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Abstract  
 

This paper revisits the pricing of options, in a context of financial stress, when the underlying 
asset’s returns displays skewness and excess kurtosis. For that purpose, we use a Cornish-
Fisher transformation for valuing option contracts with an exact formula allowing for heavy-
tails. 
An application to the FTSE 100 stock index option contracts during October 2008 provides 
evidence about the capability of the Cornish-Fisher model to improve calibration and pricing 
performance during a period of stress. 
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1 Introduction

Financial markets have been subject to stress periods throughout their history. This raises
the question of whether option pricing models have the ability to derive fair contract prices
and risk measures in taking such potential stress conditions into account. Although the fi-
nancial literature on option theory has documented many well-known pervasive features that
affect pricing, these are not taken into account in the classic Black-Scholes-Merton frame-
work.

In order to remedy the assumption of a Gaussian marginal distribution for the underlying
asset returns in the classical Black-Scholes-Merton model, three principal approaches are
proposed in the literature: stochastic volatility models1, jump-diffusion process for the price
dynamics2, and stochastic volatility with a jump-diffusion process3. There are also more
general non-Gaussian alternative classes for the underlying asset4.

Alternatively, others have considered semi-parametric option pricing formulae, particularly
when it is not always possible to present the exact distribution in a tractable form; therefore,
much effort has been made to approximate the exact distribution. Jarrow and Rudd (1982)
model the distribution of stock price with a Edgeworth series expansion. Corrado and Su
(1996a) model the distribution of stock log prices with a Gram-Charlier series expansion,
while Corrado and Su (1996b) performed the same type of study with an Edgeworth expan-
sion5. This method focuses on the skewness and kurtosis deviation from normality for stock

1Scott (1987), Wiggins (1987), Johnson and Shanno (1987), Hull and White (1987, 1988), Stein and Stein
(1991), Heston (1993), Nandi (1998), Duan (1995), Heston and Nandi (2000), Hagan, Kumar, Lesniewski
and Woodward (2000).

2Merton (1976), Bates (1988), Camara and Heston (2008).
3Bates (1996), Bakshi, Cao and Chen (1997), Das and Sundaram (1999), Bates (2000), Duffie, Pan and

Singleton (2000), Pan (2002), Eraker, Johannes and Polson (2003), Eraker (2004), Duan, Ritchken and Sun
(2007).

4Madan and Seneta (1990), Madan and Milne (1991), Madan Carr and Chang (1998), Bouchaud, Sornette
and Potters (1997), Barndorff-Nielsen (1998), Eberlein, Keller and Prause (1998), Aparicio and Hodges
(1998), De Jong and Huisman (2000), Matacz (2000), Corrado (2001), Savickas (2002), Borland (2002),
Carr, Geman, Madan and Yor (2002, 2003), Rockinger and Abadir (2003), Kleinert (2004), Dupoyet (2004),
Pochard and Bouchaud (2004), Borland and Bouchaud (2004), Carr and Wu (2004), Dutta and Babbel
(2005), Sherrick, Garcia and Tirupattur (1996), Albota and Tunaru (2005), Markose and Alentorn (2005),
Bakshi, Madan and Panayotov (2008), Aboura, Valeyre and Wagner (2014).

5See Barton and Dennis (1952) or Stuart and Ord (1987) for discussion on the distinction between
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returns. For clarity, it should be noted that, to correct the bias of the Black-Scholes (1973)
model, Corrado and Su (1996a) sum up the Black-Scholes formula with the adjustment terms
accounting for non-normal skewness and kurtosis by truncating the expansion after the fourth
moment. Under risk-neutral probability, they apply the Gram-Charlier density function to
derive European call price formula. The main advantage of Gram-Charlier and Edgeworth
expansions is that they allow for additional flexibility over a normal density because they
introduce a skewness and kurtosis parameter in the distribution. However, these approaches
have noticeable drawbacks. Rockinger and Jondeau (2001) note that, since Gram-Charlier
expansions are polynomial approximations, they have the important drawback of yielding
negative values for a probability. Actually, it is not guaranteed to be positive, and therefore
may violate the domain of validity of the probability distribution. This arises from the fact
that the expansions are usually truncated after the fourth power, which may imply negative
densities over some interval of their domain of variation (Leon, Mencia and Sentana (2007)),
thereby probabilities can be negative for such expansions. This is an undesirable outcome
because this situation might occur when the financial markets are in distress, which means
that these nearly Gaussian distributions may fail when they are needed most. Therefore,
imposing positivity constraints will require the Gram-Charlier approach to be used only for
weak departures from normality. Moreover, Blinnikov and Moessner (1998) observe that for
strongly non-Gaussian cases, Edgeworth expansion has a small domain of applicability in
practical cases, since it diverges like the Gram-Charlier series. Note that Gram-Charlier is
itself a particular density expansion of the Edgeworth expansions class.

Despite the large number of published works on the issue of pricing derivatives during stress
periods, the idea to consider a weakly non-Gaussian distributions with an exact formula that
allows for skewness and excess kurtosis, to our best knowledge, has been so far ignored. Here
we aim to address this issue by deriving a weakly-non Gaussian distribution to price option
contracts. We believe that pricing option contracts during financial stress periods induces
a trade-off between sophistication (to account for marketplace stylized facts) and simplicity
(to avoid any type of risk arising from the model). Most of the aforementioned papers have
probably underestimated this trade-off, either because the model is too complex and risky

Edgeworth and Gram-Charlier expansions.
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for the business purpose or it includes approximations that might lead to errors. We argue
that the Cornish-Fisher expansion addresses this trade-off by considering risk neutral non-
normal third and fourth moments without any approximation. Actually, this expansion is
a way to transform a standard Gaussian random variable into a non-Gaussian random vari-
able. The transformation needs to be bijective so that the quantiles of the distribution are
conserved. However, computing the moments of the distribution resulting from the Cornish-
Fisher transformation, although simple in theory, is difficult in practice.

Fortunately, the use of Cornish-Fisher expansion helps with avoiding two main typical pit-
falls in these series expansions. First and most important, the area of the domain of validity,
expressed in actual skewness and kurtosis, seems to give sufficient room for manoeuvre in
most circumstances, which is not necessarily the case for other expansions. This is a major
point for avoiding the case of negative probabilities, typical for higher order expansions,
when pricing far-from the money option contracts. What can be shown is that the domain
of validity of the Cornish-Fisher is much wider than in the Gram-Charlier case. Second, the
transformation gives a simple relation between the skewness and kurtosis parameters and
the Value-at-Risk or Expected Shortfall measures.
Finally, our formula provides simple and flexible ways to fit a large variety of skewness and
kurtosis data. Indeed, it is written in a simple form, following Corrado and Su (1996a,b),
where the third and fourth moments are additional parameters that correct the Black-
Scholes-Merton formula. This simplifies the costly numerical analysis, as the model is easy
to estimate but also simple to interpret.

This research is relevant for three principal reasons. First, it addresses the issue of option
pricing with a weakly non-Gaussian model that accounts for explicit skewness and kurtosis
having a large domain of validity. Second, it addresses the issue of option pricing in a context
of financial stress. To our best knowledge, no existing studies compare their model’s per-
formance during stress periods using intra-day data and short-term out-the-money options,
which are the major sources of mispricing. In contrast, our database is mainly composed by
short-term out-the-money contracts. Third, our model compares the model’s performance
to a well-known trading rule, that is used as a benchmark, while the vast majority of the
existing studies do comparisons with the Black-Scholes (1973) model or its extensions. This
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well known trading rule, called ’sticky strike’, was popularized by Derman (1999) to manage
the smile dynamics. The sticky strike rule models the volatility as remaining constant to
a given strike, whatever the underlying asset moves up or down instantaneously. Ciliberti,
Bouchaud and Potters (2008) show that the sticky strike rule is exact for small maturities.
Surprisingly, there are few studies using this rule for option pricing (Hagan, et al (2002),
Daglish, Hull and Suo (2002) and Ciliberti, Bouchaud and Potters (2008)).

The main contribution of this paper is to derive a weakly non-Gaussian European-style op-
tion pricing model, allowing for explicit third and fourth moments estimated implicitly from
the derivatives market. To our knowledge, no research paper has addressed the issue of
pricing option with a Cornish-Fisher transformation.

The paper is organized as follows: Section 2 displays the characteristics of the novel model;
Section 3 exposes the empirical results; and Section 4 summarizes and concludes.

2 The Cornish-Fisher option pricing model

2.1 The Cornish-Fisher transformation

The Cornish-Fisher expansion, if properly used (Maillard (2012)), allows the generation of
distributions with the desired volatility, skewness and kurtosis. The Cornish-Fisher expan-
sion relies on the polynomial transformation of a normal standard distribution z into a
distribution Z:

Z = z + (z2 − 1)× s

6
+ (z3 − 3z)× k

24
− (2z3 − 5z)× s

36
(1)

s and k are parameters which determine skewness and kurtosis, but except for very low
values, they do not coincide with effective skewness s∗ and kurtosis k∗. The parameters will
be computed to achieve the effective skewness and kurtosis:

s∗ =
M3

M1.5
2

(2)
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k∗ =
M4

M2
2

− 3 (3)

We compute the moments of the Cornish-Fisher distribution:

M1 = 0

M2 = 1 + 1
96
k2 + 25

1296
s4 − 1

36
ks2

M3 = s− 76
216
s3 + 85

1296
s5 + 1

4
ks− 13

144
ks3 + 1

32
k2s

M4 = 3 + k + 7
16
k2 + 3

32
k3 + 31

3072
k4 − 7

216
s4 − 25

486
s6 + 21665

559872
s8

− 7
12
ks2 + 113

452
ks4 − 5155

46656
ks6 − 7

24
k2s2 + 2455

20736
k2s4 − 65

1152
k3s2

(4)

As Z is non-standard (zero mean but variance slightly different from one), we will use the
transformation leading to a new definition of Z by retaining:

Z =
z + (z − 1)× s

6
+ (z3 − 3z)× k

24
− (2z3 − 5z)× s

36√
1 + 1

96
k2 + 25

1296
s4 − 1

36
ks2

(5)

Obviously, this new definition has the same higher moments than the initial transformation.

Recall that both the Cornish-Fisher and Gram-Charlier expansions are means of transform-
ing a Gaussian distribution into a non-Gaussian distribution, the skewness and the kurtosis of
which can be controlled if the transformations are properly implemented. Their expansions
differ in that the Cornish-Fisher is a transformation of quantiles, whereas the Gram-Charlier
is a transformation of a probability density. Both transformations must be implemented
with care, as their domain of validity does not cover the whole range of possible skewness
and kurtosis coefficients. Figure 1 exhibits the domain of validity of both expansions in the
skewness-kurtosis plane. What is most appealing, in the Cornish-Fisher expansion, is that
its domain of validity is much wider than in the Gram-Charlier case. This characteristic
reveals, unambiguously, how much more realistic the Cornish-Fisher expansion is, as com-
pared to the Gram-Charlier expansion; judging by the magnitude of the skewness-kurtosis
domain, which potentially encapsulates most of the tradable assets.
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Figure 1: Domain of validity of the Cornish-Fisher and Gram-Charlier models
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2.2 The option pricing model

The Cornish-Fisher expansion is a simple transformation of quantiles, but the corresponding
probability density is rather complicated. There is currently no way to compute the integrals
analytically, despite numerous approaches. We therefore decided to proceed with necessary
numerical computations to compute the quantiles. Our computations give the Cornish-Fisher
transformation’s density of probability:

Φ(Z) =
1√
2π

e−
z2

2

z2
(
k
8
− s2

6

)
+ z s

3
+ 1− k

8
+ 5s2

36

(6)

with:

z = a
3

+
3

√
−q+Z

b
+
√

(q−Z
b
)2+ 4

27
p3

2
+

3

√
−q+Z

b
−
√

(q−Z
b
)2+ 4

27
p3

2

a = −s
k
8
− s2

3

b = k
24
− s2

18

p =
1− k

8
+ 5s2

36
k
24
− s2

18

− 1
3

s2

36

( k
24
− s2

18
)2

q = −s
k
8
− s2

3

− 1
18

s(1− k
8
+ 5s2

36
)

( k
24
− s2

18
)2
− 2

27

s3

216

( k
24
− s2

18
)3

We use the weakly non-Gaussian probability density Φ(.), derived from the Cornish-Fisher
expansion, to control for skewness and excess kurtosis. Φ(Z) is the density evaluated on the
random variable Z. Assuming risk-neutrality, we derive theoretical European call option for-
mula as the value of the expected payoff, discounted by the risk-free rate rf at the contract’s
time to maturity (T − t). For a call option CCF with strike K and underlying asset price ST
at maturity T , the value will be given by:

CCF = e−rf (T−t)
∫ +∞

−∞
(ST −K)+Φ(Z)d(Z) (7)

If the skewness and the excess kurtosis are zero, this model reduces to the Black-Scholes
(1973) model with CCF = CBS when s∗ = 0 and k∗ = 0.

To illustrate the model application, we attempt to reproduce smile curves as a function of
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kurtosis and skewness. The model allows to compute an option price depending on maturity,
risk-free interest rate, volatility and skewness and kurtosis. To do so, we infer the implied
volatility for various levels of strike prices. The computations are made for a call option with
one-month maturity, a 2% risk-free rate and a 20% volatility.

Figure 2 reproduces volatility smiles according to various levels of kurtosis and skewness.
First, the deeper is the kurtosis, the higher is the volatility curvature. Second, the impact
of skewness leads to a rotation in the smile where a negative skewness induces a negative
slope.
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Figure 2: Volatility smiles according to kurtosis and skewness
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3 The empirical results

3.1 The dataset

The data set6 consists of European option contracts on the FTSE 100 stock index during
October 2008. The data set contains 364 intra-daily observations from October 1 to October
31. Bid-ask spreads are used in the study for quality measure. This month is critical since
it includes the highest volatility peaks of the 2008 financial crisis. It therefore allows for
testing our model on one of the most financially distressed periods, contrary to the approach
of the vast majority of research papers. Three types of option contracts are discarded. First,
only the two shortest maturities are used due to computational time consideration, with a
maximum time horizon of three months. The risk-free interest rates are the two week Libor
rates. Second, only near-the-money and out-the-money prices are used, since out-the-money
contracts are more liquid than in-the-money contracts. Third, in order to have only signifi-
cant option prices, we retain at each strike, the lowest spread identified from 16:00 to 16:04.
Figure 3 plots the volatility smile as a function of strike price K during October 2008.

6We would like to thank Sebastien Valeyre for having provided us with this data set that comes from
Liffe-Nyse-Euronext.
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Figure 3: Volatility smiles in October 2008

3.2 The model estimation

We consider a minimizing procedure for the model estimation. The first step corresponds to
the in-the-sample model calibration, while the second step corresponds to the out-the-sample
valuation. For the in-the-sample procedure, the model is calibrated on the intra-daily data
by minimizing the following sum of squared errors:

min
(σ,s∗,k∗)

(
Nt∑
K=1

e2K,t

)
(8)

With eK,t representing the normalized difference (CMarket−CCF

St
) between the market call op-

tion prices CMarket and the theoretical Cornish-Fisher call option prices CCF for the Kth

strike price with K = 1, ..., NT and the underlying stock index price St at date t. The
estimation procedure is implemented on the set of parameters (σ, s∗, k∗) that is estimated
implicitly by the quadratic minimization procedure, yielding the implied volatility, the im-
plied skewness, and the implied kurtosis, respectively.
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To assess the differences between market prices and model prices for an out-the-sample fit,
we compute the mean price forecast error to quantify the error magnitude.

Nt∑
K=1

e2K,t (9)

With eK,t again representing the normalized difference between the market call option prices
and the call option prices computed by the Cornish-Fisher model for the Kth strike price
with K = 1, ..., NT and the underlying stock index price St at date t. The set of esti-
mated parameters (σ, s∗, k∗) are computed from the in-the-sample calibration and remain
constant for the one-day ahead out-the-sample pricing; this assumption is reasonable since
these parameters are relatively stable for short horizons. Hence, during the out-the-sample
procedure, we re-compute option prices of the current day using the previous day’s implied
volatility, implied skewness, and implied kurtosis; the interest rate r is set constant for the
period. Therefore, only the underlying stock index price St and the time to maturity (T − t)
change.

3.3 The empirical findings

Table 1 summarizes the model calibration and pricing on FTSE 100 call options for the
month of October 2008. The choice of this month is motivated by the highest concentra-
tion of volatility peaks during the 2008 financial crisis. The option mispricing overall affects
short-term contracts and out-the-money contracts. For that reason, it is relevant to test the
Cornish-Fisher model on the October 2008 month options, which consist of short-term (less
then 3 months) and generally deep-out-the money contracts (average moneyness defined by
(S/K) is 0.90). Therefore, we posit that the Cornish-Fisher model is able to fairly price the
option contracts characterized by underlying asset prices that are weakly non-Gaussian.
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Table 1: Cornish-Fischer Model Calibration and Pricing

The in-the-sample fit (see column "Calibration") shows that the sum of squared errors made
by the Cornish-Fisher model (49.42%) is only half of the errors made by the sticky strike
model. This signifies that the in-the-sample fit brought by the weakly non-Gaussian model
adheres fairly well to the market data during this turbulent period. The empirical results
reveal that the Cornish-Fisher average implied volatility is 55.14%, which is 20% higher than
the sticky strike implied volatility for the same period. The Cornish-Fisher implied volatil-
ity ranges from 32.75% to 71.89%, which represents a variation of as much as 100% in only
eleven trading days. The volatility peak of 71.89% occurred on October 17, after a stock
index decline from 4,327.30 (October 14) to 3,824.33 (October 16), followed by an increase
to 4,204.29 (October 20).

The Cornish-Fisher average implied skewness s∗ is -1.72 (ranging from -2.42 to -0.37), while
the average implied kurtosis k∗ is 7.80 (ranging from 1.23 to 16.64). Under these circum-
stances, a larger domain of validity is paramount since it allows the model to capture strong
market swings that affect these three structural parameters (σ, s, k) within a short interval
of time.
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Figure 4: Cornish-Fischer model calibration

Figure 4 illustrates the ranges of values for the three parameters estimated during October
2008. Given the volatile nature of this month, the implied skewness and kurtosis may appear
relatively stable in general.

To assess the out-of-sample forecasting (see column "Pricing") performance of the Cornish-
Fisher model, we set constant the implied volatility σt−1, implied skewness st−1, and implied
kurtosis kt−1 calibrated from the previous trading day t−1, in order to price option contracts
for the day t. It appears that the sum of squared errors made by the Cornish-Fisher model
represent two thirds (76.59%) of the error made by the sticky strike model.

Overall, we conclude that the Cornish-Fisher model has improved calibration and pricing
accuracy during the most volatile month of the 2008 financial crisis. This can be explained
that this weakly non-Gaussian model has a larger domain of validity than comparable models
(Gram-Charlier, Edgeworth etc.) and is easier to estimate and more stable than the stochas-
tic volatility models. The day of October 17 represents the biggest stock index price swing of
the period, characterized by the highest volatility (71.89%), the highest kurtosis (16.64), the
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second highest negative skewness (-2.40), and the highest in-the-sample fit error (5.0e-04);
the highest out-the-sample fit error (9.3e-03) occurred immediately prior, on October 15.
The model’s capability to adhere to the data is fairly good, although it has been disturbed
by the sudden regime change of the underlying stock index from October 15 to October 20.
Note that a possible improvement would have been to extend the empirical test to a larger
set of data.

4 Conclusion

This paper derives a new option pricing model based on a weakly non-Gaussian risk-neutral
probability density. This density relies on a Cornish-Fisher transformation with an exact
formula allowing for heavy-tails in the presence of non-normal skewness and kurtosis. An
in and out-the-sample analysis is carried out on intra-day data from the FTSE 100 stock
index options during October 2008, which was the most volatile month of the 2008 financial
crisis. We conclude that the Cornish-Fisher model has improved calibration and pricing
performance, as comparison to the sticky strike model. This improvement is due to its larger
domain of validity. It is worth emphasizing that this weakly non-Gaussian model is eas-
ier to implement than the stochastic volatility models or other alternative classes of stable
non-Gaussian models. This work can be applied to large data sets or extended to risk man-
agement measures, such as VaR and Expected Shortfall.
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