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This paper analyzes the market valuation of climate innovations 
through a detailed examination of patent data. We explore the 
relationship between Tobin’s Q —a measure of firm valuation— 
and the stock of patents across various climate technology 
categories. Our findings indicate that, generally, investors 
do not value climate innovations. However, our exploratory 
analysis reveals two notable exceptions. First, patents related 
to improving the efficiency of carbon-intensive technologies 
(carbon intensive climate innovation) show a positive correlation 
with firm valuation. Second, a select group of patents in non-
carbon-intensive climate technologies, which contribute to both 
adaptation and mitigation efforts, are also positively valued. 
Our results suggest that a one standard deviation increase in 
the stock of patents relative to R&D expenses, measuring firms’ 
research efficiency in these climate innovation categories, is 
associated with an increase between 0.5 % and 1.5 % in Tobin’s 
Q.   
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1 Introduction

Reducing carbon emissions may either come from behavioral changes or technological

improvements and innovation. Focusing on technological innovation is attractive for in-

vestors and policymakers alike since it offers a pathway to limit climate change without

sacrificing economic progress. Technological development is a n integral part of strategies

to achieve a net-zero economy. IEA (2021) reports that most climate scenarios aimed at

reaching net zero by 2050 assume the widespread use of technologies that have not been

developed yet. Economic studies model policy-induced technical change as a possible so-

lution to achieving sustainable growth that does not lead to an environmental catastrophe

(Acemoglu et al., 2012).

The last two decades have seen significant advances in alternative energy production

and other low-carbon technological solutions. Climate technologies, an emerging field

spanning various sectors, have seen a notable rise in patent activity globally (Angelucci

et al., 2018; Haščič and Migotto, 2015). This trend is particularly pronounced in Eu-

rope, where start-ups focused on carbon and energy solutions have become increasingly

dominant (Economist, 2023)

Despite this growth, the financial markets’ reaction to climate innovation remains

mixed, with some studies showing an under-performance of climate innovators in stock

markets. Cohen et al. (2020) argue that most of the high-quality green innovation in

the patent space is carried out by the energy sector, which is shunned by ESG funds

because of its high carbon footprint, and does not get rewarded by ESG score providers

for its innovative output. Atta-Darkua et al. (2022) show that institutional investors

tend to tilt away from main climate innovator firms, that are deemed to be polluting.

Empirical evidence also shows no consistent positive market reaction to green innovation,

even after controlling for factors like institutional ownership, investor attention, or CEO

characteristics (Andriosopoulos et al., 2022) or looking beyond patents at the firm’s broad

innovation activities (Leippold and Yu, 2023)).

Patent data offers unique insights into firms’ innovation activities, providing detailed

information on the type of technologies being developed. Unlike aggregated R&D ex-

penses, patents can be categorized into specific technological classes, enabling researchers

to track green investment trends (Reza and Wu, 2024) Recent advances in patent clas-

sification schemes of climate technologies have opened an array of research opportuni-

ties for economists, such as tracking down trends in climate technology (Dechezlepretre,

Fankhauser, et al., 2020), analyzing determinants of green innovation (Aghion et al.,

2016) and studying characteristics of green patents. Patents are also a verifiable invest-

ment activity, since they are issued by a third party - United States Patent and Trademark

Office (USPTO) (Reza and Wu, 2024). Finally, our sample shows a five-fold increase in

the number of climate patents issued between 1995 and 2020, highlighting their growing

relevance.

In this paper, we leverage the granularity of patent classifications to compare not just
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climate innovation against the overall non-climate innovation, but also climate innovation

and non-climate innovation within the carbon intensive technologies, i.e. the brown tech-

nological space. We also distinguish different types of innovation within climate patents

according to climate goals they address. Namely, we compare patents related to mitiga-

tion and adaptation and their relative market valuation.

We rely on Y02 scheme launched by European Patenting Office to identify innovation

that contribute to climate change mitigation and adaptation and then use International

Patent Classification (IPC) main section codes to identify whether a given patent relates to

a carbon intensive technological class. Table A1 describes the sub-classes of Y02 patents,

while Table A2 shows the list of technological classifications used in determining carbon

intensive patents. While the majority of Y02 patent subclasses identify climate change

mitigation in different sectors, there is a special subclass for adaptation patents. Carbon

intensive technologies refer to technologies in fossil fuel electricity generation, as defined

in Lanzi et al. (2011) or transportation engines relying on fossil fuel.

Using the market valuation framework by Hall et al. (2005), we regress Tobin’s Q

on US firm’s patent stock in different categories of climate and non-climate innovation

between 1995 and 2020. This hedonistic approach allows us to uncover investor valuation

associated with different types of innovation (Goyal and Wahal, 2023).

In our first regression, we distinguish only two types of innovation: climate and non-

climate. In line with previous findings (Andriosopoulos et al., 2022, Leippold and Yu,

2023), we do not find a positive reaction of firms’ value to climate patents overall, either

by considering current and one-year forward Tobin’s Q. Similarly, we find no link between

overall Non Climate patents and market valuation. We argue that climate innovation

(and innovation, in general) may be in most cases too risky or uncertain to be reflected

in market valuation.

Next, we focus on a specific type of climate innovation those improving the efficiencies

of existing brown technologies, which we label as Climate Carbon Intensive. To do that,

we distinguish patents not only on whether they contribute to climate (i.e. whether they

have a Y02 tag), but also whether they belong to a carbon intensive technology class

(based on main IPC codes). This leads to four mutually exclusive categories of patents:

Climate Carbon Intensive, Climate Non Carbon Intensive, Non Climate Carbon Inten-

sive, and Non Climate Non Carbon Intensive. The large majority of carbon intensive

climate patents belong to transportation subclass (Y02T), followed by energy (Y02E),

and production (Y02P). An example of a carbon intensive climate patent is shown in

Figure A1, which describes a skip-cycle strategy to operate a four cycle engine - a type

of internal combustion engine (ICE) that requires four piston strokes (intake, compres-

sion, power, and exhaust). The patent is labeled as Y02T (climate mitigation related to

Transportation), because of its potential to help with ICE efficiencies.

We show that only Climate Carbon Intensive among the four categories is positively

correlated with Tobin’s Q. One standard deviation increase in the stock of Climate CI

patents scaled by R & D stock is associated with around 0.9% and 1.5 % increase in
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current market valuation and around 0.5% increase in one year-forward market valuation.

This relationship survives, even if we use industry dummies or other firm-level control

variables. The coefficient on similar innovations without a climate label (Non Climate

Carbon Intensive patents) is negative and statically not different from zero. We interpret

these results as markets valuing firms’ innovative efforts as a response to climate change

transition. However, this response is limited to climate innovation in fossil fuel technolo-

gies. It may be that markets value directly applicable (and thus less risky) innovation

responses to the transition. These innovations may also directly help the patent-issuing

firms to attain superior financial performance by switching to less expensive factors of

production (Reza and Wu, 2024).

Next, we distinguish Climate Non-Carbon Intensive patents further based on whether

they contribute to mitigation or adaptation efforts. Our initial results are confirmed to a

large extent. Namely, coefficients on Climate Adaptation and Mitigation patents remain

largely insignificant. However, we report a positive correlation between market valuation

and dual-purpose patents that help both with mitigation and adaptation after accounting

for industry-fixed effects. We report an economic magnitude of between 0.5% and 0.7%

increase in current market valuation following one standard deviation increase in research

efficiency (patent stock divided by R&D) in this innovation category 1. This relationship

may stem from investors taking a multiplicative perspective on the value obtained from

climate risk strategies.

Our paper is related to a growing number of studies that explore the relationship

between firms’ value and their green innovative activities. Dechezlepretre, Mucklay, and

Neelakantan (2020) report on an international sample of firms that green innovation is

positively correlated with market value as proxied by Tobin’s Q, while dirty innovation

is not. Our study differs from theirs in terms of the sample, period covered and the

definition of climate innovations. On the other hand, Andriosopoulos et al. (2022) find

that in the US, green patents is not associated with higher firm value, firm’s environmental

score or level of institutional ownership. Our paper adds to these papers by examining a

more refined classification of climate patents. We show that non all climate patents are

born equal and that specific climate innovations: (1) those improving carbon intensive

technologies and (2) those pertaining to both mitigation and adaptation are positively

valued by financial markets.

Some studies also concentrate on the immediate stock market reaction to patent is-

suance and use it as a proxy for the patent economic value, as proposed by Kogan et al.

(2017)). Andriosopoulos et al. (2022) show that stock price reacted negatively on dates

when green patents are granted. Hege et al. (2023) show that firms that get lucky cli-

mate patents (those randomly assigned to a more lenient patent examiner for approval)

enjoy higher abnormal cumulative returns, especially if there is a heightened attention to

1In all specifications, the relationship between Tobin’s Q and innovation variables remain consistent
until t +3, when the relationship becomes non-significant. However, with each horizon, our sample size is
also reduced.
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climate at the time of the patent’s issue. Reza and Wu (2024) compare the short term

market reaction to green patents vs non-green patents issuance and show that this reac-

tion is higher for green patents, and that it increases with more stringent environmental

regulations or higher energy prices. Higher societal attention to climate change (proxied

by climate news concerns from the media) also drives a larger reaction to green patents

(Kuang and Liang, 2024).

Finally, Leippold and Yu (2023) look at more general innovations than just patented

ones, analyzing the firms’ communication about their innovation activity as reported

in earning calls transcripts and conclude that firms that discuss more about climate

innovation in their earning calls have lower expected returns. Bolton et al. (2022) show

that innovating companies with higher carbon emissions engage more in brown R&D and

less in green R&D but that green innovation does not predict higher future reductions in

carbon emissions of innovating firms.

One possible reason for the limited impact of climate innovations on firms’ market

value may be that climate innovation (or even innovation in general) is perceived as too

risky or difficult to value by investors, given the large uncertainty around the financial

revenues that these innovations could generate for the company. Hirshleifer et al. (2013)

argue that investors find it difficult to process information that is less tangible and whose

future prospects are highly uncertain, such as technological innovations, whose signifi-

cance depends upon major shifts in industrial organizational structure. In line with these

interpretations, we show that investors value more the efforts to improve the carbon effi-

ciency of the “old” dirty technological processes, probably because these innovations are

more immediately applicable. Cohen et al. (2013) further argue that the stock market

may be unable to distinguish between ”good” and ”bad” innovations, despite the fact that

successful innovation is in theory predictable based on past firms’ success at R&D. Patent

statistics may be crowded out by many low-quality patents (De Rassenfosse et al., 2021).

And given the complexity of patent description available at issuance for non technical

experts, investors may find it difficult to judge patents’ quality.

Our paper is organized as follows. Section 2 presents our methodology, Section 3 our

data, Section 4 our empirical results and Section 5 concludes.

2 Methodology

2.1 Measuring Climate Innovation

Amid the increased attention on climate technologies, a collaborative project was set up

between European Patenting Office (EPO) and United Nations Environmental Program

(UNEP) to harmonise the patent landscape for technologies with a climate mitigation

potential. Later, adaptation technologies were also added to the classification. Making

such efforts is not an easy task, however, since climate mitigation potential can be found

in different technological fields from chemistry to electronics, and relying on technology
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field classifications such as International Patent Classification (IPC) in empirical analyses

may lead to Type I and Type II errors (Veefkind et al., 2012). Therefore, patent examiners

in EPO worked on creating a “tagging” of patent documents - Y02 classification scheme

in climate technologies (Veefkind et al., 2012). This classification scheme has grown

considerably to include technologies that can mitigate climate change by reducing sources

of greenhouse gas emissions in energy production, but also in buildings, transportation,

and production or through ITC technologies, or by creating carbon sinks in the case of

Carbon Capture technologies. It also includes patents in medicine and agriculture that

can help with climate adaptation goals.

We rely on Y02 classification tags to extract patents in climate technologies, and

use the main IPC section codes to identify carbon intensive technologies (we explain the

structure of IPC codes, in more detail, in the appendix) . Since Y02 codes do not replace

existing codes but are complementary to main technology fields (IPC sections) patents

belong to, we can make use of this multidimensionality to identify patents not only along

the climate dimension but also along their carbon intensity. Namely in order to identify

broad developments in the so-called “carbon intensive” technologies, and later track this

brown innovation at the firm level, we use the list of IPC codes provided in Dechezlepretre,

Mucklay, and Neelakantan, 2020. The authors use previous work from two main sources

to identify patent documents in fossil fuel electricity generation (Lanzi et al., 2011) and

the automobile sector (Aghion et al., 2016). The selected codes help researchers with

non-field knowledge to easily access innovation trends in different technological fields.

Lanzi et al., 2011 , for example, work with patent experts in order to produce a list of

IPC codes that identifies overall patents in fossil fuel electricity generation. Aghion et al.,

2016 follows a similar strategy for patents in the automobile sector. We provide these

IPC codes and Y02 codes in the Appendix.

In the first regression, we simply distinguish between climate and non-climate inno-

vation. A given patent is defined as climate innovation, if it has a Y02 tag.

Second, we define four categories of innovation, as expressed in the below matrix. For a

given patent, we first look at whether it has received an IPC code that appears in the list of

carbon intensive technologies. Then, we look along the vertical direction to see if the same

patent has a climate (Y02) tag. Every patent is classified into one of the four categories:

CI Climate - climate mitigating innovation (due to efficiency improvements) in carbon

intensive technologies such as internal combustion engines, Climate Non CI - climate

innovation in non carbon intensive technologies, Non Climate CI - non climate innovation

in carbon intensive technologies, and Non Climate Non CI - non climate and non carbon

intensive innovation, which groups the rest of the patents that do not fall into any of the

first three categories. Some studies such as von Schickfus, 2021 or Dechezleprêtre et al.,

2017 group Climate CI patents into grey innovation due to them being situated between

pure green and pure brown innovation
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Carbon Intensive Non Carbon Intensive

Climate Climate CI Climate Non-CI

Non-Climate Non Climate CI Non Climate Non CI

In later regressions, we further disintegrate Non CI Climate patents into those that

help with adaptation, mitigation and adaptation and mitigation at the same time. We do

not distinguish Climate CI patents based on whether or not they help with mitigation or

adaptation for two reasons. First, in our sample, only few adaptation (around a dozen)

patents also belong to the carbon intensive category. Creating a distinct category for

Adaptation CI and Adaptation and Mitigation CI and making inferences about their

coefficients based on this limited number of patents is not ideal. Second, conceptually,

the intersection of Climate and Carbon Intensive Technologies refer to technologies that

improve the efficiency of internal combustion engines and similar brown technologies, and

lead to potential carbon emission reductions. By definition, these patents contribute to

climate mitigation, and any crossover between adaptation and mitigation is most likely a

byproduct of engines that have been improved to deal with pollution controls (Hötte and

Jee, 2022). Adaptation technologies, for the most part, deal with drought-resistant seeds

or pharmaceutical products against air-borne diseases, which are generally, not carbon

intensive. Therefore, with a few exceptions, Climate CI patents in our sample should be

seen more as CI mitigation patents.

Previous literature has used different methods to distinguish between non carbon

intensive and carbon intensive climate innovation. Bolton et al., 2023 rely on four different

sources to identify relevant IPC classes for climate innovation, and then analyse lower

level codes associated with those IPC classes to group them into: green, general efficiency

and brown efficiency innovation. Our approach to classify climate innovation is simpler,

but also, at least for the climate part, does not rely on a human judgment about the

selection of appropriate IPC codes. As an emerging field, climate change technologies

are scattered across different IPC codes, and relying on them may lead to incomplete

results or unnecessary noise (Angelucci et al., 2018). In the Appendix, we explain the

advantages of the Y02 scheme in more detail, with the excerpts taken from EPO’s guide

to Y02 tagging scheme (EPO, 2021).

Cohen et al. (2020) also looks at the intersection of brown and green innovation.

However, different from our study, they focus on green innovation by brown firms. They

define brown firms as those operating in certain SIC industries, specifically related to

fossil fuel and energy. Our classification stays at the patent level, and as such, we are able

to identify both climate and carbon intensive innovation done by brown or green firms.

As we observe in our sample, a lot of climate innovation - both carbon intensive and non

carbon intensive - are conducted by transportation firms, which are not the first target,

when we think about brown firms, and which are not included in Cohen et al. (2020)

study.
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2.2 Empirical Framework

Our main regression is based on a market valuation model by the seminal work of Hall

et al., 2005, which builds on Griliches, 1981, one of the first papers that looks at the stock

valuation of patents. The model links the firm’s market value to its stock of knowledge -

proxied by its capitalized R&D expenses, patents and citations. As an intangible asset,

firm’s knowledge stock should have a positive relationship with its valuation, in theory.

The model follows an additively separable linear function, in the spirit of Griliches,

1981, where the market value, Vi,t for a firm i, is a function of the book value of assets,

Ai,t and replacement value of knowledge stocks Ki,t at time t.

Vi,t = β(Ai,t + γKi,t)
σ (1)

β is the valuation coefficient of total assets.Grandi et al., 2009 interprets β as the

monopoly position or differentiation risk of a firm. The parameter σ represents non-

constant scale effects between market value and tangible and non-tangible assets, if σ ̸= 1.

However, to make the empirical estimation easier, we assume that the value function has

constant returns to scale and take σ to be equal to 1, similar to Hall et al., 2005. Taking

logarithms and moving logA to the left of the equation, we estimate the following model,

where ϵ is the error term.

logQi,t ≡ log(
Vi,t

Ai,t
) = logb+ log(1 + γ

Ki,t

Ai,t
) + ϵi,t (2)

Q refers to the Tobin’s Q of the firm, while K
A is the knowledge assets scaled by total

assets. γ measures the shadow value of knowledge assets relative to tangible assets, that

is valuation derived from firm’s market value. The advantage of this specification by

Griliches, 1981 is that the marginal shadow value on asset is equalized across firms. We

approximate log(1 + γ
Ki,t

Ai,t
) by γ

Ki,t

Ai,t
. Furthermore, based on Cohn et al., 2021, in the

main regressions, we estimate the independent variables without taking their logarithm

in order to not bias the coefficients. This estimation is consistent with Dechezlepretre,

Mucklay, and Neelakantan, 2020.

Hall et al., 2005 mentions that there is no theoretical guidance on the choice of in-

novation variables. They assume the knowledge creation process as a continuum from

R&D to citations (through patents), with each step revealing additional information to

the market. While R&D reveals the firm’s resource allocation to innovative activities,

patents show its success in creating legally protected piece of knowledge, and citations

proxy the quality or relevance of this knowledge. In practice, when R&D becomes public,

the market should price the expected value of the knowledge creation process that will

result from it, however, deviations from the expectation may occur, if for example the

patent yield (number of patents and quality of patents produced) over the R&D expense

is too low or unexpectedly high. In our case, this information content also lies in patents

being identifiable in terms of technological class, and providing information on the climate
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mitigation or adaptation value of a given innovation. As such, we estimate the following

equation:

We use the 15% following Hall et al., 2005, which is widely adopted by the innovation

literature. However, results are stable when we depreciate patent stocks at different rates.

R&D Stocki,t = RD expensei,t + 0.85R&D Stocki,t−1

Patent Stocki,t = # of patents issuedi,t + 0.85Patent Stocki,t−1

Constructing the stock of citations is less straightforward, since unlike patent grants

or R& D expense, citations are received over time (Hall et al., 2005). Following Gu, 2005,

for a given firm we measure citation impact of their overall patents in a given year as

the sum of the adjusted number of citations received on firm’s patents issued in the last

previous five years:

Citationsi,t =
5∑

j=1

Nt−j∑
nt−j=1

Cint−j

where Cint−j is the adjusted number of citations received by a patent n at time t− j and

is owned by firm i. We adjust the number of citations by dividing it by the mean number

of citations received in year t by all patents of the same IPC subclass granted in year

t − j . This process helps deal with the truncation bias and technological bias related

to citations, which are more severe in citation counts compared to patent counts (Lerner

and Seru, 2022). Finally, we sum the adjusted number of citations received by N patents

assigned to the firm from year t to year t− j (j = 5).

In our regressions, we use both the current and one year-forward Tobin’s Q in our

empirical estimations. When using one-year forward Tobin’s Q, we control for the current

Tobin’s Q.

3 Data and Descriptive Statistics

3.1 Patent Data

We retrieve the data on patents and citations issued by the United States Patent and

Trademark Office (USPTO) from Patentsview. The bulk download files, which are re-

trieved from the USPTO website, include information on patent’s grant and application

year, its forward and backward citations, as well as on IPC and Cooperative Patent Clas-

sification (CPC) codes. CPC is derived from European Patent Office’s own classifications,

and as such is a more granular subdivision of IPC, with the exception that unlike IPC,

it also contains the Y02 class to identify climate patents (Mailänder, 2016). We use

KPSS data which is made public by Kogan et al. (2017) to match patents to firms using

PERMNO (permanent security identification number assigned by CRSP to each security).

This dataset is updated to include data until 2022. The matched sample includes 4328
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unique patenting firms between 1995 and 2020. In our study, we only include firm-year

observations where a firm has either issued a patent or has received a citation for one of

its recently issued patents. This sample of firms issuing patents represents 26 % of firms

in the Compustat CRSP merged universe and 50 % of the total market capitalization

of the US market.2 Matching between the assignees of patents and public firms is done

based on company names, which may be not standardized or include the subsidiaries of

the listed parent company. However, Kogan et al. (2017) take rigorous steps to deal with

the issues related to non-standardization of names and changes in ownership of the firms.

Figure 1 graphs the three year moving average of the number of patents in each

category of innovation with the base year value indexed at 100. Between 1995 and 2005,

the pace of increase in climate technologies is similar to that of the general increase in all

technological fields. However, both Carbon Intensive and Non-Carbon Intensive Climate

patents see a rapid increase after 2008, with Climate CI multiplied by ten compared to

1995. Moreover, while in 1995, only 38% of patents issued within all carbon intensive IPC

codes received a climate tag, in 2020, this number climbs to 53%. In other words, in the

recent years, the production of patents in Climate CI surpasses the number of patents

issued in Non Climate CI (Pure CI).

Nevertheless, as shown in Table 1, climate innovation still remains niche, with climate

patents representing around 7% of total patents in the sample. Similarly, patents with a

carbon intensive IPC code also is a relatively small category within climate innovation,

accounting for almost 7% of all climate patents. Table 1 also reports the average number

of forward citations, and adjusted forward citations of the patents that belong to different

innovation categories. Forward citations are adjusted by the average number of citations

received in the citation year and technology class, as explained in Section 2. We see that

adaptation patents are more cited on average, however, this discrepancy narrows when

we look at adjusted number of citations. We adjust the number of citations by total

number of citations received in the specific IPC technology class in a given citation year

as explained in Section 2.

Table 2 reports the summary statistics of our variables of interest at the firm-year

level. Patent stocks are scaled by R&D stock, while R&D stock is scaled by total assets

of the company. As such, they represent the research efficiency and intensiveness of the

company, respectively. Scaling also helps account for size of the firm, and ensures that

our results are not driven by a size effect, since larger firms are more likely to issue more

patents.

While the mean value for the stock of patents in Non-CI Climate is 1.12, it is only

0.008 for the third quartile. This is because even within innovating firms, which make up

our study sample, there are only a small number of climate innovators.

Table 3 reports the industry distribution of the number of patents in different innova-

2The matched sample includes only around half of the patent population, due to the fact that patents
can be assigned to unlisted firms, firms not listed in the US stock market, to individuals, universities, and
non-profit research organisations.

15



tion categories in terms of 2 digit Standard Industry Classification (SIC) codes. Overall,

we observe that innovative sectors (those with most patents overall) are also active in cli-

mate and carbon intensive innovation. However, for some industries, climate innovation

represents a larger share of the total patents issued. In terms of most patents produced in

Climate Non CI, firms in Electronics and Other Electric Equipment and Transportation

Equipment are first and second respectively. Furthermore, we also confirm that firms in

industries related to fossil fuel (SIC 13 and 29) produce a lot of climate patents. Trans-

portation firms produce more than half of Climate CI patents in the sample, followed by

Nonclassifiable Establishments that mostly include conglomerates such as General Elec-

tric or Siemens.

Figure 3 graphs the time series evolution of the industry composition of climate innova-

tion along the sectors from Table 3. Overall, the industry composition of climate patents

has not changed much between 1995 and 2020. However, in the last five years patent

production has been more concentrated in the top industries, namely in Transportation

Equipment for Climate CI and Electric Equipment for Climate Non CI.

3.2 Financial Variables

We obtain accounting data and year-end stock price data on North American firms

listed on US major stock exchanges (NYSE, NYSE Arca, AMEX, and NASDAQ) from

Compustat-CRSP merged through Wharton Research Data Services (WRDS) from 1995

to 2020. In case of dual-listings, namely when there are two PERMNOs assigned to one

Permnant Company Number (PERMCO), we keep the observation (PERMNO) with the

higher market capitalization. We calculate Tobin’s Q as the the sum of total tangible

assets minus book value of equity plus market capitalization at the end of the fiscal year

divided by total tangible assets. We remove observations with a non-positive market

capitalization or total assets. Total tangible assets is equal to the sum of current assets,

property, plant and equipment, investment and advances, and other assets. We include

known risk factors from Fama and French (2020). Market Beta is estimated annually

using daily returns. Size is equal to the log of market capitalization at the fiscal year end.

Book to Market is the book value of equity divided by market capitalization. Operating

profitability is the sale minus cost of goods sold and general and interest expense divided

by book value of equity. Investment is the change in total asset compared to year t-1,

divided by total assets at year t-1. Leverage is the long-term debt divided by equity.

Tangibility is equal to Property, Plant and Equipment divided by total assets. ∆EPS is

the change in earning per share compared to year t-1, normalized by share price. ∆Sale

is the sale growth normalized by market capitalization.

In our regression analysis, we standardize all independent variables to have a mean of

zero and a standard deviation of 1.
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4 Results

4.1 Climate versus non Climate Innovation

We begin by regressing the market valuation of a company on its patent stocks in climate

and non-climate technologies. This allows us to see whether stock markets value climate

innovation, overall. In every table, we regress both the current and one-year-forward log

of Tobin’s Q on the stock of patents in year t and account for time fixed effects.

Table 4 reports the results of the first exercise. In Columns 1-3, we use current year’s

Tobin’s Q, and in Columns 4-6, 1 year forward Tobin’s Q as the dependent variable, while

controlling for current Tobin’s Q. In Columns 1 and 4, we regress our variables without

including the firm-level controls and industry-fixed effects. In Columns 2 and 5, we add

industry fixed effects. Industries are defined based on 2-digit SIC codes. Finally, we add

control variables in Columns 3 and 6 (from Table 2).

Across all specifications, the coefficient on climate innovation is not statistically not

different from zero. This lack of impact may be due to many climate technologies still

being at the early development stage. For example, IEA, 2023 reports that many climate

technologies that allow to reach net-zero are yet to be commercialized. If the financial

benefits of many of these climate patents were to accrue in the long term, then they are

less likely to be appreciated by equity investors. A similar result appears for non-climate

innovation. This suggests that innovation, in general, may be considered too risky or

uncertain for investors. Another reason may stem from a mispricing of innovation, proxied

by patents (Hirshleifer et al., 2013).

4.2 Climate Innovation in Carbon Intensive Technologies

Having found no relationship between climate patent stock and Tobin’s Q, we next turn

our attention to a specific type of climate innovation - those related to efficiency improve-

ments in carbon intensive polluting technologies. Table 5 reports the results of regression

of Tobin’s Q on four different categories of innovation, as described in Section 2.1.

The main finding across the six columns is that Climate CI is positively linked with

market valuation. Holding other types of innovation and R&D intensity of a firm fixed, one

standard deviation increase in patent stock in Climate CI divided by R & D is associated

with almost 1 % increase in Tobin’s Q. This effect survives even after accounting for

firm-level controls and industry fixed effects. The coefficients stay positive and significant

in Columns 4-6, even after accounting for the current year’s Tobin’s Q, suggesting that

the relationship persists in the year following the patent’s issue.

In contrast to the positive and significant coefficient on Climate CI, Non Climate CI

patents are not significantly related to market value. Among carbon-intensive technologies

(e.g. combustion apparatus and internal combustion engines) only innovations with a

climate mitigation potential, that is with a possible contribution to climate mitigation

goals due to efficiency improvements, enjoy a positive market performance. Since both
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groups are relatively similar - both in terms of the number of patents within each group

and technological classes they belong to, except for having a climate mitigation tag, these

findings provide some evidence that a potential to contribute to climate change mitigation

through innovation is valued by the markets.

Simply looking at the relationship between stock market valuation and green patents

and comparing it to the coefficient on non-green patents (grouping the rest of the patent

universe) may fail to account for time horizon, technological class, and other patent

characteristic differences. Lerner and Seru, 2022 discuss how patent statistics depend

highly on technological classes, and failing to account for this may lead to biases in

regression estimates.

Furthermore, as discussed in the previous subsection, the economic benefits of many

inventions may be far into the future and highly uncertain. At the time of issue, the

information on the economic potential of a patent may not be available for stock market

participants, making estimates with a one-year time horizon unreliable. There is extensive

literature on the misvaluation of hard-to-process information by stock markets, specifically

regarding firm-level innovation (Cohen et al., 2013, Hirshleifer et al., 2013, Fitzgerald et

al., 2021) and climate change uncertainty (Ilhan et al., 2023, Giglio et al., 2021).

Reducing potential carbon emissions through efficiency improvements in fossil fuel

technologies may, indeed, be an important mitigation effort. Lanzi et al., 2011 mention

the importance, at least in the short run, of these efficiency improvements in reducing

greenhouse gas emissions and achieving climate goals. Our results suggest that equity

investors value these efforts to mitigate climate change impact within the brown tech-

nological space. von Schickfus, 2021 argue that efficiency improvements in fossil fuel

technologies may only be a short-term solution to mitigating climate change. However,

investors may adopt a short-term outlook to deal with the transition risk, and only value

innovation efforts that can help firms deal with climate and pollution regulations in the

short-term.

Similar to the non-significant coefficient on overall climate innovation in Table 4, we

cannot establish a positive link between Climate Non-CI and Tobin’s Q. Since patents in

this category make up the bulk of climate innovation - around 93 % of climate patents

are Non Carbon Intensive (see Table 3), this result is not surprising.

These findings are consistent with other studies that look into the relationship between

stock market valuation and green innovation based on a similar sample of firms (see

Andriosopoulos et al., 2022, Leippold and Yu, 2023). It also supports the notion that

climate risk is not fully priced yet (Krueger et al., 2020). Since the benefits of climate

technologies may be materialized in more than 20 years, the average valuation of the

climate innovation during our sample study period is not different than zero. Interesting

theoretical literature (summarised in Heal, 2017) discusses how the present valuation of

actions taken to mitigate climate is very sensitive to the rate at which future cash flows

are discounted. Given the high market premium equity investors demand from their

investments, investments in innovating in climate technologies such as alternative energy
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production are likely to be severely discounted.

We also show that the R&D stock of a firm is correlated with higher Tobin’s Q.

This is in line with previous works on firm innovation and stock valuation (Hall et al.,

2005). However, we do not report a positive relationship between valuation and the overall

innovative output of a firm, neither in terms of patents or citations.

To summarise, only one type of innovation - innovation in Climate Carbon Intensive,

based on our explotary analysis, is positively correlated with market value. This may

stem from markets seeing overall innovation as too risky (i.e. non-significant coefficient

on Non Climate Non CI) or its economic contribution in terms of transition too far into

the future (i.e non-significant coefficient on Climate Non-Carbon Intensive). On the other

hand, Climate Carbon Intensive may be valued as a short-term solution to transition risk.

4.3 Comparing Adaptation versus Mitigation patents

Y02 class identifies patents that contribute to climate mitigation in different areas such as

buildings, production, and alternative energy, but also patents that can help with climate

adaptation mainly in medicine and agriculture. Therefore, we further distinguish these

climate technologies along the adaptation and mitigation dimension. This distinction may

be relevant since from an investor perspective, adaptation and mitigation technologies

may account for two different types of climate risk: physical and transition risk (Giglio et

al., 2021). Recently emerging literature on transition versus physical risk has not reached

conclusive evidence on which of these risks are priced to what extent by financial markets.

There are also considerable differences between these two types of patents. Hötte and

Jee, 2022 report that, unlike patents in mitigation technologies, adaptation patents have

not shown significant growth in the last two decades. This may be due to less political

pressure on the issue of climate adaptation compared to mitigation until the very recent

period (Hallegatte et al., 2011). However, increased weather events in recent years may

have also changed the focus towards adaptation.

In short, even though overall climate innovation may not be valued, a given category of

innovation (adaptation vs mitigation) within the non carbon-intensive climate innovation

may command a positive premium.

Nevertheless, around 25 % of adaptation patents in our sample also help with climate

mitigation. We create a separate category to group patents that are labeled both as mit-

igation and adaptation. According to Hötte and Jee, 2022, many of these “dual purpose”

patents are developed to deal with regulatory pollution controls, and the adaptation im-

pact is a byproduct of that process. For example, technologies that control air pollution

also are considered health-related adaptation technologies.

Figure 4 graphs the industry composition of adaptation and mitigation patents in our

sample. While the industry composition for mitigation patents resembles closely that

of Climate Non-CI, since they make the bulk of the patents in this category, Climate

Adaptation innovation is concentrated in Chemicals and Allied Products, which include
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Pharmaceutical drugs, Instruments, and Related Products, which include medical instru-

ments. This figure, again, highlights differences between the two patent categories and

confirms our prior about their industry composition based on the patent technological

classes they belong to.

Table 6 shows that among the three sub-categories of Climate Non-CI patents, only

the double-purpose patents in adaptation and mitigation are valued positively to a small

extent. After accounting for industry fixed effects and firm-level controls, the coefficient

on the stock of knowledge in patents with a dual purpose is significant and positive at

1% significance level. Even though our exploratory study does not find an evidence of

a positive relationship between Tobin’s Q and adaptation or mitigation patents sepa-

rately, markets may value innovation that contribute to both. Investors could be taking

a multiplicative perspective toward climate technologies.

Finally, in Table 7, we add back the carbon intensive categories to the regression. As

discussed in Section 2.1, we do not differentiate Climate CI on adaptation and mitiga-

tion. The results of this regression confirms the previous tables. Climate CI is positively

correlated with market valuation. Moreover, patents that contribute to both adaptation

and mitigation are also related to higher market valuation, albeit to a lesser extent 3 .

4.4 Short-term solutions to climate change transition

One possible hypothesis to explain the economic mechanism behind our results is that

investors may value more immediate and short-term solutions to climate change transition.

Improving efficiency of fossil-fuel based technologies can offer a short-term solution to

reducing carbon emissions (von Schickfus, 2021). Due to regulatory pressure, investors

may prefer such short-term response to emission reduction compared to more radical and

risky inventions.

In order to see whether climate patent categories associated with higher market val-

uation, are indeed more quickly applicable compared to other inventions, we look at the

length between patent issuance and citation. Figure 5a plots the proportion of citations

received in t years after patent application in four innovation categories from Table 5.

Each column of the figure represents the total number of citations received by all patents

in a given category t years after patent’s application, divided by all citations received

by that category of patents during their entire lifetime. The graph shows that a greater

proportion of Climate CI citations are received in the early years of patent application,

compared to other types of innovations. This suggests that these innovations may of-

fer more short-term applications compared to other innovation categories. In Figure 5b,

we look at adaptation and mitigation categories, and the same pattern for dual purpose

Adaptation and Mitigation patents appears. Since most of these patents were devel-

oped to deal with pollution controls in automobiles they may have also provided a more

3In the Appendix (Table A3), we cluster standard errors by time and industry, and our results remain
unchanged.
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applicable use-case for firms (Hötte and Jee, 2022).

It could then be argued that the positive relationship we observe between Climate

CI patents and market valuation (and to a lesser extent between Climate Adaptation &

Mitigation) is only due to the more applicable nature of those innovations and unrelated

to climate transition. In Table 8, we regress market valuation on firm-level short-term

innovation proxy constructed on citations. Namely, in each firm year, we use the pro-

portion of citations received in the first 1, 3 and 5 years by patents issued to the firm in

that year as the independent variable. We do not find a positive relationship between this

proxy and market valuation, suggesting that our results in Table 7 are specific to climate

innovation. Furthermore, adding this citation variable to the baseline regressions do not

alter our results significantly, as seen in Table A4.

Nevertheless, as highlighted in the beginning, our study remains exploratory and the

test only offers a preliminary and descriptive evidence in support of this hypothesis.

5 Conclusion

Technological solutions to climate change make a vital part of an effective transition

strategy. However, evidence on the valuation of the overall climate innovation by equity

investors remains mixed. In this paper, we take a granular approach and look at the

relationship between Tobin’s Q and different types of climate innovation, specifically

regarding whether or not they relate to carbon intensive technologies such as internal

combustion engines. We also further distinguish non-carbon intensive climate patents

based on whether or not they contribute to climate adaptation or mitigation.

First, we do not report a significant relationship between market valuation and overall

climate patents. However, when we distinguish climate patents between carbon intensive

and non-carbon intensive categories, we find that only Climate Carbon Intensive innova-

tion is positively related to Tobin’s Q. A similar group of patents without a climate tag

(Non Climate Carbon Intensive) is not linked with higher market valuation. This may

suggest that investors value firms’ efforts in providing short-term technological solutions

to deal with climate change transition. Finally, when we further divide Climate Non-CI

along mitigation and adaptation, we report a statistically significant positive coefficient

only on dual-purpose patents that contribute to both.

Future research may benefit from understanding the characteristics of innovation that

drive market value. For example, future research can analyze textual data such as com-

pany reports and news to unveil whether Climate CI innovators deserve more short term

applications and revenue generation for the firms that non carbon intensive climate tech-

nologies. It may also focus on the qualitative characteristics of patents across different

categories to further understand what correlates with market value.
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6 Figures

Figure 1: The number of patents issued over the the sample period

This figure graphs the three year moving average in the number of USPTO patents issued to the firms in
in the sample in each innovation category. The sample period is between 1995 and 2020. The base year

(1995) value is indexed at 100.
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Figure 2: Example of an IPC hierarchy

Example of a portion of the IPC hierarchy starting in level 1, section B. Source: Gomez and Moens, 2014
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Figure 3: The evolution of the Industry Composition of Climate Patents

(a) Climate Carbon Intensive

(b) Climate Non Carbon Intensive
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Figure 4: The evolution of the Industry Composition of Climate Patents - Mitigation
versus Adaptation

(a) Climate Adaptation

(b) Climate Mitigation

(c) Climate Adaptation & Mitigation
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Figure 5: Proportion of citations received in each year after the patent application per
innovation category

(a) Climate CI and Climate Non CI

(b) Climate Adaptation and Mitigation
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7 Tables

Table 1: Number of Patents and average forward citations per innovation category

Category N Citations Citations adjusted

Climate versus Non Climate
Climate 102848 2.87 1.08
Non-Climate 1587105 3.20 1.04

Adding Carbon Intensive dimension
Climate CI 7204 2.21 1.12
Climate Non CI 95644 2.92 1.08
Non Climate CI 9630 2.16 1.08
Non Climate Non CI 1577475 3.20 1.04

Climate Adaptation and Mitigation
Climate Adaptation 4630 4.68 1.30
Climate Adaptation & Mitigation 1444 2.69 1.21
Climate Mitigation 96774 2.78 1.07
Non Climate 1587105 3.20 1.04

Combining all categories
Climate Adaptation & Mitigation CI 62 2.03 1.00
Climate Adaptation CI 10 1.21 0.70
Climate Adaptation Non CI 4620 4.68 1.30
Climate Mitigation & Adaptation Non CI 1382 2.72 1.21
Climate Mitigation CI 7132 2.21 1.12
Climate Mitigation Non CI 89642 2.83 1.07
Non Climate CI 9630 2.16 1.08
Non Climate Non CI 1577475 3.20 1.04
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Table 2: Summary Statistics

This table reports the summary statistics for the variables used in our estimations. The sample period
is 1995-2020. Panel Stock in Climate Non-CI, Climate CI, Pure CI, and Other refer to the stock of
patents (depreciated at 15%) a company holds in the respective innovation category divided by R&D
Stock. R&D Stock is the capitalized R&D expense depreciated at 15% scaled by Total Assets. Citations
are the adjusted number of citations a company has received over its patents issued in the last five years.
Tobin’s Q is the sum of total tangible assets minus book value of equity plus market capitalization at
the end of the fiscal year divided by total tangible assets. Market Beta is estimated annually using daily
returns. Size is equal to the log of market capitalization at the fiscal year-end. Book to Market is the book
value of equity divided by market capitalization. Operating profit is the sale minus the cost of goods sold
and general and interest expense divided by the book value of equity. Investment is the change in total
assets compared to year t-1, divided by total assets at year t-1. Leverage is the long-term debt divided
by equity. Tangibility is equal to Property, Plant, and Equipment divided by total assets. ∆EPS is the
change in earnings per share compared to year t-1, normalized by the share price. ∆Sale is the sale growth
normalized by market capitalization.

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

Patent Stock
Climate Non-CI 41862 1.132 47.882 0 0 0.008 4020.718
Climate CI 41862 0.01 0.739 0 0 0 111.111
Non Climate CI 41862 0.052 1.563 0 0 0 80.39
Non Climate Non CI 41862 14.89 313.634 0 0.07 0.533 22858.645

Other Innovation Measures
R&D Stock 41862 0.465 1.1 0 0.064 0.474 54.807
Citations 41862 80.273 413.757 0 0.271 21.066 13109.811

Financial Variables
Tobin’s Q 41862 2.779 3.738 0.003 1.261 3.215 305.714
Beta 41862 0.976 0.626 -6.872 0.545 1.34 6.756
Size 41862 6.258 2.377 -0.54 4.49 7.862 14.492
BTM 41862 0.549 0.557 0 0.231 0.698 18.15
Operating Profit 41851 -0.67 111.414 -22614 -0.062 0.288 1417.333
Investment 41628 0.169 0.99 -0.987 -0.055 0.186 82.264
Leverage 41862 1.162 68.617 -505.783 0.003 0.661 13380
Tangibility 41862 0.187 0.164 0 0.066 0.26 0.993
∆EPS 41778 0.007 5.729 -463.672 -0.028 0.036 998.272
∆Sale 41772 0.035 1.203 -38.718 -0.019 0.101 203.081
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Table 3: Total Number of Patents per Innovation Category - Industry Breakdown

SIC Industry Name C. CI C. Non-CI Non-C. CI Non-C. Non-

CI

1 Agriculture Crops 3 338 3 4724

10 Metal Mining 7 130 21 233

13 Oil & Gas Extraction 21 992 52 27075

14 Nonmetallic Minerals (except fuels) 0 15 0 257

15 General Building Contractors 0 1 0 31

16 Heavy Construction, Except Building 18 72 71 163

20 Food & Kindred Products 0 195 7 4377

21 Tobacco Products 4 44 29 1733

22 Textile Mill Products 1 21 0 437

23 Apparel & Other Textile Products 0 1 2 391

24 Lumber & Wood Products 11 74 11 656

25 Furniture & Fixtures 0 97 0 3864

26 Paper & Allied Products 3 839 32 21844

27 Printing & Publishing 0 12 0 1005

28 Chemical & Allied Products 224 8791 254 133031

29 Petroleum & Coal Products 138 2290 131 12998

30 Rubber & Plastics Products 2 197 10 8498

31 Leather & Leather Products 0 0 0 169

32 Stone, Clay, Glass, & Concrete 5 218 4 1412

33 Primary Metal Industries 13 218 51 2338

34 Fabricated Metal Products 58 522 74 7749

35 Industrial & Commercial Machinery 767 9118 1029 251575

36 Electronic & Other Electric Equipment 93 34483 492 540087

37 Transportation Equipment 4803 32001 3489 121810

38 Instruments & Related Products 36 3066 244 125961

39 Miscellaneous Manufacturing 0 110 6 4939

40 Railroad Transportation 1 4 1 79

42 Trucking & Warehousing 0 14 1 666

44 Water Transportation 0 0 0 18

45 Transportation By Air 1 57 1 262

47 Transportation Services 0 2 0 88

48 Communications 33 1580 61 54242

49 Electric, Gas & Sanitary Services 99 748 59 1687

50 Wholesale Durable Goods 1 182 5 2978

51 Wholesale Nondurable Goods 0 24 1 389

52 Building & GaR & Dning Supplies 0 0 0 52

53 General Merchandise Stores 0 15 0 947

54 Food Stores 0 0 0 23

55 Automotive Dealers & Service Stations 3 84 1 379

56 Apparel & Accessory Stores 0 0 0 45

57 Furniture & Furnishings Stores 0 6 0 204

58 Eating & Drinking Places 0 4 1 77

59 Miscellaneous Retail 2 400 0 14197

60 Depository Institutions 0 48 0 6607

61 Non-depository Credit Institutions 0 31 0 3554

Continued on next page
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Table 3: Total Number of Patents per Innovation Category - Industry Breakdown

SIC Industry Name C. CI C. Non-CI Non-C. CI Non-C. Non-

CI

62 Security & Commodity Brokers 0 10 0 1984

63 Insurance Carriers 1 79 6 1986

64 Insurance Agents, Brokers, & Service 0 3 0 24

65 Real Estate 1 2 2 67

67 Holding & Other Investment Offices 51 807 158 10188

70 Hotels & Other Lodging 0 1 0 68

72 Personal Services 0 4 0 37

73 Business Services 14 8240 77 299705

75 Auto Repair, Services, & Parking 0 0 0 40

76 Miscellaneous Repair Services 0 1 0 21

78 Motion Pictures 0 4 0 349

79 Amusement & Recreation Services 0 9 2 2419

80 Health Services 0 29 0 1822

82 Educational Services 0 6 0 53

87 Engineering, & Management Services 1 176 19 4159

99 Nonclassifiable Establishments 2215 11624 3352 96276

Total 8630 118040 9759 1783058
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Table 4: Market Valuation of Climate Innovation

The table reports the results of the linear OLS regression of current and one-year forward Tobin’s Q
on firm’s patent stock in climate and non-climate technologies between 1995 and 2020 with time fixed
effects . Industry dummies are based on 2 digit SIC codes. Control variables include the market beta, size,
operating profitability, investment, tangibility, leverage, EPS and Sale growth. The variables are defined in
Table 2. Columns 4-6 also includes contemporaneous Tobin’s Q as a control. All the independent variables
are normalized to have a mean of 0 and standard deviation of 1. Heterogeneity-consistent standard errors
are reported in parentheses.

Dependent variable:

Tobin’s Q Lead Tobin’s Q

(1) (2) (3) (4) (5) (6)

Climate −0.001 0.00003 0.005 −0.0001 0.00004 0.0001
(0.009) (0.007) (0.007) (0.003) (0.003) (0.003)

Non Climate −0.003 −0.004 −0.007 0.0003 −0.0002 −0.0003
(0.013) (0.011) (0.010) (0.005) (0.005) (0.005)

Citations 0.00002 0.00003+ −0.0002∗∗∗ 0.00001∗ 0.00001∗ 0.00000
(0.00002) (0.00002) (0.00003) (0.00000) (0.00001) (0.00000)

R&D 0.117∗∗∗ 0.054∗∗∗ 0.146∗∗∗ 0.034∗∗∗ 0.022∗ 0.023∗

(0.018) (0.013) (0.021) (0.009) (0.009) (0.010)

Controls No No Yes No No Yes
Industry FE? No Yes Yes No Yes Yes
Observations 41,862 41,862 41,567 37,987 37,987 37,733
R2 0.014 0.114 0.298 0.630 0.634 0.636
Adjusted R2 0.014 0.112 0.296 0.630 0.633 0.635

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 5: Market Valuation of CI and Non-CI Climate Innovation

The table reports the results of the linear OLS regression of current and one-year forward Tobin’s Q
on firm’s patent stock in carbon intensive and non-carbon intensive climate technologies with time fixed
effects between 1995 and 2020. Industry dummies are based on 2 digit SIC codes. Control variables include
the market beta, size, operating profitability, investment, tangibility, leverage, EPS and Sale growth. The
variables are defined in Table 2. Columns 4-6 also includes contemporaneous Tobin’s Q as a control. All
independent variables are normalized to have a mean of 0 and standard deviation of 1. Heterogeneity-
consistent standard errors are reported in parentheses.

Dependent variable:

Tobin’s Q Lead Tobin’s Q

(1) (2) (3) (4) (5) (6)

Climate CI 0.009∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.002) (0.002) (0.002) (0.0002) (0.0002) (0.0002)

Climate Non CI −0.0004 0.001 0.007 0.0002 0.0002 0.0004
(0.010) (0.008) (0.008) (0.004) (0.004) (0.003)

Non Climate CI 0.007 0.005 0.009 0.002 0.002 0.002
(0.007) (0.007) (0.007) (0.002) (0.002) (0.002)

Non Climate Non CI −0.005 −0.005 −0.010 −0.0004 −0.001 −0.001
(0.015) (0.013) (0.012) (0.006) (0.006) (0.005)

Citations 0.007 0.014+ −0.067∗∗∗ 0.004∗ 0.006∗ 0.001
(0.008) (0.008) (0.013) (0.002) (0.002) (0.002)

R&D 0.117∗∗∗ 0.054∗∗∗ 0.146∗∗∗ 0.034∗∗∗ 0.022∗ 0.023∗

(0.018) (0.013) (0.021) (0.009) (0.009) (0.010)

Current Q 0.783∗∗∗ 0.762∗∗∗ 0.755∗∗∗

(0.006) (0.006) (0.007)

Controls No No Yes No No Yes
Industry FE? No Yes Yes No Yes Yes
Observations 41,862 41,862 41,567 37,987 37,987 37,733
R2 0.015 0.114 0.298 0.630 0.634 0.636
Adjusted R2 0.014 0.112 0.297 0.630 0.633 0.635

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 6: Market Valuation and Climate Adaptation and Mitigation Innovation

The table reports the results of the linear OLS regression of current and one-year forward Tobin’s Q on firm’s patent stock in
climate adaptation and mitigation technologies with time fixed effects between 1995 and 2020 . .Industry dummies are based
on 2 digit SIC codes. Control variables include the market beta, size, operating profitability, investment, tangibility, leverage,
EPS and Sale growth. The variables are defined in Table 2. Columns 4-6 also includes contemporaneous Tobin’s Q as a control.
All the dependent variables are normalized to have a mean of 0 and standard deviation of 1. Heterogeneity-consistent standard
errors are reported in parentheses.

Dependent variable:

Tobin’s Q Lead Tobin’s Q

(1) (2) (3) (4) (5) (6)

Climate Adaptation 0.001 0.00002 −0.001 −0.0003 −0.001 −0.001
(0.007) (0.006) (0.005) (0.003) (0.003) (0.002)

Climate Mitigation −0.002 −0.00001 0.007+ 0.00004 0.0004 0.001
(0.006) (0.005) (0.004) (0.002) (0.002) (0.002)

Climate Adaptation & Mitigation 0.005+ 0.005∗∗ 0.007∗∗∗ 0.001+ 0.002∗∗ 0.001∗

(0.003) (0.002) (0.002) (0.001) (0.001) (0.001)

Non Climate −0.003 −0.004 −0.006 0.0003 −0.00001 −0.0001
(0.014) (0.012) (0.010) (0.005) (0.005) (0.005)

Citations 0.007 0.014+ −0.067∗∗∗ 0.004∗ 0.006∗ 0.001
(0.008) (0.008) (0.013) (0.002) (0.002) (0.002)

R&D 0.117∗∗∗ 0.054∗∗∗ 0.146∗∗∗ 0.034∗∗∗ 0.022∗ 0.023∗

(0.018) (0.013) (0.021) (0.009) (0.009) (0.010)

Controls No No Yes No No Yes
Industry FE? No Yes Yes No Yes Yes
Observations 41,862 41,862 41,567 37,987 37,987 37,733
R2 0.014 0.114 0.298 0.630 0.634 0.636
Adjusted R2 0.014 0.112 0.296 0.629 0.633 0.635

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 7: Market Valuation and Climate Adaptation and Mitigation Innovation

The table reports the results of the time-fixed-effect linear OLS regression of current and one-year forward Tobin’s Q on
firm’s patent stock in carbon intensive and non-carbon intensive climate adaptation and mitigation technologies between 1995
and 2020 . Industry dummies are based on 2 digit SIC codes. Control variables include the market beta, size, operating
profitability, investment, tangibility, leverage, EPS and Sale growth. The variables are defined in Table 2. Columns 4-6 also
includes contemporaneous Tobin’s Q as a control. All the independent variables are normalized to have a mean of 0 and
standard deviation of 1. Heterogeneity-consistent standard errors are reported in parentheses.

Dependent variable:

Tobin’s Q Lead Tobin’s Q

(1) (2) (3) (4) (5) (6)

Climate CI 0.009∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.002) (0.002) (0.002) (0.0002) (0.0002) (0.0002)

Climate Adaptation Non CI 0.002 0.001 0.001 0.00005 −0.0004 −0.001
(0.008) (0.007) (0.006) (0.003) (0.003) (0.003)

Climate Mitigation Non CI −0.002 0.0002 0.007 0.0002 0.0005 0.001
(0.006) (0.005) (0.005) (0.002) (0.002) (0.002)

Climate Adaptation & Mitigation Non CI 0.005+ 0.005∗∗ 0.007∗∗∗ 0.001+ 0.002∗∗ 0.001∗

(0.003) (0.002) (0.002) (0.001) (0.001) (0.001)

Non Climate CI 0.007 0.005 0.009 0.002 0.002 0.002
(0.007) (0.007) (0.008) (0.002) (0.002) (0.003)

Non Climate Non CI −0.005 −0.005 −0.009 −0.0004 −0.0005 −0.001
(0.016) (0.013) (0.012) (0.006) (0.006) (0.005)

Citations 0.007 0.014+ −0.067∗∗∗ 0.004∗ 0.006∗ 0.001
(0.008) (0.008) (0.013) (0.002) (0.002) (0.002)

R&D 0.117∗∗∗ 0.054∗∗∗ 0.146∗∗∗ 0.034∗∗∗ 0.022∗ 0.023∗

(0.018) (0.013) (0.021) (0.009) (0.009) (0.010)

Controls No No Yes No No Yes
Industry FE? No Yes Yes No Yes Yes
Observations 41,862 41,862 41,567 37,987 37,987 37,733
R2 0.015 0.114 0.298 0.630 0.634 0.636
Adjusted R2 0.014 0.112 0.297 0.630 0.633 0.635

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 8: Market Valuation and Short-term innovation proxy

The table reports the results of the time-fixed-effect linear OLS
regression of current and one-year forward Tobin’s Q on the
proportion of citations of the patents issued in year t that were
cited in the first three years of the patent application. Industry
dummies are based on 2 digit SIC codes. Control variables in-
clude the market beta, size, operating profitability, investment,
tangibility, leverage, EPS and sales growth, and contempora-
neous Tobin’s Q for columns 4-6. The variables are defined in
Table 2. All the independent variables are normalized to have a
mean of 0 and standard deviation of 1. Heterogeneity-consistent
standard errors are reported in parentheses.

Dependent variable:

Tobin’s Q

(1) (2) (3)

% cites in 1 year −0.005
(0.005)

% cites in 3 years −0.024∗∗∗

(0.006)

% cites in 5 years −0.028∗∗∗

(0.007)

Controls Yes Yes Yes
Industry FE? Yes Yes Yes
Observations 27,644 27,644 27,644
R2 0.285 0.286 0.286
Adjusted R2 0.283 0.283 0.284

Note: * p<0.10; ** p<0.05; *** p<0.01
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Appendix

Figure A1: Example of a carbon intensive climate patent
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Details of IPC hierarchy

IPC is structured in a hierarchical manner, starting with main sections that refer to broad

categories such as mechanical engineering or electricity, and becoming more granular, as

technological class, subclass and groups are added. Figure 2 provides an example of such

a hierarchy, expressing the five levels of an IPC code. It also expresses the fact that a

given patent may receive more than one IPC code, if it contributes to different areas of

technology. To give another specific example related to our sample, the below scheme in

Figure A2 graphs an example patent with the ID code 9995221 that appears in our data.

The patent, titled as Staged fuel and air injection in combustion systems of gas turbines,

is assigned to General Electric in 2018. It has received 7 different IPC subgroup codes,

which belong to 3 different IPC classes. Definitions of every IPC code can be found on

the following website address by World Intellectual Property Organization, which provides

detailed information on IPC.

Figure A2: An example patent with a carbon intensive IPC

Patent No 9995221

F

F01

. . . F01D

F01D09/00

F01D09/06 F01D09/02

F02

. . .

F23 →Combustion apparatus and processes

F23R →Generating ...products of high pressure

F23R03/00 →... chambers

F23R03/16

... to influence the air or gas flow

F23R03/34

In Figure A2, to illustrate, we highlight class F23, which is identified as a carbon

intensive class of technology in our study. F23 is broadly defined as Combustion appara-

tus; combustion processes. Getting more granular, we see that in class F23, the patent

belongs to subclass F23R, which refer to generating combustion products of high pres-

sure or high velocity and to group F23R 3/00, which describes technologies in continuous

combustion chambers using liquid or gaseous fuel. Finally, both subgroups F23R03/16

and F23R03/34 add more description to the group. However, note that we never need

this much granularity, since IPC codes we use in identifying carbon intensive patents are

only at class or subclass level (see Table A2).

Furthermore, our classification is binary in both climate and carbon intensive dimen-

sions. Namely, having one carbon intensive IPC code is sufficient to classify that patent
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as carbon intensive. Similarly, having one Y02 subclass from Table A1 is enough to clas-

sify a patent as climate. Note that patents may also receive several Y02 codes as well,

showing climate contribution in different areas. Finally, if a given patent has both at least

one climate tag, and at least one CI tag, then it belong to the intersection of these two

categories (Climate CI).
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Benefits of Y02 scheme

In the face of growing global attention on climate change, EPO launched a dedicated

classification scheme for Climate Change mitigation technologies (CCMT) in 2010, which

with further developments also started to include technologies helping with climate change

adaptation(Angelucci et al., 2018). The goal of the classification is to help a wide range

of stakeholders identify climate technologies.

Figure A3: Subclasses of Y02

EPO worked with a specialist team of patent examiners in collaboration with re-

searchers, analysts and NGOs to develop the new climate identification system in three

steps:

1. Identify a relevant entry for Y02 (e.g. CO2 capture technology)

2. Look for existing classification entries (e.g. ECLA, IPC codes) and search strategies

(e.g. terms in abstracts, patent claim texts)

3. Use search and classification tools to develop search algorithms which are now used

to find and update all documents relating to CCMTs (periodically updated)

The three steps procedure leads to the Y02 classification system, which are attached

to patent documents as kind of a tag (see A4). This tagging allows for the identification

of climate patents without the existing CPC or IPC classifications being affected.
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Figure A4: Y02 as a tag
Source: EPO, 2021

An example of how Y02 leads to less noise and more complete results is given in EPO,

2021 with the carbon capture technology. To identify patents related to their Carbon

Capture of CO2, we may rely on the following IPC code: B01D 53/00: Separation of gases

or vapors; Recovering vapors of volatile solvents from gases; /62 . . . carbon dioxides .

However, the authors show that this would give a noisy and incomplete result compared

to the relevant Y02 code (Y02C 20/40). Another example is Y02E 10/70 which tracks

patents related to wind turbines, but a relevant IPC class (F05B2240/95) would give 650

documents not related wind turbines.

Figure A5: Noise and completeness
Source: EPO, 2021
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Table A1: Y02 CPC subsections used in identifying Climate Innovation

CPC Definition

Y02A Technologies for Adaptation to Climate Change
Y02B Climate Change Mitigation Technologies (CCMAT) related to buildings, e.g.

housing, house appliances or related end-user applications
Y02C Capture, storage, sequestration or disposal of Greenhouse Gases [GHG]
Y02D CCMAT in Information and Communication Technologies i.e ICT aiming at the

reduction of their own energy use
Y02E Reduction of Greenhouse Gas [GHG] emissions, related to energy generation,

transmission or distribution
Y02P CCMAT in the production or processing of goods
Y02T CCMAT related to transportation
Y02W CCMAT related to wastewater treatment or waste management

Source: https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y.html

Table A2: IPC sections and subsections used in identifying Carbon Intensive Technologies

IPC Definition

C10J Production of producer gas, water-gas, synthesis gas from solid carbonaceous
material, or mixtures containing these gases carburetting air or other gases

F01K Steam engine plants; steam accumulators; engine plants not otherwise provided
for; engines using special working fluids or cycles

F02B Internal-combustion piston engines; combustion engines in general
F02C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply

in air-breathing jet-propulsion plants
F02G Hot gas or combustion-product positive-displacement engine plants use of waste

heat of combustion engines; not otherwise provided for
F22 Steam generation
F23 Combustion apparatus; combustion processes
F27 Furnaces; kilns; ovens; retorts

Source: Dechezlepretre, Mucklay, and Neelakantan, 2020
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Table A3: Market Valuation of All Climate Patent Categories - IndustryxTime effects

The table reports the results of the time-fixed-effect linear OLS regression of current and one-year forward
Tobin’s Q on firm’s patent stock in carbon intensive and non-carbon intensive climate adaptation and
mitigation technologies between 1995 and 2020 . Industry dummies are based on 2 digit SIC codes. We
include industry and time fixed effects and their interaction in every column. Control variables include
the market beta, size, operating profitability, investment, tangibility, leverage, EPS and Sale growth, and
contemporaneous Tobin’s Q for columns 4-6. The variables are defined in Table 2. All the independent
variables are normalized to have a mean of 0 and standard deviation of 1. Heterogeneity-consistent
standard errors are reported in parentheses. Standard errors are clustered by year and industry.

Dependent variable:

Tobin’s Q Lead Tobin’s Q

(1) (2) (3) (4)

Climate CI 0.0109 ∗∗∗ 0.0143 ∗∗∗ 0.0172∗∗∗ 0.0066 ∗∗∗

(0.0015) (0.0012) (0.0018) (0.0004)

Climate Adaptation Non CI 0.0013 0.0010 0.0004 -0.0007
(0.0057) (0.0058) (0.0096) (0.0035)

Climate Mitigation Non CI −0.0003 0.0068 −0.0004 0.0011
(0.0045) (0.0043) (0.0075) (0.0027)

Climate Adaptation & Mitigation Non CI 0.0066∗∗∗ 0.0094∗∗∗ 0.0097 ∗∗∗ 0.0033 ∗∗

(0.0008) (0.0006) (0.0022) (0.0012)

Non Climate CI 0.0056 0.0094 0.0091 0.0034
(0.0059) (0.0070) (0.0100) (0.0035)

Non Climate Non CI -0.0049 -0.0085 -0.0048 -0.0006
(0.0115) (0.0117) (0.0194) (0.0071))

Citations 0.0138 −0.0653∗∗∗ 0.004∗ 0.0017
(0.0085) (0.0104) (0.0123) (0.0046)

R&D 0.0580∗∗ 0.1468∗∗∗ 0.0774∗∗∗ 0.0329∗∗∗

(0.0162) (0.0376) (0.0122) (0.0179)

Controls No Yes No Yes
Observations 41,862 41,567 38,766 37,929
R2 0.18212 0.35023 0.18725 0.66514
Within R2 0.00466 0.20953 0.00628 0.59069

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table A4: Market Valuation of All Climate Patent Categories - Controlling for proportion
of citations received in the short term

The table reports the results of the time-fixed-effect linear OLS regression of current and one-year forward Tobin’s Q on
firm’s patent stock in carbon intensive and non-carbon intensive climate adaptation and mitigation technologies between 1995
and 2020 . Industry dummies are based on 2 digit SIC codes. Control variables include the market beta, size, operating
profitability, investment, tangibility, leverage, EPS and Sale growth, and contemporaneous Tobin’s Q for columns 4-6. The
variables are defined in Table 2. All the independent variables are normalized to have a mean of 0 and standard deviation of
1. Heterogeneity-consistent standard errors are reported in parentheses.

Dependent variable:

Tobin’s Q Lead Tobin’s Q

(1) (2) (3) (4) (5) (6)

Climate CI 0.009∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.002) (0.002) (0.002) (0.0002) (0.0002) (0.0003)

Climate Adaptation CI 0.002 0.001 0.001 0.0001 −0.0004 −0.001
(0.008) (0.007) (0.006) (0.003) (0.003) (0.003)

Climate Mitigation CI −0.001 0.001 0.007 0.0002 0.001 0.001
(0.006) (0.005) (0.005) (0.002) (0.002) (0.002)

Climate Adaptation and Mitigation Non CI 0.006∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.001∗ 0.002∗∗∗ 0.001∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Non Climate CI 0.008 0.006 0.009 0.002 0.002 0.002
(0.008) (0.008) (0.008) (0.002) (0.003) (0.003)

Non Climate Non CI −0.006 −0.007 −0.009 −0.0004 −0.001 −0.001
(0.016) (0.013) (0.012) (0.006) (0.006) (0.005)

Citations −0.003 0.005 −0.067∗∗∗ 0.003∗ 0.003∗ 0.001
(0.008) (0.007) (0.013) (0.002) (0.002) (0.002)

R&D 0.117∗∗∗ 0.056∗∗∗ 0.149∗∗∗ 0.034∗∗∗ 0.023∗∗ 0.020∗∗

(0.017) (0.013) (0.021) (0.009) (0.009) (0.010)

% of citations in 3 years −0.018∗∗∗ −0.005 −0.005 0.009∗∗∗ −0.001 −0.001
(0.006) (0.006) (0.005) (0.003) (0.003) (0.003)

Controls No No Yes No No Yes
Industry FE? No Yes Yes No Yes Yes
Observations 41,862 41,862 41,567 37,987 37,987 37,733
R2 0.029 0.125 0.299 0.630 0.635 0.637
Adjusted R2 0.028 0.123 0.298 0.630 0.634 0.636

Note: * p<0.10; ** p<0.05; *** p<0.01
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