept of the model that we refer to as liquidity-adjusted

value. The liquidity-adjusted value provides the fair value of a portfolio given that it has to

fulfill either the size rule or the VaR rule in the presence of liquidity frictions. Precisely, it

is obtained as the solution of a convex optimization problem incorporating the considered
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risk management rule on the one hand and assets’ supply-demand curves on the other hand.

Letting R denote either the size rule (R = RS) or the VaR rule (R = RV ), for any portfolio

q ∈ RN+1 the liquidity-adjusted value at time 1 is given by a function V R1 : RN+1 → R

defined by

V R1 (q) := Max
r∈RN+1

{
V M

1 (q − r) + V L
1 (r) : (q0 − r0 + V L

1 (r), q1 − r1, ..., qN − rN) ∈ R
}
. (3)

Definition 3, which is drawn from Acerbi and Scandolo (2009), reveals that the liquidity-

adjusted value provides an adjustment of portfolio value to rule R without effectively altering

portfolio composition. It answers the following question: Given a certain portfolio, what

would time 1 portfolio value be if positions had to be changed in order to fulfill rule R under

liquidity frictions? If the portfolio satisfies rule R, then there is no need to alter existing

positions. Hence the portfolio is not exposed to liquidity frictions which entails that the

liquidity-adjusted value is equal to the marked-to-market value. In contrast, when rule R

is not fulfilled by the portfolio, then positions have to be changed. Liquidity-adjusted value

is then given by the portfolio which among all portfolios satisfying rule R maximizes value

under liquidity frictions. Precisely, given a portfolio q, assume it is optimal to liquidate a

subportfolio r? to fulfill rule R. Subportfolio r? is then valued at its liquidation value. As

to the remaining portfolio q − r?, it is valued at its marked-to-market value since this set of

positions is unchanged and thus not exposed to liquidity frictions.

For any portfolio q we obtain the following closed-form expression for the time 1 liquidity-

adjusted value:

V R1 (q) = q0 +
N∑
i=1

Si1q
i −

N∑
i=1

αi(f i(qi))2, (4)

where f i is defined by

f i(qi) :=


qi − τi if qi > τ i

0 else
(5)
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when R = RS and by

f i(qi) :=


qi − ρ/E0[VaRγ(X i

δq
i)] if E0[VaRγ(X i

δq
i)] > ρ

0 else.
(6)

when R = RV . Proof of this result is given in appendix B. Notice that when rule R is

fulfilled by the portfolio, then f i(qi) = 0 for all i and the liquidity-adjusted value is equal to

the marked-to-market value as there is no need to trade the portfolio.

Letting q be any portfolio chosen at time 0, the time 1 liquidity-adjusted value is given

by V R1 (q) = q0 exp(rf∆) + ∑N
i=1 S

i
1q
i − ∑N

i=1 α
i(fi(qi))2. In the liquidity-adjusted setting,

portfolio return between dates 0 and 1 is then defined by RR∆(q) := (V R1 (q)−V M
0 (q))/V M

0 (q).

It follows that in the liquidity-adjusted setting mean-variance is given by MV[RR∆(q)] =

E0[RR∆(q)]− θ
2V [RR∆(q)] with

E0[RR∆(q)] = q0(exp(rf∆)− 1) +∑N
i=1 q

i (E0[Si1]− Si0)−∑N
i=1 α

i (f i(qi))2

q0 +∑N
i=1 S

i
0q
i

and

V [RR∆(q)] = V [RM
∆ (q)]

where functions f i are defined either by equation 5 or by equation 6 depending on the rule

that is considered. Notice that portfolio variance in the liquidity-adjusted setting is equal to

marked-to-market variance. This results from the liquidity cost term being a deterministic

function. Finally, optimal allocation in the liquidity-adjusted setting is given by the portfolio

q solution of the problem

Max
q∈RN+1

MV
[
RR∆(q)

]
subject to V M

0 (q) = W0, q
i ≥ 0, i ∈ [0, N ]. (7)

where the constraint V M
0 (q) = W0 reflects the idea that portfolio managers do not face

liquidity frictions at time 0 as they are not required to trade at short notice.
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3 Comparative Statics

We test in this section the economic relevance of the model developed in the previous section.

Precisely, we assess how changes in model parameters value affect optimal allocation under

fund size growth in the presence of liquidity frictions. This significates that optimization

problem given by expression 7 is repeated for an increasing sequence W 0
0 < W 1

0 < ... < W n
0

of time 0 fund sizes under different parametrizations. Then, for each time 0 fund size, the

optimal weight invested in each equity i ∈ {1, ..., N} is computed as ω?i = Si0 × (qi0)?/W0

and the weight invested in the risk-free asset as ω?0 = q?0/W0. This examination is conducted

for both rules. Setup need be specified regarding the VaR rule. We define the VaR rule

threshold by ρ = κW0 with κ ∈ (0, 1). This significates that the maximum loss per position

the portfolio manager is prone to lose at a given confidence level is a certain fixed proportion

of time 0 fund size. Table 1 provides the parametrization that is used as benchmark in the

sequel.

Parameter Symbol Scale Equity 1 Equity 2 -
Date 0 MtM Price S0 - 10 10 -
Liquidity α ×10−7 5 5 -
Drift µ ×10−2 2 2 -
Volatility σ ×10−1 2 2 -
Correlation ρ12 - 0
Annual risk-free rate r ×10−2 1
Mean-Variance Parameter θ ×10−1 5
Management Period T ×10−1 5
VaR rule relative threshold κ ×10−2 5
Size rule threshold τ ×1, 000 10
VaR Confidence Level γ ×10−2 99

Table 1: Benchmark parametrization.

Figure 1 displays optimal allocations in both the marked-to-market and the liquidity-adjusted

settings under benchmark parametrization. Precisely, left and right panels both compare

marked-to-market allocation to liquidity-adjusted allocations under respectively the VaR

rule and the size rule. In each panel the leftmost set of bars displays optimal allocation

in the marked-to-market setting while other sets of bars display optimal allocation in the
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liquidity-adjusted setting for different fund sizes. As there are no liquidity frictions in the

marked-to-market setting, optimal proportions remain the same regardless of fund size. This

explains that contrarily to the liquidity-adjusted setting, only one set of bars is depicted for

the marked-to-market setting.
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Figure 1: Optimal allocations under VaR and size rules for benchmark parametrization.
Under both rules the share of wealth invested in the risk-free asset increases with fund size at the
expense of wealth invested in equities. Notice that this behavior is smoother under VaR rule than
under size rule. Given that the two equities have the same parameters their weights are identical
for each fund size.

Given that the risky assets have the same parameters, they are equally weighted in the

marked-to-market setting on the one hand and in the liquidity-adjusted setting for both rules

and all fund sizes on the other hand. Next, share of wealth invested in the risk-free asset is

larger in the liquidity-adjusted setting than in the marked-to-market setting. Further, due to

the presence of size-driven liquidity frictions, weight invested in the risky assets diminishes

to the benefit of weight invested in the risk-free asset. This can be explained as follows.

As fund size increases, size and VaR of risky positions mechanically rise as well. It follows

that under both rules the liquidity-adjusted value incorporates the liquidity cost stemming

from the liquidation that would be necessary to satisfy the rule. This liquidity cost reduces

the return-to-risk feature of risky assets which finally leads to an increase of the allocation

towards the risk-free asset. Notice in addition that this behavior is smoother under the VaR

rule than under the size rule. This stems from the fact that the VaR rule formulates a risk
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threshold which is proportional to time 0 fund size while the size rule has a fixed quantity

threshold. Consequently, under the VaR rule liquidity-adjustment occurs even for small fund

sizes. In opposition, under the size rule liquidity-adjustment starts once fund size attains a

certain value. This for instance explains that under the VaR rule optimal allocation for a

small $0.01 million fund differs from marked-to-market allocation while under the size rule

allocation is exactly the same.

Next, we investigate how optimal allocation is affected by a rise of equity 2 illiquidity. Pre-

cisely, we consider an increase of equity 2 liquidity parameter from 5× 10−7 to 5× 10−6. For

this purpose figure 2 provides optimal allocations for both rules under the new parametriza-

tion. In addition, optimal weights previously obtained under benchmark parametrization are

depicted by thin red bars added onto new weights. First, remark that for both rules and all

fund sizes the increase of equity 2 illiquidity has no effect on the weight invested in equity 1.

This is pictorially depicted by red bars onto equity 1 bars having the same height than equity

1 bars. By contrast, under both rules the surge of equity 2 illiquidity entails either a reduc-

tion or no alteration of the weight of this equity in optimal allocation1. Further, the drop of

weight invested in equity 2 benefits to the allocation towards the risk-free asset, this latter

seeing its proportion enhance with fund size. In a nutshell this significates that following an

increase of equity 2 illiquidity, the reduction of weight invested towards this latter equity is

not offset by a rise of equity 1 weight (even if more liquid) but by an augmentation of the

risk-free weight. This is explained by the fact that increasing allocation towards equity 1

would actually generate additional liquidity frictions while increasing allocation towards the

risk-free asset is liquidity frictionless.
1Occurences where there is no alteration of equity 2 weight correspond to those where fund size is small

under the size rule. As previously explained for the benchmark parametrization case, optimal allocation for
small funds under the size rule is the same as in the marked-to-market setting hence an alteration of equity
2 liquidity is inconsequential.
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Figure 2: Change of optimal allocations under equity 2 illiquidity increase. For each
rule and fund size allocation under benchmark parametrization is depicted by a thin red bar. The
figure exhibits the change of allocations entailed by an increase of equity 2 liquidity parameter from
5×10−7 to 5×10−6. First, for both rules and all fund sizes weight invested in equity 1 is unchanged
compared to benchmark parametrization. Next, as equity 2 is more illiquid than under benchmark
allocation, weight invested in this asset is reduced in favor of weight invested in the risk-free asset.

We then analyze the effect of an increase of equity 2 volatility parameter from 0.2 to 0.3 on

optimal allocations. Figure 3 exhibits optimal allocations under both rules for all fund sizes

of interest. One may observe that in both the marked-to-market setting and the liquidity-

adjusted setting, the rise of equity 2 volatility results in a reduction of the weight invested in

this equity to the benefit of the risk-free asset, weight invested in equity 1 remaining constant.

Indeed, as equity 2 has become riskier compared to benchmark allocation, its proportion in

total allocation diminishes.

More interesting is to examine optimal allocation behavior following equity 2 volatility surge

in the liquidity-adjusted setting. First, under the VaR rule weight of equity 2 remains

constant for all fund sizes while that of equity 1 diminishes in favor of the risk-free asset.

This behavior is different from that of the benchmark parametrization where weights of both

risky assets decrease with fund size in favor of the risk-free asset. This may be explained

as follows. As equity 2 is more risky than equity 1, allocation towards the former is such

that the VaR rule is fulfilled for this equity for all displayed fund sizes. Hence, no value

liquidity-adjustment is entailed for equity 2 positions which explains that weight invested
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in this equity remains constant and equal to market-to-market weight. One would see the

proportion invested in equity 2 decrease for larger fund sizes which are not displayed in

figure 3. The same behavior and explanation actually hold for the size rule. Indeed in figure

3 weight invested in equity 2 remains constant up to a $0.5 million fund size. The difference

with the VaR rule is that under the considered parametrization the fund size from which

weight invested in equity 2 starts decreasing is smaller. Actually one may observe that for a

$1 million fund weight invested in equity 2 is reduced compared to other depicted fund sizes.
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Figure 3: Change of optimal allocations under equity 2 volatility increase. The figure
depicts the change of optimal allocations entailed by an increase of equity 2 volatility parameter
from 0.2 to 0.3. First, this rise of equity 2 volatility is inconsequential for weight invested in equity 1
which remains the same as under benchmark parametrization. Contrariwise, for both rules and all
fund sizes, weight invested in equity 2 significantly drops in favor of weight invested in the risk-free
asset.

We finally examine the effect of an increase of rules stringency on optimal allocation. Regard-

ing the VaR rule, the increase of severity is expressed through a reduction of the relative risk

threshold κ from 0.05 to 0.01. The new risk threshold implies that VaR of each position must

remain beneath one percent of time 0 fund value. As for the size rule, the severity enhance-

ment is formulated by a decrease of positions’ maximum size from 10,000 shares to 5,000

shares. Figure 4 depicts optimal allocations for both rules after severity rise. Notice that un-

der the VaR rule, weight allocated toward the risk-free asset is larger under the more stringent

policy than under the benchmark parametrization. This risk-free weight expansion is made

at the expense of weight invested in the set of equities. Under the size rule, this result holds
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for large funds. However, for small fund sizes, even if severity of the size rule is increased,

positions’ sizes are still too narrow to attain the size threshold. Hence liquidity-adjusted

allocation under the size rule for $0.01 million and $0.1 million funds remain unchanged and

are equal to the marked-to-market allocation.
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Figure 4: Change of optimal allocations under rules stringency augmentation. The
figure exhibits the change of optimal allocations entailed by a reduction of the VaR rule relative
risk threshold from 0.05 to 0.01 and of the size rule threshold from 10,000 shares to 5,000 shares.
For both rules and all fund sizes this increase of severity leads to a rise of wealth proportion invested
in the risk-free asset at the expense of wealth proportion invested in the equities.
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4 Data

Two datasets are used to estimate parameters of the model. The first one is a high-

frequency dataset of trades while the second one is a dataset of daily ask and bid close

prices. These two datasets involve 600 equities traded either at NYSE or at NASDAQ.

Precisely, the equities on which the study is based are those composing the S&P 600 in-

dex as of October 5, 2017. The S&P 600 index is known to gather the small-cap range

of companies listed at NYSE and NASDAQ. The data are downloaded from the Thomson-

Reuters EikonTM financial analysis solution. More information about this tool is available at:

https://financial.thomsonreuters.com/en /products/ tools-applications/trading-investment-

tools/eikon-trading-software.html.

The high-frequency trades dataset is used to estimate equities’ liquidity parameters only.

It consists for the 600 equities of all trades that occured over a six months period ranging

from September 15, 2017 to March 15, 2018. Recorded variables are trade price, trade

size, and trade time with tick-by-tick granularity. Tick-by-tick granularity is the thinest

possible granularity for market data, which means that for a given equity we dispose of

the integrality of trades over the period that is considered. Consequently, the total number

of trade observations available for the present study (before data processing) amounts to

roughly five hundred millions. Notice that the number of trades over the period considered

may sensibly differ among equities. It varies from a few thousands tens of thousands of trades

for the less traded equities to several millions for equities with high trading activity. Next, the

dataset of daily ask and bid prices is used to estimate drift and volatility parameters. As the

granularity is thicker than in the first dataset, parameters are estimated over a longer time

period. This time period varies from two years of observations for the most recent issued

equities to several decades for other stocks. Before estimating model parameters, several

processings of the data need be conducted that we detail in the following paragraphs.

First, trades direction need be inferred. Trade direction indicates whether the order that led

to trade execution was a sell or a a buy. As is often the case for historical trade databases,

trade direction is not provided in the (high-frequency) dataset we examine. We thus use the
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tick rule (Holthausen et. al., 1987) to infer trade direction from the data. The tick rule has

the benefit of relying only on trade prices which is suitable for this study as quotes are not

available. The tick rule classifies a trade as a buy if it leads to an increase of the trade price,

and as a sell if the trade entails a decrease of the trade price. When the trade price remains

the same between two consecutive trades, the trade is classified as the one that precedes.

Then, trades with same timestamp need be distinguished. The timestamp of a trade is the

recorded point of time at which this trade occurred. It is displayed as a date and a time of

that date. Precision of the timestamp is one second. Due to high-frequency trading, multiple

trades may occur within one second. However, trade times accuracy is limited to one second

in the data, which makes that all trades that occured within the same second have the

same timestamp. We increase time accuracy by considering milliseconds in the study. When

several trades occur at the same second, we change trade times according to the following

rule: A time increment equal to one second divided by the number of trades is defined; The

first trade within the considered second keeps the same timestamp; For the following trades,

timestamps are successively increased by the time increment. As an examples, assume that

3 trades are recorded on any given day at 2:16:22 p.m. We then divide one second in three

equal time invervals; The first trade is assigned the timestamp 2:16:22.000 p.m.; For the

second trade 2:16:22 p.m. is replaced by 2:16:22.333 p.m.; For the third trade we replace

2:16:22 p.m. by 2:16:22.666 p.m..

Finally, we compute daily close mid-prices using daily close ask and bid prices. Daily close

mid-prices are then utilized to estimate drift and volatility parameters for all equities which

thus do not incorporate market liquidity frictions. Precisely, for each day of the dataset, the

daily close mid-price is computed as the average of the daily close ask price and the daily

close bid price. This calculation is conducted for all equities of the dataset and for all days

within the period that is considered.
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Figure 5: Data and data preparation.

All along this paper, it will be useful to consider several S&P 600 representative samples

of different sizes that will be utilized to conduct a variety of examinations. After data

processing, we have 570 equities among those belonging to the S&P 600 that may be used.

We select three subsets of respectively ten, twenty, and fifty percent of total equities in a way

that best represents the distribution of market capitalizations of S&P 600 companies. We

use systematic sampling (see Fuller (2009) for a reference textbook on sampling techniques)

to pick out the equities, which relies on ordering the population according to some criterion

and then selecting elements at regular intervals in that population. Precisely, consider an

available population of N equities from which only n < N should be retained. Defining

k = N/n as the length of the sampling interval, we use market capitalization as the selection

criterion in the following manner. All N = 57 equities are ranked by increasing market

capitalization. That is, the equity with the smallest capitalization is assigned rank 1 while

the equity with the largest capitalization gets rank N . A starting rank, denoted i, is drawn
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randomly from a discrete uniform distribution in {1, 2, ..., N}. Then, the rank of the first

selected equity is given by the nearest unit to i+k. The rank of the second selected equity is

given by the nearest unit to i+2k. This sequence continues until all n equities are determined.

Notice that if the rank becomes larger than N (the index of the company with the greatest

capitalization), then the algorithm loops to the beginning of the population. Using this

procedure, each equity has an equal probability to be picked out.

5 Model Calibration

We present in this section the methodology put forward to calibrate the model of this paper.

Estimation of liquidity parameters relies on the high-frequency trades dataset and requires

some further modelling that is developped in the first subsection. In contrast, estimation of

drift and volatility parameters is based on mid-price series with daily granularity. Output

estimates and confidence intervals are provided for the fifty-seven S&P 600 representative

equities set.

5.1 Model specification for liquidity parameters estimation

Recall that we previously defined the supply-demand curve as the function S(x) = S − αx.

We specify the supply-demand curve in a discrete-time dynamic setting to enable estimation

of liquidity parameters. Considering a sequence of n > 0 trades, let tk denote the time

at which the k-th trade occurs. Then, given a mid-price Sk and a traded quantity Xk, we

define the transaction price by Tk := Sk −αXk. The mid-price Sk represents the equilibrium

price of the asset and is driven by fundamental economic information. The other term of the

transaction price, that is −αXk, describes the price deviation from the mid-price entailed by a

trade quantity Xk under liquidity frictions. Brown et al. (2010) assume that the temporary

price impact, which reflects liquidity frictions, only depends on the rate of trading and is

independent of the permanent impact. In the same line we model the trade quantity Xk as

independent from the mid-price Sk.
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Aït-Sahalia et al. (2011) point out that when considering high-frequency data, assigning a

drift to price process dynamic becomes irrelevant both economically and statistically. We

hence model the mid-price process (Sk)k∈{1,...,n} as the discretized solution of an arithmetic

Brownian motion where drift is set equal to zero. Letting ∆tk := tk+1 − tk be the time

increment between two consecutive trades, it follows that dynamic of the mid-price is given

by Sk+1 = Sk + β
√

∆tkε1 where β and ε1 denote respectively volatility of the mid-price

and a standard normal random variable. Next, let ∆Xk := Xk+1 −Xk denote the quantity

increment between two consecutive trades. We model ∆Xk as a normal random variable with

mean and standard deviation respectively given by m and s.

Finally, transaction price increments between two consecutive trades need be considered to

estimate liquidity parameters. Let ∆Tk := Tk+1 − Tk denote the transaction price incre-

ment between any two consecutive trades. Under the modelling put forward in the previous

paragraphs we end up with the following main equation

∆Tk = β
√

∆tkε1 − α(m+ sε2) (8)

where ε1 and ε2 are two independent standard normal random variables.

5.2 Liquidity parameters estimation

For each equity in the data, the set of parameters {m, s, α, β} is estimated according to

the following path. First, parameters m and s are estimated by log-likelihood maximization

using the model ∆Xk = m + sε2 where ε2 is a standard normal random variable. Next,

parameters α and β are also estimated by log-likelihood maximization utilizing equation 8

where m and s are replaced by estimates obtained upon the previous step. Notice that for

each equity parameters m, s, and β are estimated only in order to get an estimate for α. In

the following these parameters are dropped and only parameter α is retained to conduct an

empirical analysis.

Quality of estimates {m, s, α, β} is assessed by computing ninety-five percent confidence

intervals. In the case of α and β, these confidence intervals are established by bootstrap as
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no closed-form expression can be established. Bootstrap methodology is as follows. For each

equity 1,000 paths (∆Xi)i∈[1,n−1] of trade quantity increments are simulated under estimates

m̂ and ŝ obtained on the historical series. Next, 1,000 paths (Ri+1)i∈[1,n−1] of returns are

simulated under parametrization {α̂, β̂}. Using simulated distributions of (α(k))k∈[1;10,000]

and (β(k))k∈[1;10,000], ninety-five percent confidence intervals are computed.

Table 3 in appendix C displays estimates as well as ninety-five percent confidence intervals

obtained for the set {m, s, α, β} of parameters belonging to the fifty-seven S&P 600 represen-

tative sample. An examination of table 3 enables noticing that parameters estimates always

belong to their associated confidence interval. Further, confidence intervals are very narrow

which implies that produced estimates are reliable for the sequel of this study.

5.3 Drift and volatility parameters estimation

We estimate in this subsection for each equity parameters µ and σ under the mid-price model

given by equation 1. Recall that this set of estimations is conducted on the daily dataset

of mid-prices, hence contrarily to liquidity parameters estimation, both drift and volatility

parameters may be assessed. Letting tj indicate a particular trading day, we define the

log-return between two consecutive trading days by Rj+1 = log(S(tj+1)) − log(S(tj)). The

log-return may then be rewritten as Rj+1 = (µ − σ2/2)∆ + σ
√

∆ε where ∆ := tj+1 − tj is

the time interval between two consecutive trading days and where ε is a standard normal

random variable. Notice that ∆ is now even as we are dealing with daily data and no longer

with high-frequency data. Using this latter equation of returns, we estimate parameters µ

and σ by log-likelihood maximization.

Estimates for µ and σ are provided by table 5 in appendix C for the fifty-seven S&P 600 repre-

sentative equities sample. In addition, table 5 compares output estimates to their respective

ninety-five percent confidence intervals. An examination of this table enables noticing that

parameters estimates always belong to the associated confidence interval. One may also re-

mark that confidence intervals for parameter µ may be relatively wide for certain equities.

This is explained by the fact that for some equities the number of observations may be rela-
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tively small (recall we excluded equities for which the number of observations is smaller than

two years) which reduces accuracy of confidence intervals. In contrast, confidence intervals

for parameter σ are always narrow.

6 Empirical Analysis

6.1 Set-up

In the following empirical experiments, a number of portfolio allocations are performed for

a six-month time management horizon on March 16, 2018, that is the first trading day fol-

lowing the calibration period. Several subsets of equities belonging to the S&P 600 index

are considered. These subsets which are of different sizes are all determined by using the

systematic sampling methodology presented previously in order to best represent S&P 600

capitalizations. Subsets that are considered are composed of 57, 114, and 285 equities (which

corresponds respectively to ten, twenty, and fifty percent of the 570 S&P 600 equities that

we may use). In addition to these different sets of equities, we include a risk-free asset whose

interest rate is that of six-month US government bonds, that is 1.91 per cent annually at

the date which is retained. Mean-Variance risk aversion parameter is set equal to θ = 5.

Value-at-Risk confidence level is equal to ninety-nine per cent as imposed by Basel III regu-

latory requirements. VaR rule risk threshold ρ is chosen in the following manner. The fund’s

portfolio manager or the fund’s risk team decides of an overall (monetary) risk threshold

representing a certain proportion of time 0 fund value. Letting τ ∈ (0, 1) being this pro-

portion, overall risk is given by τW0. Then, if the fund has invested in n different equities,

then the risk threshold ρ must satisfy the equality nρ = τW0. In the subsequent experiments

parameter τ is fixed equal to one per cent. The rationale for this modelling is that the risk

threshold is made dependent on both fund size and the number of invested equities. This

way, a larger fund is enclined to undergo a bigger loss per position. Further, if for a fixed fund

size the number of investments increases, the risk threshold per position should diminish. On

the contrary, the size rule threshold is fixed to 10,000 shares. As previously mentionned, this
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models the portfolio managers’ willingness to avoid holding too large positions in a liquidity

management perspective.

In the following it will be useful to assess diversification within the set of risky equities. For

this purpose we use a diversification index (DI in the sequel) put forward by Woerheide and

Persson (1993) which is the complement of the Herfindahl concentration index. Assume a

portfolio is composed of N + 1 assets where one is the risk-free asset. Letting ωi denote the

weight of asset i ∈ {0, 1, ..., N}, each portfolio must satisfy the equality ∑N
i=0 ωi = 1. As we

wish to assess diversification only among equities, the weight of risky asset i ∈ {1, ..., N} is

given by ω̃i = ωi/(1 − ω0). The diversification index is then defined by DI = 1 − ∑N
i=1 ω̃

2
i

where HI = ∑N
i=1 ω̃

2
i is the Herfindahl index. The diversification index takes values in (0, 1)

and the higher its value, the greater portfolio diversification.

6.2 Optimal allocation behavior under fund size increase

In a first experiment we investigate how optimal allocation and ex-ante mean-variance behave

as time 0 fund size increases. In particular, we compare marked-to-market allocation with

liquidity-adjusted allocation for both risk rules. Several subsets of investments opportuni-

ties are considered, representing either ten, twenty, or fifty percent of all S&P 600 equities

available for this study.

Table 2 provides optimal allocations of wealth between the risk-free asset on the one hand

and the set of equities on the other hand. In addition, it exhibits the diversification index as

well as ex-ante mean-variance under optimal allocations. The diversification index enables

synthesizing how diversification evolves as fund size grows. These data are displayed in the

marked-to-marked setting and in the liquidity-adjusted settings for fund sizes varying over

{$1 million, $10 million, $50 million, $100 million}.

As a first remark, notice that for both rules and all subsets of equities that are considered,

portfolio diversification within equities is always greater in the liquidity-adjusted setting

than in the marked-to-market setting. Further, diversification enhances in the former setting

as fund size grows. As an illustration, table 2 exhibits that for a fifty-seven equities set the
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diversification index under the size rule rises from 0.7847 to 0.9615 as fund size increases from

$1 million to $100 million. This may be explained as follows. As fund size expands, liquidity

frictions mechanically strenghten which reduces ex-ante mean-variance. Simply scaling up

positions’ size in a proportional manner without reviewing weights would be suboptimal as it

would ignore differences in equities’ liquidity. Hence to restrict the negative effect of liquidity

frictions on ex-ante performance, optimal allocation leads to altering invested weights. Notice

in addition that the diversification index in the marked-to-market setting is always very close

to the diversication index in the liquidity-adjusted setting for a $1M fund. The rationale for

this observation is that for this fund size liquidity frictions are relatively narrow which in

light of the last explanation leads to having quite similar weights.

An other interesting point regards the variation of mean-variance. One may notice that for

both rules and for all subsets of equities, ex-ante mean-variance reduces as fund size expands.

Table 2 for instance shows that for an investment set composed of 285 equities, mean-variance

under the VaR rule drops from 0.1265 to 0.0753 as fund size rises from $1 million to $100

million. This indicates that in the liquidity-adjusted setting mean-variance accounts for the

reduction of expected returns entailed by liquidity frictions. In other words the liquidity-

adjusted setting enables modelling ex-ante the behavior that fund performance erodes with

size. This size-performance relationship is widely corroborated by empirical literature on

realized returns (see e.g. Grinblatt and Titman, 1989, Chen et al., 2004, or Yan, 2008).

As a last remark, one may have noticed that weight invested in the risk-free asset is almost

always close to zero. For instance, the share of wealth invested in the risk-free asset under the

size rule when the set of investment opportunities is composed of fifty-seven equities is 0.0126

percent for a $100 million fund. Given that proportion invested in the risk-free asset is small

even in the marked-to-market setting, we put forward the following plausible explanation for

this behavior that we challenge in the next experiments. We claim that the relatively large

number of equities involved in the different sets of investment opportunities leads to a high

level of diversification which distracts the portfolio manager from investing in the risk-free

asset.

32



6.3 Ten-equities case

In order to investigate in greater detail how optimal allocation behaves under fund size

increase, we focus in this subsection on a particular case where the set of investment oppor-

tunities is restricted to ten equities and the risk-free asset. Precisely, the equities we deal

with are the top ten capitalizations of the S&P 600 index. We particularly concentrate on

how diversification within the set of equities and weight invested in the risk-free asset both

alter with fund size.

Figure 6 exhibits two bar charts, each of those depicting optimal allocations under one of

of the risk rules considered in the present study. In each panel the left-most bar depicts

optimal allocation in the marked-to-market setting. Then, other bars on the right provide

optimal allocation in the liquidity-adjusted setting for fund sizes varying over {$1 million,

$10 million, $50 million, $100 million}. In addition, table 6 in appendix D displays optimal

weights for all eleven assets and for each fund size. It also exhibits ex-ante mean-variance

under optimal allocation as well as portfolios’ diversification indexes.

Figure 6: Optimal allocation behavior under VaR and size rules for a ten-equities set.
For both rules the proportion of wealth invested in the risk-free asset (US 6M Bond) increases with
fund size. Further, diversification among equities enhances with fund size under both risk rules. In
particular, under the VaR rule eight equities are involved in optimal portfolio composition when
fund size is $1 million. To confine the negative effect of liquidity frictions on ex-ante mean-variance,
optimal allocation for a $50 million fund size includes ten equites.

An examination of figure 6 in combination with table 6 enables confirming the previous re-
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sult that diversification within the set of equities enhances as fund size increases. As an

illustration, table 6 shows that under the VaR rule the diversification index rises from 0.8599

to 0.8732 as fund size enlarges from $1 million to $10 million. However, a closer look at the

ten-equities allocation enables providing more insight about this increase of diversification.

Interestingly, notice that even if the set of investment opportunities is constituted of eleven

assets, in the marked-to-market setting wealth is invested in only nine of them. This allo-

cation depends on the expected return of the different assets relatively to their respective

variance, on correlations with each other, as well as on investor’s risk-aversion level. Remark

that under the VaR rule, the number of investments moves up as fund size augments. When

fund size is small ($1 million), the number of investments is the same as in the marked-

to-market setting (eight equities and the risk free asset) because liquidity frictions are very

narrow. In comparison, when fund size is $50 million, optimal allocation leads to investing in

all equities in order to limit the negative effect of liquidity frictions on ex-ante mean-variance.

Indeed table 6 reveals that proportions of wealth invested in equities B and IBKR rise from

zero percent to respectively 2.15 percent and 2.66 percent under the VaR rule. Notice that

under the size rule this increase of the number of investments also occurs. To conclude we

claim that diversification enhancement among equities is performed not only by reviewing

weights of already existing investments, but possibly also by adding new equities from the

set of investment opportunities.

We explain this behavior as follows. When fund size is small, liquidity frictions are negligible,

hence equities’ liquidity features barely matter in liquidity-adjusted portfolio allocation which

is thus close to marked-to-market allocation. Thus some equities whose return-to-risk ratio is

low are not incorporated in optimal allocation as it would otherwise decrease ex-ante mean-

variance. However, equities’ liquidity becomes more concerning as fund size increases. Due

to liquidity frictions, increasing size of already existing positions reduces return-to-risk ratio

for these investments. It then becomes interesting for the fund to invest in equities that were

left aside from optimal allocation for smaller fund sizes. Indeed, even if these latter equities

are endowed with poorer return-to-risk ratios than already invested equities, they may be

endowed with better liquidity which makes them attractive for larger fund sizes. Further, this
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explanation is supported by the empirical finding by Pollet and Wilson (2008) that managers

seek new investment opportunities only when liquidity constraints become significant.

An other point highlighted by figure 6 and table 6 regards the allocation towards the risk-

free asset. First, as stated in the previous experiment, we find support that the proportion

of wealth invested in the risk-free asset is dependent on the number of equities in the set

of investment opportunities. Indeed in the present case proportion of wealth invested in

the US 6-month bond is 13.95 percent in the marked-to-market setting which is much more

significant than values obtained in table 2. More interestingly, figure 6 reveals that in the

liquidity-adjusted setting share of wealth invested in the risk-free asset increases with fund

size at the expense of the proportion invested in the set of equities. Table 6 for instance

indicates that under the VaR rule 18.11 percent of wealth is invested in the US 6-month

bond for a $1 million fund while for a $10 million fund this share enhances to 37.10 percent.

Recall the explanation for this behavior that we already developed in section 3. Under

fund size increase, a myopic marked-to-market allocation simply upscales already existing

positions. Hence quantities of all equities held increase together with VaR of risky positions.

The liquidity-adjusted value incorporates the liquidity cost stemming from the liquidation

that is necessary to satisfy either the VaR rule or the size rule. Hence this liquidity cost

reduces the return-to-risk ratio of equities which finally leads to an increase of the allocation

towards the risk-free asset.

Further, the behavior highlighted in the previous paragraph may also be analyzed from a

risk-management perspective. In order to face future and uncertain liquidity needs, portfolio

managers may wish to hold a cushion of cash. However, given a certain fund size if width

of the set of investment opportunities is large, then liquidating part of the holdings in order

to convert them into cash generates few liquidity frictions and there is no need to hold the

risk-free asset. In contrast, if width of investment opportunities is small, then liquidating

some holdings at short notice generates strong liquidity frictions and it is then preferable to

hold a cushion of cash.
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6.4 Out-of-sample experiment

As a next experiment, we conduct a number of out-of-sample simulations to investigate the

extent to which liquidity-adjusted allocation leads to a better risk-adjusted performance than

marked-to-market allocation. Methodology and setting of the experiment are as follows. For

a variety of fund sizes and sets of investment opportunities we take over optimal allocations

in both the marked-to-market setting and the liquidity-adjusted setting. Next, for each set

of investment opportunities that is considered, we simulate 100,000 times the price vector of

equities belonging to this set over a six-month period starting the first day after calibration

period. Then, for each draw time 1 price vector is combined with time 0 optimal allocation

to obtain final portfolio value.

However, two different scenarios are considered at time 1. In the first scenario which we refer

to as unstressed scenario, there are no liquidity frictions and the fund may either keep the

portfolio unchanged or liquidate it which amounts to the same outcome in terms of portfolio

value (marked-to-market). In the second scenario which we refer to as as stressed scenario, the

fund faces liquidity stress and is required to unwind the portfolio entirely. This entails that

the value retrieved at time 1 is the liquidation value. Finally, in both scenarios we compare

for each fund size and each set of investment opportunities the risk-adjusted performance of

the optimal portfolio under marked-to-market allocation with that of the optimal portfolio

under liquidity-adjusted allocation.

Portfolios’ performance is assessed applying mean-variance and the Sharpe ratio (Sharpe,

1966; Sharpe, 1994) to distributions of simulated returns. We use the Sharpe ratio in addition

to mean-variance as contrarily to this latter measure, the Sharpe ratio is neutral towards

investors’ preferences2. Funds’ performance may vary very significantly depending on the

allocation that is performed at time 0 (marked-to-market or liquidity-adjusted) and on the

scenario that occurs at time 1. This is exhibited by tables 7 (below) and 9 (appendix E) that

we comment in the sequel.
2Precisely, the Sharpe ratio does not incorporate a risk-aversion parameter and for any given position is

simply defined by the average return divided by standard deviation of returns.

36



Scenario Unstressed Stressed
Allocation MtM Size rule VaR r. MtM Size r. VaR r.

Fund Size: $10 million
Sharpe ratio 1.4371 1.4344 1.4068 1.0853 1.1851 1.2410
Mean-variance 0.1969 0.1868 0.1525 0.1174 0.1368 0.1472

Fund Size: $50 million
Sharpe ratio 1.4371 1.2356 1.2048 -1.2710 0.7944 0.8629
Mean-variance 0.1964 0.1250 0.0849 -0.2187 0.0627 0.0744

Fund Size: $100 million
Sharpe ratio 1.4371 1.1457 1.2026 -7.7654 0.4838 0.7943
Mean-variance 0.1964 0.0810 0.0407 -0.6851 0.0141 0.0351

Figure 7: Simulated performance statistics in the 57 equities case. In the unstressed
scenario for all displayed fund sizes both the Sharpe ratio and mean-variance are larger under
marked-to-market allocation than under liquidity-adjusted allocation (Size rule and VaR rule).
This simply shows that in the absence of liquidity frictions at maturity the best time 0 allocation is
the marked-to-market allocation. In contrast, in the stressed scenario the Sharpe ratio and mean-
variance are greater under liquidity-adjusted allocation than under marked-to-market allocation.
In particular, for large funds risk-adjusted performance becomes negative under marked-to-market
allocation while it remains positive under liquidity-adjusted allocation. This unveils that a time 0
allocation anticipating a liquidity stress at time 1 offers ex-post a better risk-adjusted performance
than an allocation which is myopic towards liquidity frictions.

Let us first examine risk-adjusted performance statistics when at time 1 the unstressed sce-

nario occurs. Remark that for all displayed fund sizes, the Sharpe ratio and mean-variance

are larger under marked-to-market allocation than under liquidity-adjusted allocation. As

an illustration, when fund size is $10 million, the Sharpe ratio and mean-variance are re-

spectively worth 1.4371 and 0.1964 in the marked-to-market setting. In contrast, in the

liquidity-adjusted setting under the size rule the Sharpe ratio is worth 1.4344 and mean-

variance 0.1929. This lower performance in the liquidity-adjusted setting is explained by

the fact that portfolios are constrained by either the size rule or the VaR rule which aim at

reducing respectively liquidity and shortfall risk. Then, less risk-taking entails lower returns.

Further, the adjustment of time 1 portfolio value to liquidity accounts for liquidity frictions

which erodes portfolio performance. Hence, the conjunction of these two elements leads to

having smaller risk-adjusted performance outputs under liquidity-adjusted allocation.
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In addition, notice that in the unstressed scenario performance spreads between marked-

to-market allocation and liquidity-adjusted allocation significantly increase with fund size.

For instance, when fund size rises from $10 million to $100 million the Sharpe ratio under

marked-to-market allocation remains stable at 1.4371 while under size rule allocation its value

drops from 1.4344 to 1.1457. As in the liquidity-adjusted setting liquidity frictions become

more consequential with fund size augmentation, optimal allocation deviates increasingly

from marked-to-market allocation which explains the rise of the performance spread.

Next, we analyze risk-adjusted performance when at time 1 the stress scenario arises. As

a first point, remark that in opposition to the unstressed scenario, for any given fund size

risk-adjusted performance is higher under liquidity-adjusted allocation than under marked-

to-market allocation. For example, for a $10 million fund size mean-variance under marked-

to-market allocation is worth 0.1174 in contrast to 0.1472 under VaR rule allocation. The

explanation for this outcome is that liquidity-adjusted allocation chooses at time 0 a portfolio

that anticipates a plausible stress scenario at time 1 requiring to liquidate partially positions

held.

Further, one may observe that risk-adjusted performance spreads between marked-to-market

allocation and liquidity-adjusted allocation raise as fund size expands. Interestingly, for

large funds ($50 million and $100 million), liquidity-adjusted allocations enable having pos-

itive risk-adjusted performance outputs while these latter would be negative under marked-

to-market allocation. For instance, as fund size rises to $50 million, mean-variance under

marked-to-market allocation drops to -0.2187 while under VaR rule allocation it keeps a pos-

itive value of 0.0744. This latter statement illustrates the benefit of choosing at time 0 a

portfolio in a way that accounts for liquidity frictions at time 1.

In addition, we investigate if the stylized facts presented in the previous paragraphs still hold

when the set of investment opportunities is extended from 57 to 114 equities. An examination

of table 9 in appendix E enables concluding that results obtained for the fifty-seven equities

case in the unstressed scenario are still valid when the set of investment opportunities is in-

creased to 114 equities. That is, for all displayed fund sizes marked-to-market allocation leads

to a better risk-adjusted performance than liquidity-adjusted allocation. Let us next inspect

38



the stress scenario. First, it is recovered that for large funds liquidity-adjusted allocation leads

to greater risk-adjusted performance than marked-to-market allocation. A change however

occurs when one considers small funds. In opposition to the 57 equities case, when fund size

is small ($10 million) risk-adjusted performance is larger under marked-to-market allocation

than under liquidity-adjusted allocation. As an illustration, the Sharpe ratio under marked-

to-market allocation is worth 1.1378 against 1.0263 under liquidity-adjusted allocation. This

change may be explained as follows. Given that the set of investment opportunities is in-

creased, for an unchanged size the fund on average holds smaller positions. This entails that

even in the stress scenario liquidity frictions are relatively narrow. Hence marked-to-market

allocation leads to a better risk-adjusted performance.

As a conclusion to this experiment, the major contribution of liquidity-adjusted allocation

to portfolio risk-adjusted performance must be emphasized. In an unstressed scenario free of

liquidity frictions, the liquidity-adjusted allocation slightly reduces risk-adjusted performance

for small funds. Only for very large funds the liquidity-adjusted allocation may noticeably

underperform compared to marked-to-market allocation. This is however the counterpart

to having higher risk-adjusted performance under liquidity-adjusted allocation in a stress

scenario. Indeed in a stress scenario liquidity-adjusted allocation avoids having strongly neg-

ative risk-adjusted performance as obtained under marked-to-market allocation that would

probably lead funds to bankruptcy.

7 Conclusion

We put forward a model of asset allocation that accounts for market liquidity frictions.

The model recovers the empirically documented fact that fund performance diminishes with

fund size. It enables prescribing how funds portfolio managers should react as new financial

resources enter the fund. Economical relevance of the developed setup is tested through

comparative static tests. Finally, we calibrate the model on S&P 600 data to conduct a

number of empirical experiments.

We obtain the following main results. First, given a certain fund size, diversification within
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stocks is enhanced in the liquidity-adjusted setting compared to the setting where market

liquidity is not taken into account. Further, diversification in the liquidity-adjusted setting

increases with fund size. This latter result significates that liquidity-adjusted allocation alters

weights as fund size augments in order to restrain the negative effect of liquidity frictions

on ex-ante performance. However, diversification is not only obtained by a simple revision

of weights in already existing investments. Given a certain set of investment opportunities,

empirical experiments show that the model prescribes to increase the number of investments

as fund size rises. This result is in line with the empirical finding by Pollet and Wilson

(2008) that managers seek new investment opportunities when liquidity constraints become

significant. In addition, we obtain that wealth proportion invested in the risk-free asset also

rises with fund size.

Outcomes obtained in the present paper demonstrate that investment funds should account

for market liquidity when making investment decisions. Especially large funds are exposed to

liquidity risk and should revise portfolio allocation under incoming investment capital. Incor-

porating market liquidity in optimal allocation may not only increase performance compared

to the setting where frictions are ignored, but it may also protect against significant capital

erosion in a liquidity event turmoil.
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Appendix

Appendix A. Model diagram

Figure 8: Model Diagram
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Appendix B. Derivation of liquidity-adjusted value.

We derive the closed-form expression for V R1 in the case where R is the size rule given by

R = RS =
{
q ∈ RN+1 : qi ≤ τi, i ∈ {1, ..., N}

}
. Optimization problem 3 defining V R1 may

then be rewritten as

Max
r∈RN+1

q0 +
N∑
i=1

Si1(qi − ri) +
N∑
i=1

ri(Si1 − αiri) subject to qi − ri ≤ τ i, i ∈ {1, ..., N}.

We solve this problem using a Lagrangien that we define as

L(r1, ..., rN , λ1, ..., λN) := q0 +
N∑
i=1

Siqi −
N∑
i=1

αi(ri)2 +
N∑
i=1

λi
[
τ i − (qi − ri)

]

where for i ∈ {1, ..., N} parameters λi denothe the Lagrange multipliers. Partial derivatives

with respect to ri and λi yield the following system of first order conditions which must be

solved:
∂L

∂ri
(r1, ..., rN , λ1, ..., λN) = −2αiri + λi = 0 (9)

∂L

∂λi
(r1, ..., rN , λ1, ..., λN) = τ i − (qi − ri) = 0 (10)

Equation 9 yields ri = λi/(2αi) that we replace in equation 10. It follows that optimal value

for λi is given by λi∗ = 2αi(qi − τ i). Next, optimal quantity ri∗ is obtained by replacing

the expression of λi∗ in equation 10 which gives the solution ri∗ = qi − τ i. As a final step,

replacing ri by the expression of ri∗ in the objective function yields the closed-form solution

given by equation 4.

Appendix C. Parameters estimates.
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Appendix D. Optimal allocations in the ten-equities case.

Setting MtM VaR rule Size rule
Fund Size ($) - 1M 10 M 50 M 100 M 1 M 10 M 50 M 100 M
US 6M 13.47 18.11 37.10 60.64 71.30 13.47 21.51 53.35 68.11
ALE 9.50 8.13 4.39 2.22 1.69 9.51 8.07 2.60 1.52
B 0.00 0.00 2.37 2.15 1.71 0.00 0.22 2.42 1.68
CMD 16.33 15.24 9.47 4.09 2.63 16.33 14.25 5.46 3.25
HCSG 13.86 11.92 5.84 2.34 1.57 13.86 7.66 2.59 1.52
IART 8.73 8.50 6.44 3.25 2.19 8.73 7.74 3.65 2.31
IBKR 0.00 0.00 0.00 2.66 2.46 0.00 0.00 2.60 2.44
ICUI 16.78 15.97 11.03 4.97 3.19 16.78 17.68 8.50 5.02
MKSI 4.70 5.34 7.17 5.95 4.49 4.70 6.22 6.65 5.00
NKTR 9.18 9.42 10.05 8.31 6.44 9.18 9.85 8.54 6.72
SGMS 7.45 7.37 6.15 3.40 2.32 7.45 6.81 3.65 2.42

MV 0.0813 0.0789 0.0661 0.0465 0.0372 0.0813 0.0793 0.0568 0.0428
DI 0.8573 0.8599 0.8732 0.8739 0.8746 0.8573 0.8574 0.8751 0.8766

Table 6: Optimal allocation behavior under VaR and size rules for a ten-equities set.
For both rules the proportion of wealth invested in the risk-free asset (US 6M Bond) increases
with fund size. Further. rise of the diversification index exhibits the enhancement of portfolio
diversification within risky assets. Further, diversification among equities enhances with fund size
under both risk rules. Finally, ex-ante mean-variance reduces in the liquidity-adjusted setting due
to size-driven liquidity frictions.
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Appendix E. Out-of-sample simulations: 114 equities case.

Scenario Unstressed Stressed
Allocation MtM Size rule VaR r. MtM Size r. VaR r.

Fund Size: $10 million
Sharpe ratio 1.2338 1.1226 1.1347 1.1378 1.0263 1.0596
Mean-variance 0.1426 0.1259 0.1266 0.1234 0.1020 0.1074

Fund Size: $50 million
Sharpe ratio 1.2338 1.1629 1.1846 0.7171 0.8077 0.9282
Mean-variance 0.1427 0.1065 0.0960 0.0502 0.0652 0.0852

Fund Size: $100 million
Sharpe ratio 1.2338 1.0774 1.0579 0.0922 0.5243 0.6633
Mean-variance 0.1427 0.0438 0.0655 -0.0424 0.0219 0.0421

Figure 9: Simulated performance statistics in the 114 equities case.
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