
Document for the exclusive attention of professional clients, investment services providers and any other professional of the financial industry

Working Paper 119-2021 I December 2021

Graph Neural Networks
for Asset Management

Graph Neural Networks for Asset Management

Abstract

Grégoire Pacreau
Quantitative Research
gregoire.pacreau@ens-rennes.
fr

Edmond Lezmi
Quantitative Research
edmond.lezmi@amundi.com

Jiali Xu
Quantitative Research
jiali.xu@amundi.com

It is impossible to analyze an asset taken in isolation,
without taking into account the wider picture of the market.
This fact is behind the extensive use of copulas or vector
autoregressive models in finance, which allow to model
dependencies between assets. In this paper, we look at the
graph-based method to model inter-asset behavior. Graphs
are ubiquitous when representing relationships, whether to
model social network interactions, disease spread, traffic,
or supply chain information. It allows for a very intuitive
representation of market interconnections. We show how
several types of market information can be translated
into graphs and show some graph-based tools for market
analysis. Furthermore, neural convolution layers have
been developed which allow for more expressive neural
models. Just like Euclidean convolution layers on images,
they promise to contextualise each individual asset during
prediction. We show the effect of three graph neural
layers on the stock return forecasting problem. Using
these forecasts, we build portfolios and show that graph
layers act as a stabilizer to classical methods like LSTM,
reducing transaction costs and filtering out high-frequency
signals. We also study the effect of different graph-based
information on the forecast and observe that in 2021,
supply chain information becomes much more informative
than sectoral or correlation-based graphs.

Keywords: Machine learning, graph learning, hypergraph learning, graph neural
networks, graph convolutional networks, graph attention networks, quantitative asset
management, backtesting, trading strategy.
JEL classification: C45, C53, G11.

Acknowledgement
We would like to thank Factset for providing us with the Revere supply chain database and
Thierry Roncalli for his valuable advice on writing this paper. We also thank Mohamed Ben
Slimane and Takaya Sekine for their help accessing the various datasets we used in this
work, and Frédéric Lepetit for his insight in the world of equity trading.

About the authors

Grégoire PACREAU

Grégoire Pacreau joined Amundi in 2021 as an intern
in the Quantitative Research department. He worked
on graph theory and deep learning applied to portfolio
construction. He holds a master’s degree in computer
science from Ecole Normale Supérieure de Rennes
and an MSc in Finance and Risk Management from
École nationale de la statistique et de l’administration
économique (ENSAE). Prior to joining Amundi, Grégoire
worked on pattern mining using information theory at
IRISA and causal inference at CISPA Helmholtz. He also
worked at Société Générale on automated fraud detection
using machine learning.

Edmond LEZMI

Edmond Lezmi joined Amundi in 2002. He is currently
Head of Multi-Asset Quantitative Research. Prior to
that, he was Head of Quantitative Research at Amundi
Alternative Investments (2008-2012), a derivatives and
fund structurer at Amundi IS (2005-2008), and Head
of Market Risk (2002-2005). Before joining Amundi, he
was Head of Market Risk at Natixis, and an exotic FX
derivatives quantitative developer at Société Générale.
He started his working career with Thales in 1987 as a
research engineer in signal processing. He holds an MSc
in Stochastic processes from the University of Orsay.

Jiali XU

Jiali XU joined Amundi in 2018 as a quantitative research
analyst within the Multi-Asset Quantitative Research
team. Prior to that, he was a quantitative analyst in the
Risk Analytics and Solutions team at Société Générale
between 2014 and 2018. He is graduated from Ecole des
Ponts ParisTech and he also holds a master’s degree in
Financial Mathematics from the University of Paris-Est
Marne-la-Vallée.

Graph Neural Networks for Asset Management

1 Introduction

Deep Learning performs well on problems like image recognition, where the algorithms can
interpret each pixel as part of a bigger picture. So called convolution layers analyze every
part of the picture in the context of the neighboring pixels. This allows generative algorithms
to correctly reproduce the structure of photographs and paintings in a realistic and organic
manner. Just like pixels in an image, financial assets do not exist in isolation. Their
analysis benefits from studying the underlying structure of the markets. For instance, the
correlation between assets must be taken in account when controlling a portfolio’s exposure
to market risk, with tools such as copulas. Other types of relationships between assets are
also essential to build a complete picture of the market inter dependencies. If one wants
to build investment portfolios using machine learning, this structural information must be
incorporated.

The main issue when trying to transcribe a market’s structure is that, contrary to images,
it is hard to represent it in a Euclidean space. Yet, the convolution layers for vectors, images
and shapes are based on the Euclidean distance. Each element is convolved with those closest
to it. Market relationships are more complex, they occur at different level, each with different
strength and relevance. Relationships can be Boolean, for instance if two stocks are from
similar sectors, or real-valued if they are linked by correlation. The most natural way to
represent this diversity of structures is through graphs.

Recently, graph neural networks have gathered some attention from researchers in many
fields to model non-Euclidean relationships. Graph neural layers are now fundamental in
the study of medical molecules (Stokes et al., 2020), they can model traffic (Wu et al., 2018)
and analyze relationships in bibliography, etc. They enable the structure of the data to
be encoded independently from their individual features, relying on the propagation of the
information through the graph. In particular, graphs arise naturally when looking at supply
chain information (Wu and Birge, 2014).

In this paper, we examine how graphs can model inter-stock relationships to inform
portfolio construction. Our study looked at several deterministic uses of graph for asset
management, but its primary focus was on graph neural networks. Section 2 provides a brief
introduction to graph theory with some examples of naturally occurring graph structures in
finance. Section 3 builds upon this introduction to introduce neural layers that profit from
this structure to propagate information. Section 4 extends the ideas of propagation to a
generalization of graphs, which also come with its neural layer. Finally, Section 5 provides
our experimental setup and Section 6 our results.

2 Information propagation with graphs

Many forecasting techniques focus on the temporal context to produce an estimate. However,
financial assets do not exist in a vacuum and more information than a stock’s history is
required to assess its movement. A spatial representation of stocks can provide insights into
their dynamic, which is why we are trying to apply graph theory to stock markets.

2.1 Convolution operations in Euclidean space

The need for the spatial propagation in complex forecasting or classification tasks is widely
accepted in many machine learning problems. For instance, this fact is central in image
processing, where each pixel needs to be coherent with the ones surrounding it. This is
done through convolution layers, which compute a value from the cross-correlation between

7

Graph Neural Networks for Asset Management

a pixel and its neighbors. The generic formula for a convolution layer on an image X for
the pixel at location (i, j) is given by:

Yi,j = σ

(
M∑

a=−M

M∑
b=−M

Wa,bXi+a,j+b

)
(1)

where Yi,j is the result of the convolution of image X at pixel position (i, j). M =
⌊
m−1
2

⌋
and m stands for the convolution kernel size, which controls the number of neighboring
pixels seen to compute the end value for each pixel. σ is a nonlinear function, Wa,b is
a learnable weight matrix depending on the relative position of the neighbor pixel to the
studied pixel. The added context provided by these layers brings impressive results for noise
removal, image compression and reconstruction, etc.

This family of convolution layers is defined for Euclidean spaces and makes sense when
the only relationship between the inputs is their physical proximity in an Euclidean space.
However, financial assets have more than one way being close to each other. Many different
relationships might link assets together. When dealing with stocks for instance, one might
be interested in the sector in which the company operates to compare it to others in the
same situation, or one might be interested in the health of its customers and competitors,
or even whether this enterprise is actually a joint venture. If one is to consider such a wide
variety of information, a more complex representation of this information is required than
that provided by a Euclidean space, where the curse of dimensionality will make it difficult
to define a relevant similarity measure. However, if we see the markets as a network of
assets linked together by these relationships, then we can easily represent this ecosystem
using graphs, which have the benefit of coming with their own convolution operator.

2.2 A primer on graph theory

Graphs are a mathematical object reported to have been invented by Leonard Euler in 1735
to model bridges over a river in Königsberg. It is composed of a set of vertices, V , which are
connected by a set of edges E. More specifically, the set E is defined as being a subset of
V ×V , where × is the Cartesian product between sets. For i, j ∈ V , there exists a connection
between i and j if, and only if, (i, j) ∈ E. A graph can also be represented by a square
matrix, named the adjacency matrix A, such that Ai,j 6= 0 ⇐⇒ (i, j) ∈ E. The values in
the adjacency matrix can act as the weights of the connections, where higher values mean
a stronger connection. A non weighted graph will have a binary adjacency matrix. If A is
symmetric then the graph is called undirected, since information flows from i to j and from
j to i indifferently. Otherwise it is called a directed graph. Other special kinds of graphs
include the bipartite graph, where vertices can be separated into two classes where no two
vertices in a same class are connected, and complete graphs, where every vertex is connected
to every other. Some examples are given in Figure 1.

Graph theory provides several tools for the study of graphs. Subsets like network theory
or spectral graph theory focus on propagation in a graph, with applications in epidemiology
(Cutura et al., 2020; Sehanobish et al., 2021) or traffic forecasting (Wu et al., 2018). The
degree matrix is a matrix fundamental in describing a graph’s structure. The degree matrix
D is a diagonal matrix which gives the number of neighbors of each vertex. It is directly
related to the adjacency matrix, since ∀i ∈ {1, . . . , N}, Di,i =

∑N
j=1Ai,j . It allows to build

the graph Laplacian, which is defined as L = D − A. Since the diagonal in the adjacency
matrix is 0, it combines without loss the information about the number and the position
of each vertex’s neighbors. The graph Laplacian acts like a regular Laplacian operator for

8

Graph Neural Networks for Asset Management

Figure 1: Examples of graph

v1

v2

v3

v4
v5

(a) An undirected graph with five vertices

v1

v2

v3

v4
v5

(b) The same graph with directed edges

v1

v2

v3

v4

v5

v6

v7

(c) A bipartite graph

v1

v2 v3

v4

v5v6

(d) The complete graph with six vertices

describing propagation through differential equations. For instance, one can show that heat
propagation in a graph verifies:

dφ

dt
+ kLφ = 0 (2)

where φ is the temperature vector of the graph’s nodes and k is the heat capacity of the
network. Furthermore, the eigenvalues of the graph Laplacian inform us on the structure
of the graph. The number of connected components, i.e. the number of unlinked subsets of
vertices, is given by the multiplicity of the eigenvalue 0. In other words, if there is a path
from every vertex to another, then 0 will not be an eigenvalue of the Laplacian. The second
smallest eigenvalue of the Laplacian is also an indicator of the conductance of the graph1,
which is a measure of the connectivity in the graph. The higher the conductance, the faster
an information is transmitted to the entirety of the graph. The Laplacian matrix has many
other properties, some of which will be further discussed in the following sections and in
Appendix B on page 46.

To illustrate further the concept of graphs and to prove their relevance in finance, we
can show that a vector-autoregressive (VAR) model can be easily represented as a weighted
directed graph where vertices are time series. LetXt be aN -dimensional time series following
a VAR(1) process, i.e. for A ∈ RN and εt a white Gaussian noise, Xt+1 = AXt+ εt. Then A
can be interpreted as an adjacency matrix representing the links between assets. At every
time step, information flows through the edges and updates each vertex’s value. This can
be extended to any kind of VAR models, as demonstrated in Calkin and Lopez de Prado
(2014). In practice, however, these graphs grow exponentially in the number of time steps
and quickly become impractical when dealing with several stocks. In our study, we will not

1See Appendix D of page 54.

9

Graph Neural Networks for Asset Management

represent temporal dependencies through graphs, but only so-called spatial relationships
between stocks, with temporal behavior being embedded beforehand.

2.3 Message passing

The operation consisting in sending information from one node to another is called Message
Passing. This family of mechanisms will act like the convolution operations in Euclidean
spaces, whereby they allow for the dissemination of information to neighboring nodes. They
were introduced by Battaglia et al. (2016) and Gilmer et al. (2017).

Message passing can be separated into three steps: the message creation, the aggregation
and the update. In the message creation, the information of a node is transformed into an
embedding. Then the aggregation step disseminates the message to every neighbor of the
node. Finally, the update step will look at every received message and modify the value
of the node accordingly. More formally, the three steps can be modelled as functions. Let
X be the space of the nodes’ information and Y the message space. Then the message
creation step is defined by a function message : X 7→ Y and the update step by a function
update : Y 7→ X . Let us suppose that we have a graph where every node i contains a vector
of real numbers ~vi,t at time t. Let N be a function that, given a node i, returns the set of
neighbors of i. The aggregation operator can be any function f : Y 7→ Y such that:

~vi,t+1 = f({~vj,t, j ∈ N (i)}) (3)

Furthermore, f must be node permutation invariant. Since there isn’t any natural order
over the neighbors of a node, the behavior of f should not change according to the order
in which the messages arrive. For instance, the averaging operator on neighbors can be a
message passing function:

~vi,t+1 =
1

|N (i)|
∑

j∈N (i)

~vj,t (4)

This simple averaging message passing mechanism helped define the SAGE neural layer, a
precursor in graph neural networks (Hamilton et al., 2018). Indeed, a graph neural layer is
simply a differentiable parametrised message passing mechanism. In the case of the SAGE
layer, the parameters are weights in the average. In Section 3, we will see some more
advanced message passing algorithms and their related graph neural layer. In particular,
the graph Laplacian and its links to heat dispersion in the graph allow us to construct robust
message passing.

Remark 1. Some papers try to define message passing with node permutation sensitive
functions or even propagation mechanisms that are not message passing (Hamilton, 2020).
However, the majority of the literature abides by the message passing theory of Gilmer et al.
(2017).

2.4 Creating graphs for portfolio management

Relational information can easily be transcribed into graph form. We provide three graphs
built using financial information on the MSCI stocks.

2.4.1 Sector graph

Sector information like the GICS sector index can easily be transcribed into a graph. Indeed,
we can choose edges such that nodes are linked if and only if the assets are from the same

10

Graph Neural Networks for Asset Management

sector: V = {(i, j), i and j are in the same sector}. Taking the highest capitalizations of
the MSCI index, Figure 2a at page 12 is the resulting adjacency matrix, with white meaning
Ai,j = 0 (i.e. (i, j) /∈ V) and black Ai,j = 1 (ie (i, j) ∈ V). This relationship leads to several
sets of complete subgraphs, named cliques. In Figure 2a, each black square forms a clique.
This translates in Figure 2d to several unconnected subgraphs. One problem that may arise
from such a representation is that complete graphs see a polynomial growth of the number

of edges. Indeed, for N the number of vertices, a complete graph will have N(N−1)
2 edges.

For large graphs, this may become a bottleneck in terms of computation time. We will see in
Section 4.3.3 that a more parsimonious representation can be made of sectoral information
using a generalization of graphs named hypergraphs.

2.4.2 Correlation graph

Correlation or any similarity measure can be transformed into graph form, either by directly
taking the cross-correlation matrix as a weighted adjacency matrix, or by creating a binary
matrix through thresholding. Figure 2b displays such a binary adjacency matrix, where
Ai,j = 1 if and only if the absolute value of the correlation between the two assets is greater
than 0.5. This kind of graph is particularly interesting since they are easy to create and
do not rely on outside information. Similar matrices can be built using other similarity
measures, such as mutual entropy (Dionisio et al., 2004; Cellucci et al., 2005) or dynamic
time warping (Sakoe and Chiba, 1978), a similarity measure widely used for time series.
Whatever the measure, the threshold must be chosen ad hoc, though some papers choose
it by examining the graph’s structure for various values. A good idea would be to examine
the number of connected components for various thresholds. If it is close to the number of
vertices, then the threshold is too high and almost no edges are created. If this number is
close to one, then it is likely that the threshold is too low, and the graph is almost complete.

2.4.3 Supply chain graph

Lastly, any network information about an asset can be transformed into a graph. We decided
to showcase this fact using supply chain relationships. Similarly to the previous graphs, we
simply build an adjacency matrix such that Ai,j = 1 if, and only if, there exists a link
between company i and company j in the FactSet Revere database2. To illustrate this, we
take Revere’s supply chain database and extract the supplier and customer relationships.
Graphs are a natural representation for such information, since they maintain the structure
of the network of relationships. Several studies have investigated supply chain graphs for
financial purposes (Cohen and Frazzini, 2008; Bloomberg Quant Research, 2020). Figure 2c
shows the adjacency matrix where Ai,j = 1 if and only if i is either a customer or a supplier
of j. Figure 2f provides the resulting graph.

Supply chain information is not the only one that can be transformed into a graph. For
instance, papers Kim et al. (2019) and Feng et al. (2019) create graphs using information
such as “is the company owned by another?”, “has a fund invested in both these companies?”
or “do these companies trade in the same country?”. Since the number of possible graphs
linking assets is high, most studies use a combination of several criteria to increase accuracy.

2.4.4 Combining graphs

We often find ourselves with several relevant relationships, each leading to their own graph.
It is then possible to combine the information from several graphs, either by averaging the

2More information at https://open.factset.com/products/factset-supply-chain-relationships/

en-us.

11

https://open.factset.com/products/factset-supply-chain-relationships/en-us
https://open.factset.com/products/factset-supply-chain-relationships/en-us

Graph Neural Networks for Asset Management

Figure 2: Three graphs computed on the highest capitalizations of the MSCI World index

(a) Same sector adjacency
matrix using the GICS sector
index

(b) Correlation based adja-
cency matrix, thresholded at
50%

(c) Supply chain based adja-
cency matrix using the Fact-
Set Revere database

(d) Representation of the sec-
tor graph

(e) Representation of the cor-
relation graph

(f) Representation of the sup-
ply chain based graph

values of their adjacency matrices or successively transmitting the information.

Averaging makes sense if the relationships are on the same level. In other words, if the
relationships are just a way to join two companies’ information and that the order or the
importance of the relationship does not matter, then we can simply combine the matrices
by taking the union of their set of edges. If the graph is weighted, then the weight of each
edge will be the average of the weights of this edge in all graphs. If we take the case of a
discrete time process, this would represent the following structure:

Xt+1 =
1

2
(AXt +BXt) + εt (5)

where A and B are two adjacency matrices. The second makes sense if there is a hierarchy
between relationships. This is the method used in Kim et al. (2019), where their graphs
have a different granularity. For a given company, they separate sectoral information from
company to company information, first sharing the information inside each sector according
to the graph of the latter relationships, and then in a second time sharing between sectors.
For our discrete process example, this method would be equivalent to the following model:

Xt+1 =AYt + ε1t

Yt =BXt + ε2t

In our study we use machine learning algorithms based on the graphical structure of our
data. In this case, instead of averaging, since the algorithm is able to learn the relative
importance of edges, we simply take the union of the edge sets, or in the case of binary

12

Graph Neural Networks for Asset Management

Figure 3: Toy graph representing fictitious sector (in grey) and supply chain (in red) rela-
tionships

v1

v2

v3

v4 v5

v6

v7

Figure 4: Kamada-Kawai representation (from the NetworkX package) of the union graph
on the MSCI World index

13

Graph Neural Networks for Asset Management

valued matrices the element-wise maximum of the adjacency matrices. This reduces the
sparsity of the adjacency matrix but gives more leeway to the learning algorithm.

A representation of what a union graph would look like is given in Figure 3. It shows a
toy example of the union of the sector and supply chain graph on seven fictitious assets. The
supply relationship links v2, v3 and v7 in a dashed red line, while sectors are represented in
grey. We see that although v3 and v7 are linked both by supply chain and sector relationships,
there is only one line. That is because the union between two graphs is the union between
two sets, which does not allow for redundancy. The union graph of the three matrices we
described is provided in Figure 4.

2.5 Deterministic portfolio creation using graph theory

Before we look into machine learning algorithms for graphs, it is interesting to see how
deterministic methods applied on graphs can help in portfolio construction. We will detail
three different uses of graph theory in asset management.

2.5.1 Centrality and supply chain

Since a graph displays the dependencies between assets, it allows for the easy propagation of
information between assets. There are many ways to propagate information. The simplest
set of techniques involve applying aggregation functions on the information of the neighbors.
This is the notion behind message passing algorithms. Seeing the simultaneous evolution of
the asset information and its closest neighbors gives more context for decision making. A
form of max-pooling message passing for strategy building was shown in Bloomberg Quant
Research (2020), where the performance of each company’s most important client is used
to correct the predicted returns of their stocks. This means that if a client accounting for
more than 10% of the total profits of the company has its value fall, this will be reflected
in the graph and sent to the node. Cohen and Frazzini (2008) showed that for supply chain
data, there exist a natural inertia in the markets which makes an important customer’s bad
performance only reflect on the supplier after about a month. Bloomberg Quant Research
(2020) found that with the graph structure, they can identify these movements almost
immediately and can act on this information in time.

In any propagation problem, the centrality of a node will have a high influence of how
sensitive this node is to changes in the market. Centrality measures quantify how connected
a node is to the rest of the graph. A high centrality measure can indicate that the node
has many neighbors, or that it is the neighbor of a very connected subgraph. For example,
in a social network, a highly central user would be one having many followers. Similarly in
traffic forecasting, blocking a central junction will have a high impact on the overall traffic.
For example, in Figure 3, the node v7 is more central than v1. Cohen and Frazzini (2008);
Wu and Birge (2014) and Wu (2015) have studied the way in which centrality measures can
reveal the exposure of a stock to market fluctuations by estimating how easily a shock will
be propagated towards it. In particular, together with Bloomberg Quant Research (2020),
they provide a series of linear regressions involving centrality measures and graph structural
information and they show that the added returns they provide are independent from the
common Fama-French market factors.

The centrality of a node can be defined in several ways. The simplest form of centrality
is degree centrality:

Cd(i) = d(i) =
∑
j∈V

Ai,j (6)

14

Graph Neural Networks for Asset Management

which defines as central the nodes having the most neighbors in the graph. In a directed
graph, this can be turned into two different measures according to whether we define as
neighbors the mother nodes ({i, (i, j) ∈ E}) or the daughter nodes ({j, (i, j) ∈ E}). Other
measures include eigenvector centrality:

Ce(i) =
1

λ

∑
j∈V

Ai,jCe(j)⇔ ACe = λCe (7)

which extends degree centrality to infinite walks in the graph. Here λ is a predetermined
eigenvalue of the adjacency matrix, often either the smallest eigenvalue or the second small-
est. Eigenvector centrality inspired Google’s PageRank centrality measure:

Cp(i) =
1

λ

∑
j∈V

Ai,j
Cp(j)

max
(
1,
∑
k∈V Ak,j

) (8)

which weights the score of each neighbor by their own number of neighbors. Wu (2015)
provides a short comparison of several centrality measures on the supply chain network. In
this paper, degree centrality favours tech companies, the father centric (in their case counting
the number of customers) favours financial institutions and the son centric (the number of
suppliers) retailers such as WallMart. The paper then builds long only equal weighted
portfolios on the most central nodes for each measure and computes the regression against
the S&P 500 index. They show that the centrality measures are not always correlated to one
another and that excess returns on portfolios created from the supplier centrality predict
future stock returns.

2.5.2 Strategy on clustering

A simple way to use graph theory for portfolio construction is through the use of clustering.
Graph clustering has been used mostly in image processing, but some research is starting to
introduce time series clustering through graph theory (Zhu et al., 2016). Shen et al. (2012)
provided a way to predict stock movements according to a clustering of the stock universe.
Though the paper builds its clusters on a hypergraph, the general idea is still relevant for
graphs.

Graph clustering can be done in a number of ways. The classic method is through the
min-cut problem3. This graph theory problem takes a weighted graph and tries to find a
set of edges which would separate the graph into two unlinked sets of vertices. This set of
edges is named a cut. A good clustering method is to look for the cut that minimizes a given
measure. Classic algorithms include the Stoer-Wagner method or the probabilistic Kagner’s
algorithm.

We can also use spectral clustering algorithms, based on the eigenvalues of the Laplacian
matrix. In particular, a family of clustering techniques use an identity called Cheeger’s
inequality4, which grants efficient bipartite clusterings according to the second eigenvalue
of the Laplacian. Laplacian based decomposition can be extended so that any number of
clusters can be achieved, not only two. The idea is to apply classic clustering techniques
onto the Euclidean world defined by the eigenvectors of the Laplacian instead of the non-
Euclidean world of graph nodes and edges. These clustering techniques are very efficient.
Indeed, computing the Laplacian matrix is simply making the product and sum of matrices
in which only one is non-diagonal. The cost of eigenvalue decomposition is then dominated
by that of a matrix multiplication.

3See Appendix D at page 54.
4This inequality is presented in Appendix D at page 54.

15

Graph Neural Networks for Asset Management

Figure 5: Two weighted version of our toy graph and their MST found by Kruskal’s algorithm
(in bold)

1

8

53

6

2

4

7
3

2

v1

v2

v3

v4

v5

v6

v7

(a) A weighted version of the toy graph

1

8

11

1

2

5

1
3

2

v1

v2

v3

v4

v5

v6

v7

(b) Different weights lead to a different MST

Graph clustering can then be used on assets for portfolio building. An idea developed
in Dees et al. (2019) and Arroyo et al. (2021) is to cluster assets to compute the covariance
of returns on each clusters separately. This allows for a faster and more stable estimation
of the covariance matrix which can then be used in the optimization portfolio. It also leads
to strategies on several equally weighted portfolios, each representing a cluster, themselves
weighted in a global portfolio according to how many iterations of a clustering algorithm
were needed to obtain the clusters (Dees et al., 2019).

2.5.3 Signal building using graph theory

It has been shown that structural information about graphs can reflect contractions in
financial markets. Kaya (2015) generated a graph between several assets of different nature
(commodities, stocks, etc.) using mutual information, but with a slightly different approach
than ours. Instead of thresholding, they took the complete graph, weighted by the mutual
information, and looked for the minimum spanning tree (MST). A tree is a particular family
of graphs where there exists only one path from one vertex to another. The MST is defined
in Cormen et al. (2009) as the tree where every path between two vertices is minimal. The
MST can be found using Prim’s or Kruskal’s algorithm, whose precise description features in
Cormen et al. (2009) and whose implementation exists in NetworkX (Hagberg et al., 2008).

Algorithm 1 Kruskal’s algorithm for finding the minimum spanning tree (MST)

Require: G = (V,E) a graph and W : E → R the weights of each edge
E = ∅
forest = {{i}, i ∈ V }
Sort all e ∈ E in increasing values of W (e)
for (i, j) ∈ E (sorted) do

if i and j not in the same tree of forest then
E = E ∪ {(i, j)}
Drop the trees of i and j from forest
Add the union of the dropped trees to forest

end if
end for
return E

16

Graph Neural Networks for Asset Management

The idea behind computing the MST is that for a market where values of mutual entropy
range widely, the MST will be a very deep tree, one where each node has few neighbors.
On the contrary, for a market where all returns look alike, the MST will be very wide, with
some central nodes having many neighbors. Figure 5 shows two examples of weights on the
same graph, with the resulting MST computed with Kruskal’s algorithm (algorithm (1)).
We see that changes in the weights can lead to different topologies for the MST. This comes
from the fact that node v7 was closer to its neighbors than before, it illustrates the sort of
contractions that Kaya (2015) focused on. Indeed, according to Kaya (2015), crisis lead to
a contracted market where every asset-to-asset mutual entropy becomes alike. This allows
for signals based on eccentricity measures on the nodes of the MST. Several measures exist
to indicate how wide or tall a graph is. Eccentricity is a measure defined for every vertex.
It computes the longest path to any other vertex. A low eccentricity means that every node
is reachable in a small number of hops in the graph. It is linked with a high centrality.
However, eccentricity is defined by node, for a graph level metric two eccentricity-based
measures exist to describe the whole graph. The first is the diameter of a graph, which is
the maximum eccentricity over every node. In other words, the diameter is the length of
the longest possible path. A diameter of one would indicate that every node is connected
to every other, i.e. the graph is complete. A second measure is the radius of a graph, which
is the minimum of eccentricities. The radius gives information on how connected each node
is to the most central nodes of the graph. In other words, whatever vertex we choose, there
will be a vertex that will need at least as many hops as the radius to be reached.

The idea behind Kaya (2015) is to examine these measures for the MST. If the topology
of the MST changes during a crisis, this will reflect on either the radius or the diameter.
In the example of Figure 5, the first graph has a diameter of 6 (the maximum path is
(v1, v2, v3, v7, v5, v6, v4)) and a radius of 3. The second has a diameter of 5 (with path
(v1, v2, v3, v7, v6, v4)) and a radius of 3. Kaya (2015) thus creates a signal on several assets
ranging from commodities to bonds and stocks. Their study suggests that every asset
category tends to be linked to the others of the same categories, except during crisis where
they observe a more homogeneous behavior. In order to replicate their experiments on stocks
only, we built signals based on the diameter and radius of the MST, as well as on the mean
and maximum degree of the graphs’ node. We did not notice any improvement in returns
or on the Sharpe ratio when using this signal to balance an equally weighted portfolio. Our
tests indicate that when dealing only with stocks, the variation of the eccentricity measures
on the MST are too small to build a viable signal.

3 Graphs and neural networks

Although powerful, graphs are subject to a combinatorial explosion of their edges when
increasing the number of nodes. Neural networks have proven very useful when forecasting
N -dimensional time series using graph information.

3.1 Two graph convolutional layers

Since graph are more complex in structure than Euclidean spaces, the classical convolution
layer (equation (1) at page 8) does not apply. Many alternatives exist in the literature.
For instance, the Python library PyTorch Geometric (Rozemberczki et al., 2021) provides
an extensive list of contenders with their torch implementation. The PyTorch library is a
popular machine learning library which we used for all experiments (Paszke et al., 2019). We
focused on two convolution layers that are both representative of the different approaches
to graph convolution and are very popular in the literature.

17

Graph Neural Networks for Asset Management

3.1.1 Kipf and Welling’s graph convolutional layer

Otherwise called the GCN layer, it is the more theoretically sound layer of the two. Intro-
duced in Kipf and Welling (2017), it uses graph spectral theory and the graph Laplacian
matrix to define the message passing mechanism through a graph. In this section we will
provide the formula and some intuition of the layer, a more complete explanation of the
layer is provided in Appendix B at page 46.

The convolution family of layers for Euclidean spaces, used for image processing (2D) or
time series analysis (1D), is based on the cross-correlation operations from spectral theory.
Many objects from the classical spectral theory can be generalized to the graph world, like
for instance Fourier transforms and the Laplacian operator (Chen et al., 2021). The main
object behind graph spectral theory and the convolution operator is the Laplacian matrix.
Let A be the adjacency matrix of a graph and D its degree matrix. For stability reasons,
the normalized Laplacian matrix D−

1
2LD−

1
2 is often preferred, which is simply a rescaled

version of the Laplacian so that the diagonal terms are all equal to 1.

Appendix B at page 46 provides an introduction to the relevant graph spectral theory
tools and proofs of the formula of the layer. Here is a quick summary. The convolution
operator can be defined using the Fourier transform of a function over graphs and the
eigenvectors of the Laplacian matrix. This leads to very computationally intensive analytical
expression, which Kipf and Welling (2017) reduces to the following approximation. Let Θ
be a matrix representing the convolution weights. A convolution layer for graph features X
of output Y is:

Y = σ (Θ ∗X) ∼ σ
(
D̃−

1
2 ÃD̃−

1
2XΘ

)
(9)

where ∗ is the graph convolution operator, Ã = A + IN is the adjacency of the graph with
added self loops and D̃ = D+ IN its degree matrix. Here Θ is the only learnable parameter.
This layer simulates one propagation step through the graph after applying a filter defined
by the Θ matrix. Since all but two matrices are diagonal, the complexity of this layer’s
computations is dominated by the multiplication between an N ×N matrix and the feature
matrix, which is of size N × F , with F the number of features of each node. As such, this
layer has a O(N2F) complexity.

3.1.2 Graph attention layer (GAT)

Attention mechanisms are a very common tool in machine learning when dealing with high
dimensions. The idea is to multiply each feature with a scalar named the attention coeffi-
cient. Just like in a classical regression, the higher the attention coefficient the more impact
the features will have on the overall result of the network. This mechanism is very popular
since it allows us to visualize the importance given by the network to a specific information.
It is a mechanism that can be easily adapted to every data encoding, such as graphs, for
instance. The idea behind graph attention is that the cross correlation between each node is
weighted according to a learned attention coefficient (Velickovic et al., 2018). This attention
coefficient is then a measure of the relevance of a specific node to another.

More formally, each attention coefficient is computed from a learnable weight matrix
W and an attention vector a, which are applied to the two nodes’ features. The result
is then put through a non-linear activation function, which is in Velickovic et al. (2018) a
Leaky-ReLU function, and finally they are normalised using the softmax function. Let Xi

be the node features and [u||v] denote the concatenation operation between two vectors u
and v. The complete formula of the attention coefficient of node j with regard to node i is
as follows:

αi,j = softmax
(
LeakyReLU

(
a> [WXi||WXj]

))
(10)

18

Graph Neural Networks for Asset Management

Once every coefficient is defined, we create the message consisting of a weighted average
of the features of each node’s neighbor. The aggregation of the neighbors’ information can
then be obtained by:

Yi = σ

 ∑
j∈Ni∪i

αi,jWXj

 (11)

where σ is a non linear transformation. Alternatively, instead of averaging, the concate-
nation of features has been proposed if one wants to keep every information about the
neighbors’ state. In our regression and classification experiments, averaging was used. An-
other extension of the layer provided by Velickovic et al. (2018) is a multi-head approach,
by which K independent attention mechanisms are trained independently and their results
averaged. We did not use this extension in our study.

An interesting property of the layer, outside of its very intuitive message passing mech-
anism, is its computational complexity. Given F features, F ′ predicted features, |V | the
number of nodes and |E| the number of edges, the complexity of the GAT computation is
in O(|V |FF ′ + |E|F ′). Since we will have fewer than ten features, and that the predicted
feature is the stock’s return, i.e. of size one, the computational complexity of the GAT layer
is linear in the number of edges and vertices. For sparse adjacency matrices, this makes it a
very computationally efficient layer. In particular, it is less computationally intensive than
the GCN layer.

The main advantage of the graph attention-based layer is that one can extract the at-
tention coefficients and visualize them. Thus, if the model contains a single GAT layer, we
can partially explain the model’s result. This is a rare thing in neural networks. When
dealing with supply chain relationships in particular, using the NetworkX library one can
produce a visualization of the supply chain graph at a given date weighted by the attention
coefficients. This can provide an empirical validation in small practical examples where a
neighbor’s effect is well understood.

3.2 Discussion on the two layers

It is important to note that the GCN layer is a particular case of a convolutional filter over
every node in the graph. In particular, in the construction of this layer (which is detailed
in Appendix B at page 46) we assume that we can restrict ourselves to diffusion among the
direct neighbors. This means that we can compare the GCN layer to the GAT layer directly.
This is done in Bronstein et al. (2021), where they argue that the GAT layer is nothing but
a more complex GCN layer. Indeed, the GCN layer takes into account every neighbor’s
features according to a fixed weight matrix Θ, whereas the GAT layer computes a specific
attention coefficient for each edge.

Another interesting remark in Bronstein et al. (2021) is that both layers are a particular
case of a message passing mechanism. Indeed, in the case of the GCN the message sent by
each is its feature and the aggregation function is a weighted mean. For the GAT layer,
the message is the feature times the attention coefficient between the sender node and the
receiver node and the aggregation function another weighted mean. Bronstein et al. (2021)
thus establishes the following classification:

GCN ⊂ GAT ⊂ message passing (12)

GATs have several advantages over GCNs (Velickovic et al., 2018). They can handle directed
graphs for instance, whereas the GCN is built assuming that the Laplacian matrix is a
symetric semi-definite matrix, which in turn limits its use to undirected graphs. The GAT,

19

Graph Neural Networks for Asset Management

as with all attention networks, is robust to high dimensional data. In particular, a highly
connected graph will be better handled by the GAT layer since the attention mechanism
will select particularly relevant connections amidst all the neighbors. On the contrary, the
fixed weights of the GCN will lead to a very fast averaging of every nodes’ information in a
densely connected graph, erasing all the specificities of individual nodes. This issue is known
as the smoothing problem (Bronstein et al., 2021; Hamilton, 2020) and can affect GAT as
well, but to a lesser extent. Finally, GAT layers are more flexible to changes in the graph.
The attention mechanism is independent from the edges of the nodes’ position, it computes
for every two nodes a new coefficient at every iteration. As such, removing or adding edges
will have few impact as long as the mechanism can compute a coefficient over the newly
connected edges.

On the other hand, the smoothing of information provided by GCNs can be desirable
in some cases. GCN originate from a low order Chebyshev expansion of the convolution
of the features with a filter. The frequency profile of this layer is thus known analytically
as demonstrated in Appendix E at page 55. Its spectral behavior cuts some bands of
frequencies in the middle to high range (Muhammet et al., 2020). In financial forecasting,
this can stabilize the predictions by cutting out outliers in the market.

3.3 Adding temporal dependencies

Our graphs are a representation of spatial relationships and do not account for temporal
dependencies. Even though temporal relationships can be represented using graphs (Calkin
and Lopez de Prado, 2014), this dramatically increases the number of vertices and nodes,
leading to an explosion of computation time. Instead, we decide to embed temporal infor-
mation using a recurrent neural layer. This temporal embedding is the message creation
function of our message passing mechanism.

The majority of the literature includes temporal information in the form of an embedding,
given by a recurrent neural network, which is then provided as a feature to the graph layer
(Feng et al., 2019; Wu et al., 2018; Murphy et al., 2021). In other words, they first study
the temporal dynamics of each series before convolving on the spatial dimension. The layer
is often the long short term memory layer (LSTM), which we describe in Appendix A at
page 45. This recurrent layer is widely used for speech recognition (Graves et al., 2013)
and has been shown to perform well on stocks (Kim et al., 2019). A slight variation of the
order between LSTM and graph layers can be found in Yu et al. (2018), where a graph
convolution is performed before and after the temporal layer. These methods are easy to
implement using the PyTorch library, since its LSTM layer can easily be combined with
PyTorch Geometric layers. They also allow to perform ablation studies to capture the effect
of both the LSTM layer and the graph convolution, since both steps are clearly delimited
in the code.

Another approach showed in Chen et al. (2018) blends the LSTM architecture and the
GCN layer by using message passing in every equation. The details of the implementa-
tion, which is an example of a non-message passing layer, are also described in Appendix
A. However, the intricacy between the two mechanisms makes it difficult to study their
individual effects. Since our study aims to show how graphs can help for portfolio manage-
ment, it seems more relevant to keep the graph and temporal layers separated to study their
individual effects.

20

Graph Neural Networks for Asset Management

3.4 Generating adjacency matrices

In Section 2 we showed different ways to build graphs linking assets together when dealing
with stocks. There is a subset of machine learning research which aims at finding structural
information in a dataset without any prior knowledge. Indeed, the amount of information
available can be overwhelming if we do not know what kind of relationships are truly influ-
ential during the message passing phase. When using a GAT model, for instance, we end
up finding that a majority of the links have an attention coefficient close to zero, meaning
that we could have avoided adding them in the first place. Since for very large graphs the
number of edges has an impact on computation time, sparsity in the adjacency matrix might
be desirable. Many ideas have flourished around generating the sparsest relationship graph
that still holds as much information as possible. In particular, causal discovery (Pearl, 2019)
brings several means to compute structural graphs in an agnostic fashion.

The optimization program behind causal discovery often comes back at finding a sparse
directed acyclic graph linking all series together. Several techniques were developed to
solve this problem. All aim at finding, if the data was generated by a Bayesian network,
a resulting graph that is as similar as possible to the true graph. Methods include the
LINGAM algorithm (Shimizu et al., 2006), using Independent Component Analysis; the
Graphical Normalizing Flow algorithm and the NOTEARS class of optimization problems
(Zheng et al., 2018; Romain and d’Aspremont, 2020) along with their recent improvements
through penalization (Kyono et al., 2020).

Algorithm 2 The topological sort algorithm for verifying acyclicity

Require: G = (V,E) a graph and the DFS function defined in algorithm (3)
sorted = ∅
pending = ∅
isAcyclic = true
for i ∈ V do

isAcyclic = isAcyclic and DFS(i)
end for
return isAcyclic

Algorithm 3 Depth First Search (DFS) procedure for acyclicity testing

Require: i ∈ V
if i ∈ pending then

return false # The DFS algorithm found a cycle in the graph
end if
if i ∈ sorted then

return true
end if
pending = pending ∪ {i}
for j ∈ N (i) do

DFS(i)
end for
pending = pending\{i}
sorted = sorted ∪ {i}
return true

However, these techniques falter when faced with data generated by a random VAR

21

Graph Neural Networks for Asset Management

Table 1: Similarity metrics between the true matrix and the CASTLE generated matrix
after 100 random experiments, compared to the theoretical metrics associated with randomly
generated graphs.

Metric Completeness Precision Hamming
Acyclic Causal Model 0.46 0.41 0.15

Random VAR 0.26 0.15 0.22
Baseline 0.125 0.125 0.234

model, which may allow for loops in the resulting graph. To show this fact, we run experi-
ments on synthetic graphs with an edge density similar to the supply chain graph we obtained
for the MSCI World data. The synthetic matrices have size 20 × 20 and 50 distinct edges.
The generated adjacency matrices are asymmetric, 100 are completely random and another
100 are generated so that they be acyclic. Acyclicity is obtained by drawing randomly new
edges until the graph passes the topological sort acyclity test described in algorithms (2)
and (3). In Table 1 we provide several metrics computing how close the CASTLE generated
adjacency matrix is compared to the true matrix. We optimize the hyperparameters of the
CASTLE penalization on another batch of 100 random VAR graph models. The metrics are
the completeness, which computes how many of the true edges are in the generated matrix,
the precision, which computes the proportion of edges in the generated matrix actually are
in the true matrix, and the hamming distance, which evaluates the edit distance between
the two matrices. The baseline is the theoretical mean distance between two completely ran-
dom matrices with this edge concentration. As we can see, the precision and the Hamming
distance of the CASTLE generated matrices on non-acyclic graphs is close to the random
theoretical distances. This means that, since we cannot assume the acyclicity of a hypothet-
ical stock price generating graph process, we will not rely on these techniques to add edges
to our graphs.

3.5 Static and dynamic graph learning

In our experiments, when dealing with small time intervals (around 5 years) we decide to
assume that the graphs did not change. This is true for sector information, but we had to
make sure it was realistic for supply chain and correlation graphs. To this end, we compute
the Hamming distance between adjacency matrices for the same companies at different
times. We find that after five years, less than 10% of the existing supply chain relationships
changed. We decide that for experiments on the MSCI World All Returns index, we could
assume that the graphs are static in our five-year period. However, when dealing with
S&P 500 companies, one must take into account the changes in composition of the index.
Thus, our S&P 500 experiments will allow for the dynamic update of adjacency matrices
to account for the removals and additions of companies in the index, even if this leads to
weaker performances.

4 From graphs to hypergraphs

The graph representation is a very intuitive way to represent relationships between data
points. However, when the number of edges increase, some structural information may be
lost. In particular, if two nodes are linked by several relationships, the graph will only
encode it with one edge. Hypergraphs are a generalization of graphs which provide a more
informative structure, at the expense of some useful theoretical properties.

22

Graph Neural Networks for Asset Management

4.1 Definition

A hypergraph is a graph-like structure G = (V,E) where edges are no longer defined as a
relationship between two nodes, but instead a realtionship between a whole set of nodes.
This means that instead of being a subset of V × V , we now have E ⊂ P(V), where P(V)
is the set of all sets of elements of V . Every set ei ∈ E is called a hyperedge. While in
a graph two nodes can only be linked in one way (either the vertex exists or it does not),
in a hypergraph two nodes might belong to several hyperedges together. Hypergraphs are
thus a generalisation of graphs, since one can define graphs as being a particular family of
hypergraphs where every hyperedge is either a couple or a singleton of nodes. Instead of an
adjacency matrix which would link nodes to each other, a hypergraph is better represented
by an incidence matrix which links nodes to their hyperedges. Let N be the number of nodes
andM the number of hyperedges. The incidence matrixH is defined as ∀i ∈ {1, . . . , N},∀j ∈
{1, . . . ,M}:

Hi,j = 1 ⇐⇒ node i is in hyperedge j (13)

and 0 otherwise. From this matrix, we can define two diagonal degree matrices. The first is
the node degree matrix D, which counts for each node how many hyperedges contain it:

Di,i =

M∑
j=1

Hi,j (14)

And the second is the hyperedge degree matrix B, which simply gives the cardinal of each
hyperedge:

Bj,j =

N∑
i=1

Hi,j (15)

There exist a definition of a directed hypergraph. While in a directed graph every vertex in
an edge could either be a parent or a son vertex, in a directed hypergraph every hyperedge is
partitioned into a tail and a head subset, denoted by H(ei) and T (ei). In this configuration,
information can only flow from tail vertices to head vertices. Still, we will focus in this study
exclusively on undirected hypergraphs.

4.2 A generalization with more freedom

When looking at our sector matrix in Figure 2a (page 12), it is obvious that there are better
ways to take this information into account than to link every single node to every other in
the same sector. Rather than taking a sector as an fully fledged entity, graphs multiply the
number of relationships while forgetting the simpler structure. For instance, in a typical
regression, one might want to have the sector as an independent factor, which would have its
own coefficient, common to every asset. In other words, we could want to treat the assets in
the same sector as a cohesive set, instead of as individual nodes. This is where hypergraphs
come into play.

Another way to look at this structure is with metro lines. While metro lines have
classically been represented as graphs for tasks like pathfinding (Cormen et al., 2009), this
completely overlooks any information about lanes, the only relevant factor being whether
one can hop from one station to another. For traffic flow prediction, this could come with an
issue. A passenger could want to stay in the same lane, even though the graph might indicate
a faster route with many lane changes. If each lane is a hyperedge, then the dispersion of
information will act more in line with the true representation of the metro’s structure.

In Figure 6 we present a hypergraph version of the graph in Figure 3 of page 13. The
hyperedges ei are represented in blue for sector information and in green for supply chain

23

Graph Neural Networks for Asset Management

Figure 6: The toy example of Figure 3 (page 13), in hypergraph form

v1

v2
v3

v4

v5

v6

v7

e1

e2

e3e4

relationships. Notice how the sector relationship linking v3, v7, v5, and v6 is now represented
by a unique set instead of the six edges of the clique. These six edges can now be seen as
one entity in our calculations. This allows both more abstraction, since now sectors exist
as a unique object, but also more freedom, since v3 and v5 are linked twice, once through
their sector relationship and a second time through the supply chain relationship with v2.
In Figure 3, both relationships are represented by a single common edge. This solves the
issue of combining several relationship types together. Every relationship is transcribed as
a set and does not blend with different relationships. However, some information might be
lost in the set structure. In our toy example, v2 and v7 are not directly linked, but since
they are in a supply chain relationship with v3, they belong to the same hyperedge. By
gaining abstraction, we lost some of the finer details of the structure of the graph.

4.3 Examples of hypergraphs

Just like we provided practical examples of graph theory applied to asset management, we
will detail the applications of hypergraph theory.

4.3.1 From graphs to hypergraphs

The hypergraph structure is very suited to sector information. We say that i and j are in
the same hyperedge if and only if they are in the same sector. This gives us a partition of
the assets along the sectors, which can then be manipulated as an entity in itself. However,
for sparser relationships, like supply chain for instance, there is more than one way to build
a hypergraph. This comes from the fact that many aggregation functions can be defined
on a graph’s nodes (Cormen et al., 2009). For example, in a very similar way to the sector
hypergraph, one can make every connected component of a graph a hyperedge. However,
this might lose the structure of the original graph, and thus forget important information.
One example could be metro lines. Given the graph representing a metro, since one can get
from every station to any other without leaving the graph, this method would lead to every
single metro station being stacked into the same hyperedge. This is obviously an issue, since
we would have lost all structural information.

Another way to build hypergraphs is to look at the adherence of every node. That is, for
all nodes, we create a hyperedge with them and their direct neighbors. This is less brutal
than the previous version and enables us to maintain sparsity in the new hypergraph. This
in turn can be a curse, since having many very small hyperedges defies the point of the
structure. This would be the case for very sparse graphs, but for highly connected graphs

24

Graph Neural Networks for Asset Management

this technique provides interesting hypergraphs. Indeed, this hyperedge creation strategy is
used by Zhu et al. (2016) to transform similarity matrices into hyperedges using thresholding.
In our experiments, we choose one of the two strategies empirically. We count the number
of hyperedges using the first method and decide based on the number of hyperedges whether
to switch to the second one. For instance, if the first method gives us one unique hyperedge,
the hypergraph is useless since it lost all structural information. The second method is
therefore preferred.

One last way, specific to similarity measures and presented in Shen et al. (2012), is to
use frequent itemset mining. These data mining methods, also known as association rule
mining, was introduced by Aggarwal and Yu (1998). It is a family of techniques that clusters
data points according to how frequently they appear together. The adaptation of this idea
to stock markets, introduced in Shen et al. (2012), is to cluster together stocks according
to how frequently their movements are synchronised. We set a minimum threshold, then
count every time two stocks went the same direction and save this number in a matrix S,
such that Si,j = n ⇐⇒ companies i and j were synchronised at most during n consecutive
days. We then create the adjacency matrices:

Ani,j = 1Si,j≥n (16)

from which we generate a sequence of hypergraphs incidence matrices Hn using the first
method. The final hypergraph is then the union hypergraph

Gnmin =

V, ⋃
n≥nmin

En

 (17)

with En the hyperedges defined by the incidence matrix Hn and nmin an arbitrary threshold.
The intuition behind this hypergraph is that companies whose changes in profitability are
synchronised often will be linked by many hyperedges. This allows us to build partitions
based on the number of overlapping hyperedges through hypergraph clustering.

4.3.2 Hypergraph partitioning

Hypergraph clustering is a much-studied subject, spearheaded by its importance in elec-
tronics. Indeed, the hypergraph structure enables the mathematical representation of the
connectivity of components on a printed circuit. Therefore, clustering algorithms were de-
veloped to find the most efficient welding pattern (Shen et al., 2012). Although hypergraph
neural networks are very recent, clustering on hypergraphs is a well-studied problem in
computer science. Clustering hypergraphs can provide a way to refine highly connected
hypergraphs obtained through frequent itemset mining or graph to hypergraph transforma-
tion.

Shen et al. (2012) provides a very interesting case study for the refinement of hypergraph
information for stock prediction. Their idea is to use clustering to find a partition of the
stocks on which they build a signal. This signal is based on information about the history
of each asset taken individually, corrected by an average on all assets of a given cluster. Let
S be a partition of the assets, let T be a fixed window of time and let P it be the normalised
price of asset i at time t. The paper defines two signals:

f(S) =
∑
v∈S

1

|v|
∑
i∈v

(
P it − P it−T

)
(18)

25

Graph Neural Networks for Asset Management

and

T ′(i) =

T∑
j=1

(P it − P it−j)∑T
j=1 j

j (19)

And their signal is then simply, for asset i ∈ S:

R(i) = 0.7T ′(i) + 0.3f(S) (20)

In particular the authors predict an upper movement of the stock’s value if the signal is
positive, and downward if it is negative. The authors build their partitioning using spectral
clustering on the frequent itemset hypergraph we described earlier. We implement this signal
for the S&P 500 index stocks from 2010 and study its accuracy. The paper promises 80%
accuracy over the 2009/2010 period, which we were not able to reproduce on the 2020/2021
period. Figure 7 shows the ratio of correct predictions and false predictions. The precision
of the signal hovers around 50% in every period, with the two dents in upward prediction
being compensated by a better downwards precision. This is not completely a bad news,
since when decomposing the assets by quantiles (Figure 8), we see that the precision is much
higher for well-performing stocks than for low-performing stocks. The two dents correspond
to periods of uncertainty and match drawdowns in the S&P 500 index. We tried to build a
long 10% strategy based on this signal and find great results in the 2021 period, where trend
following is very efficient due to the constant upwards trend. It is however underperforming
in 2020, where it misses the correction after the drawdown (as shown in Figure 9). Table
2 displays the annualized returns, volatility, Sharpe ratio, maximum drawdown and Calmar
ratio of this strategy annually, with the same metrics computed on the S&P 500 index being
provided in Table 3.

Table 2: Performance of a long 10% strategy based on the trend following signal of Shen
et al. (2012)

year Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol
2020 -19.13 39.43 -0.49 39.02 0.99
2021 54.97 18.19 3.02 5.61 0.31

Table 3: Performance of S&P 500 index

year Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol
2020 15.59 33.83 0.46 33.92 1
2021 32.26 13.16 2.45 4.23 0.32

4.3.3 From hypergraphs to graphs

In our work, we must be able to generate graphs out of pre-existing hypergraphs. There are
two main methods for this transformation: clique expansion and star expansion. Cormen
et al. (2009) defines a clique as as a fully connected subgraph in a given graph. In our toy
example in Figure 3 of page 13, there are three cliques: (v1, v2), (v2, v3, v7) and (v3, v5, v6, v7).
Each of these cliques are hyperedges e1, e2 and e3 respectively. In this case, the inverse
transformation is trivial. Each hyperedge will become a clique in the new graph, connecting
every vertex of one hyperedge to another. This is the operation known as clique expansion.
But it may come with some issues. For instance, if we generate a hypergraph out of the graph
in Figure 3 using the connected components method, then the resulting graph will see e1,

26

Graph Neural Networks for Asset Management

Figure 7: Precision of the predictions based on the trend following signal

2020−01 2020−03 2020−05 2020−07 2020−09 2020−11 2021−01 2021−03 2021−05
0.0

0.2

0.4

0.6

0.8

1.0

Precision of the Classifier

True Increase

True Decrease

False Increase

False Decrease

Figure 8: Precision of the trend following signal, with companies segregated by quantile
according to their true returns

20
20
−0

1

20
20
−0

3

20
20
−0

5

20
20
−0

7

20
20
−0

9

20
20
−1

1

20
21
−0

1

20
21
−0

3

20
21
−0

5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Top quantile

Second to best quantile

Second to worst quantile

Worst quantile

27

Graph Neural Networks for Asset Management

Figure 9: Performance of a long 10% portfolio based on the Trend Following signal, compared
to a equally weighted portfolio on the S&P 500 companies

20
20
−0

1

20
20
−0

3

20
20
−0

5

20
20
−0

7

20
20
−0

9

20
20
−1

1

20
21
−0

1

20
21
−0

3

20
21
−0

5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
Benchmark

No cost

5 bps

20 bps

Figure 10: Examples of graphs resulting from the hypergraph of Figure 6 (page 24)

v1

v2

v3

v4 v5

v6

v7

(a) The clique expansion of the toy hy-
pergraph of Figure 6

v1 v2 v3 v4v5 v6 v7

e1 e2 e3 e4
(b) The star expansion of the toy hypergraph of
Figure 6

28

Graph Neural Networks for Asset Management

e2 and e3 be one unique hyperedge. The clique expansion will thus add many non-existing
relationships between vertices such as v1 and v5.

The star expansion allows a lossless transfer from the hyperedges to graphs. The idea is
to add to the graph vertices as many new vertices as there are hyperedges. The resulting
graph is then the bipartite graph linking every vertex to its edge vertex. An example is
provided in Figure 10b, where the star expansion of the hypergraph of Figure 6 is shown.
More formally, for G = (V,E) a hypergraph, its star expansion is G∗ = (V tE,E∗) (here t
shows that there is no redundancy between the nodes from V and the nodes of E), where:

E∗ = {(i, j), i is a node belonging to hyperedge j} (21)

This structure modifies the meaning of nodes, which for a machine learning experiment might
be confusing. It also means that in the case of a graph convolution, one needs two iterations
for the information of neighboring nodes to reach the receiving node. If the hyperedges are
of small cardinal, clique expansion might make more sense. For instance, in Figure 10a, we
see that the resulting graph is similar to the original toy graph of Figure 3. In particular, by
encoding a graph as a hypergraph of maximum hyperedge cardinal 2, the clique expansion
results in the original graph.

4.4 Hypergraph convolution layers

Since graphs and hypergraphs are related, some of the graph’s theory remains relevant
when building a neural layer. However, there is no single definition of the Laplacian of a
hypergraph (Agarwal et al., 2006). Chan et al. (2016) provides a definition that kept most of
the graph Laplacian properties and from which Bai et al. (2019) defines a convolutional layer
very similar to the GCN layer of Kipf and Welling (2017). A more complete explanation of
the hypergraph convolutional layer is given in Appendix C at page 49.

Let Θ be a real diagonal matrix, let H ∈ {0, 1}N×M the incidence matrix of the hyper-
graph. Let also D be the node degree matrix and B the hyperedge degree matrix. The
expression of the convolution layer of Bai et al. (2019) is then very similar to the GCN layer
of Kipf and Welling (2017), but it uses the two degree matrices:

Y = σ
(
D−

1
2HB−1H>D−

1
2XΘ

)
(22)

We recognise the approximation of the Laplacian multiplied by a diagonal filter matrix.
Here HB−1H> acts like the adjacency matrix for a graph. D and B are diagonal matrices,
so their inverse is computed in O(N) and O(M) respectively. However, there will also be a
multiplication of two non diagonal matrices in this expression because of the presence of H>,
making this layer more computationally intensive with a complexity in O(N2M) instead of
O(N2) for the graph convolution layer. This complexity difference might be attenuated if
H is sparse, or if the number of hyperedges is small, i.e. N �M ≈ 1.

A graph attention layer is also defined in Bai et al. (2019), but it supposes that there
exists a measure of similarity f : V,E 7→ R between a node and a set of nodes (ie between
vertices and hyperedges). This similarity function can be an element-wise operation on all
the members of the hyperedge, or can be directly computed between the vertex’s features
and an edge feature. Once such a function is defined, the formula is very similar to the
attention mecanism in Equation (10) of page 18:

Hi,j = softmax(σ(f(WXi,WXj))) (23)

Then we apply Equation (22), with this new incidence matrix instead of the actual incidence
matrix of the hypergraph. However, PyTorch Geometric only allows for the second case,

29

Graph Neural Networks for Asset Management

which does not coincide to our use case. This is why we do not test the attention hypergraph
layer in our study. Bai et al. (2019) also provides a quick demonstration that the graph
convolution layer is a particular example of the hypergraph convolution layer, which we
display in Appendix C at page 49.

5 Portfolio construction using graph neural networks

We now have an intuitive way to model inter-assets relationships and mechanisms to propa-
gate the information using neural network layers. In this section, we detail the architecture
we have built to test these mechanisms.

5.1 Description of the models

The models we are interested in combine a temporal layer and a graph neural layer. Table
4 details the generic architecture we settle on, with the convolution layer being either a
GAT, a GCN or a hypergraph (HGCN) layer. We choose the learning rate empirically
after trying several proposals from the literature. Most research papers use Leaky ReLU
or tanh activation functions. After disappointing results with the latter, which lead to a
disappearing gradient, we consider the LeakyReLU function. Finally, the dropout for every
single layer is set at 0.5 to avoid overfitting.

This architecture is the same for every experiment, when performing ablation studies
we simply remove layers from this main skeleton. In the remainder of our experiments, the
name LSTM designates this architecture without any convolution layer; GCN, GAT and
HGCN this architecture with the corresponding convolution layer, but without an LSTM
layer, and GCN*, GAT* and HGCN* this architecture with the corresponding convolution
layer and the LSTM layer.

The initial weights of each layer is subject to randomness, thus experiments vary from
each other depending on the random seed used during training. We use Monte Carlo esti-
mations to showcase the variance of the results depending on the model.

Table 4: Structure of the LSTM + GAT model for predicting returns

LSTM Layer size=[|features|, 16]
Convolutional Layer size=[16, 16]

Linear layers size=[16, 8, 4, 1]
Dropout 0.5

Activation LeakyReLU
Final activation Linear or Sigmoid

Optimiser Adam
Learning Rate 10−3

Batch Size 32

5.2 Features

Our approach to feature selection is somewhat naive. We keep things simple by focusing
on the returns, with no added information such as quantitative factors or macro-economic
measures about the companies. For every stock, we compute the daily returns, the annu-
alized returns over one and two weeks, as well as one, two, three and six months. We also
compute the annualized volatility and a MACD signal comparing one week to one month.

30

Graph Neural Networks for Asset Management

This information comprises our feature vector on every day. Although we are confident that
with macroeconomic information in the features, as in Bloomberg Quant Research (2020),
better performance can be achieved, in this paper we are mainly interested in the agnostic
performance of the models. When using a LSTM layer, we supply two weeks’ worth of data
in the temporal phase and recover the last hidden vector to feed it to the graph layers.

Regarding the graphs, we take the sector information matrix, the supply chain matrix
derived from the FactSet Revere database and the absolute correlation matrix thresholded
at 50%. The final adjacency matrix is the union matrix of these three pieces of information,
with some added random edges (accounting for less than 1% of the total edges). The sector
and supply chain data are updated every day, but due to computation time the correlations
are only computed every week, then copied for every day of the week. The hypergraph used
is also a union of hypergraphs. The first hypergraph in the union is the sector hypergraph,
the second the next neighbor hypergraph derived from the supply chain graph and finally
the next neighbor hypergraph derived from the 50% thresholded correlation graph.

5.3 Dataset separation

The datasets only contain assets we allow in our portfolios, which in the case of the MSCI
World Index are assets with market capitalization above 100 billion USD (around 100 com-
panies) and for the S&P 500 index the companies part of the index. This choice is made to
limit computation time but may have an influence on our model’s performance. Indeed, it
is possible to add nodes to a graph which pass their information through but on which no
backpropagation occurs. These nodes are called transductive nodes, they provide a wider
contextualization to the nodes we work on but increase the computation time by adding
nodes and edges to the overall graph (Hamilton, 2020). In the supply chain graph, we see
that our choice does not have much of an effect on stocks like Apple and Microsoft, who have
many relationships with other high capitalization companies, but will rarefy the relation-
ships of stocks such as Walmart, whose relationships are mostly with lower capitalization
stocks.

To simulate the way a trading desk operates, we separate our datasets into small chunks
of six months each. The first two years of the dataset are fed to the model in a first training
run: they act as the historical data a desk would have when opening. In all of our figures,
the first two years (2016 and 2017 for the MSCI World Index, 2010 and 2011 for S&P 500
index) show in sample results over this training period. The model then predicts without
being updated for the next six months, after which the new data is used for a new training
run, which is used to predict the next six months. This is replicated at every sub-dataset
of six months until all the dataset is seen. Furthermore, the last 10% of every training
set are used as a validation set for an early stopping mechanism. This means that these
points are not used during training, but a loss is computed at every backpropagation. If
this validation loss does not go below its minimum in a fixed number of backpropagation
(in our case 30 iterations), the learning is stopped, thus limiting the chances of overfitting.
Lastly, the data is being aggregated in batches of 32 time steps using the Pytorch Geometric
batching scheme.

5.4 Backtest metrics

We compute several metrics for each year to give an idea of the portfolio’s performance.
First, we show the annualized returns and the volatility of the portfolio during the period.
The Sharpe ratio is then computed, without risk free rate. We add the maximum drawdown
and the Calmar ratio (maximum drawdown divided by volatility) to further examine the

31

Graph Neural Networks for Asset Management

risk taken by the portfolios. All returns are annualized, even in 2021, although we did not
look at the entire year. Since we annualized the MSCI and SP500 indexes in 2021 as well,
the comparisons in the tables are still relevant, although the returns are a bit inflated.

5.5 Losses for stock movement prediction

In our experiments, we try to forecast the performance of stocks in order to build long only
portfolios. Out of the literature three loss functions caught our attention.

5.5.1 Stock return forecasting

The first method is the forecasting of stock returns using mean square error minimization.
The loss is between the predicted return Ŷ of all N assets and their true new period returns
Y is as follows:

Loss(Y, Ŷ) := MSE(Y, Ŷ) =
1

N

N∑
i=1

(
Yi − Ŷi

)2
(24)

We then select the highest quantile of predicted returns at each rebalancing date and invest
an equal amount of wealth in each asset of the highest quantile.

5.5.2 Stock return ordering

The regression problem can suffer from instabilities or a lack of convergence. Yet, although
stock return forecasting is a difficult problem, in our case we just want to classify stocks
from least performing to best performing. A set of machine learning architecture called
Learning2Rank promises to solve most of the issues by only focusing on the relative ordering
of each asset, instead of the true forecast (Feng et al., 2019). The labels are then no longer
the true stock return, but an ordering of each asset from lowest to highest. The loss function
is made up of two parts. The first is the mean square error function to ensure that an asset’s
class is not far away from the truth, whereas the second is a regularization that ensures that
the relative ordering of each asset is preserved:

Loss(Y, Ŷ) = MSE(Y, Ŷ) + φ

N∑
i=1

N∑
j=1

max
(

0, (Ŷi − Ŷj)(Yi − Yj)
)

(25)

where φ is a constant to be defined as a hyperparameter. Similarly to the regression phase,
we then take the assets in the highest quantile and invest an equal amount of wealth in
them until the next portfolio rebalancing. We do not settle for this solution however, since
we encounter a few issues when coding this loss function. Indeed, although the penalization
of the MSE loss allows, in theory, for better results in this setup by adding information
relevant to quantile building, its expression has many non-differentiable points due to the
maximum function. Furthermore, computing the element-wise gradient is cumbersome and
increases computation time.

5.5.3 Stock movement classification

Hsu et al. (2021) and Kim et al. (2019) argue that focusing solely on a stock’s relative
movement increases the stability of the portfolios. Instead of regression, they propose a
classification problem which tries to predict whether a stock will increase in value, instead
of by how much. As such, the labels Yi are binary, with 0 meaning that the stock returns
are negative and 1 positive. Due to the natural skew of equity returns, the two classes are
heavily unbalanced, with many more positive returns than negative returns. To balance out

32

Graph Neural Networks for Asset Management

the classes, instead of looking at the crude returns, we compare the stock returns to the
market returns:

Yi = 0 if ri − rm ≤ 0

Yi = 1 if ri − rm > 0
(26)

Once the two classes are defined, the loss is the cross entropy between the true and predicted
(noted Ŷi) class distributions. Since the values of the labels are either 0 or 1, a sigmoid
function is applied after the last layer of the forward pass. The predicted value denotes the
confidence of the network in its classification. A value close to one means that the network
predicts the stock will be higher than the market with high confidence, close to zero means
that the network predicts that the stock will underperform the market with high confidence.
Since this is a binary classification problem, the loss is the binary cross entropy (BCE) loss:

Loss(Y, Ŷ) = − 1

N

N∑
i=1

Yi log(Ŷi) + (1− Yi) log(1− Ŷi) (27)

We still take the highest quantile. It is important to notice that here we do not select
assets that have the highest returns, but instead assets that will most probably have higher
returns than the market. This might lead to lower returns than the other two losses but
should improve the precision of the selection. In other words, we expect the assets selected in
the long only portfolio to be more systematically better than the market than the regression
or ordering schemes.

6 Results

6.1 Experimental setup on the MSCI World index highest capital-
izations

We study the added value of the GCN, GAT and HGCN layer through an ablation study
on the MSCI World index. We cherry pick stocks on which we have all the required data,
and which are of high capitalization (greater than USD 100 billion). Using the graph shown
in Figure 4 on page 13, we train two graph-based models and our hypergraph model twice,
once with the regression loss (MSE) and once with the classification loss (BCE). The seven
models are:

• an LSTM layer without convolution (LSTM);

• a GCN layer without temporal encoding (GCN);

• a GCN layer with a LSTM temporal encoding (GCN*);

• a GAT layer without temporal encoding (GAT);

• a GAT layer with a LSTM temporal encoding (GAT*);

• a HGCN layer without temporal encoding (HGCN);

• a HGCN layer with a LSTM temporal encoding (HGCN*).

We use these models to build long only portfolios with the top 5%, 10% and 20% stocks
according to the learned score, which we call Long 5% (around six stocks selected at each
rebalancing), Long 10% (eleven stocks) and Long 20% (twenty-two stocks). We compare

33

Graph Neural Networks for Asset Management

each metric to those computed on the MSCI World index, which is our benchmark. 2016
and 2017 are in sample periods, i.e. the metrics are computed on data which is seen during
training. From 2018 onwards the metrics are computed out of sample: these are the years
to look at to study the predictive power of our models. 2019 and 2021 are stable years with
low volatility and high returns, whereas 2018 and 2020 are years with high drawdowns and
a high volatility. We rebalance our portfolio daily to study the theoretical impact of each
layer, keeping in mind that when accounting for transaction cost this rebalancing frequency
will become cumbersome. To build the Long 5% portfolios, we train ten models using a
different seed for each, then we compute the mean of their performance. This allows to
show the influence of the random initialisation of the layers on the asset selection task and
demonstrates that some layers are more stable than others. The results are shown in Tables
6 on page 58. We would have wanted to compute a standard deviation on more samples and
for every portfolio, but we are constrained by computation time. This is why Tables 7 and
8 (respectively at pages 59 and 60), representing the Long 10% and Long 20% portfolios
respectively, show the results of one neural network trained on a fixed seed.

6.2 Discussion on the MSCI World index backtests and ablation
study

First of all, it is clear that the classification loss is more stable than the regression loss. In
particular, the classification loss performs much better in terms of returns and of Sharpe
ratio in 2018, where the regression seems to have overfitted for every model. Surprisingly,
the classification loss leads to better in sample returns, although it does not give as much
information on returns as the regression loss. This validates the use of classification when
using machine learning for portfolio building. In our Long 5% portfolio experiments the
GAT and the GCN layers do not seem to yield significant differences during the backtests.
This can be explained by the fact that we did not take advantage of the directed nature of
GATs, training instead both networks on the same structural undirected graph in Figure 4.
What is interesting is that during the low volatility years of 2019 and 2021 the performance
of the LSTM drives the performance of every model. Indeed, in these periods, the models
with an LSTM layer have better returns than the ones that do not. However, our experiment
validates the intuition that graph layers act like filters. In 2020, the graph layers severally
reduce the standard deviation of returns and of volatilities of the LSTM layer. They act
like a stabilizer in this period, providing fewer but more consistent returns. The hypergraph
layers show the most consistent returns in the Monte Carlo experiments of the Long 5%
portfolios, especially in 2018.

6.3 Graph ablation study

We study the influence of the three graphs composing our union graph. This enables us to
study the relative importance of sector, correlation-based and supply chain information in
our models. Indeed, the three graphs have very different topologies, which in turn influence
our result. As shown before, the sector matrix has several unconnected cliques. In this graph,
no diffusion is allowed between firms of a different sector while some sort of averaging occurs
within sectors. The supply chain graph is very sparse compared to the other two: it has only
a few connections, but they are more meaningful. Lastly, the correlation graph is highly
connected and has only a few unconnected components. According to the theory, this is
where GAT layers should thrive. Table 12 at page 64 presents the same experiment as the
monte carlo procedure for the Long 5% portfolio on the MSCI World index, this time using
the three graphs in isolation. We see that each graph is able to beat the MSCI World index

34

Graph Neural Networks for Asset Management

Figure 11: Cumulative returns of the portfolios on the MSCI World with a starting wealth
of 100USD

(a) Using the classification loss (b) Using the regression loss

comfortably, which proves that the information they hold is relevant. The correlation graph
is by far the highest performing, in particular when GATs are used, which confirms the idea
that GATs thrive in over connected graphs. However, in 2021, it is the supply chain graph
that shows the best performance, despite it lagging behind in the previous years. This might
come from the fact that supply chain has become particularly relevant after the Covid-19
crisis, replacing sectors as the most informative structural representation of stocks. Finally,
we see that the difference between the GAT* and GCN* models’ performances are smaller
on the supply chain graph, validating the use of the GCN layer on sparse graphs.

6.4 Blending Strategies

We observe that on long 10% portfolios, some shortcomings of the GCN* model are compen-
sated by the HGCN* and vice versa. In particular, the GCN* model achieves much higher
returns than the HGCN* in stable years while the HGCN* holds up to high volatility years
such as 2015 or 2020. This is why we combine the two strategies using a volatility-based
signal. The idea is to compare, at every time t, the annualized volatility of the S&P500
index over the last three months and the annualized volatility over the last six months and
to compute how this difference compares to previous differences. To this end, we compute
the percentile of each volatility difference with regards to the distribution of the last three
years’ worth of differences. This provides a signal value between 0 and 1 which can be used
to weight the importance of the two models. Finally, the signal is smoothed using a five-day
window exponentially weighted moving average (EMA). The final signal αt is thus:

αt = EMA5d

(
quantile3y(Vol3mt −Vol6mt)

)
(28)

which gives an indication of the relative volatility profile of the period compared to the
past. We then invest αt ∗Wt−1, with Wt here being the wealth at time t, according to the
HGCN* strategy and (1 − αt) ∗Wt−1 according to the GCN* strategy. This means that
if the volatility of the last three months is abnormally high, we are more confident in the
HGCN* strategy, while we prefer the GCN* strategy if the volatility is abnormally low. The
cumulative returns of such portfolios are represented in Figure 12 alongside the cumulative
returns of the GCN* and HGCN* based portfolios for both the S&P 500 and the MSCI
World universes. We see clearly that for both universes the blend portfolio improves the
quality of the predictions by bringing in higher returns than both models.

35

Graph Neural Networks for Asset Management

Figure 12: Cumulative returns of the blend portfolio on the MSCI World index with a
starting wealth of 100USD

6.5 Experiments on the S&P 500 Index

The S&P 500 provides a larger universe on which to invest, with around 500 stocks instead
of the 100 we used in the MSCI World index. It also allows us to train our models for
a longer period, starting in 2010 instead of 2016. To replace supply chain information,
we use wikidata relationships to enrich sectoral and correlation information. The wikidata
information was found in paper (Feng et al., 2019) as a hypergraph, from which we derive
a graph by clique expansion (see Section 4.3.3 at page 26).

This time, we allow the set of stocks on which we trade to change. Since we study a
longer timeline of ten years, the S&P 500 composition changes. A Boolean mask is used
so that the loss does not take into account the error on nodes that are not in the S&P 500
at time t. To add to this more dynamic approach, we also allow the adjacency matrix to
change according to time, with correlation and sectoral information being updated weekly.

6.6 The effect of adding the Amundi alpha score

Up to this point, features are computed based on past returns. We expect external informa-
tion to improve the performance of our models. To prove this fact, we add to our features
the Amundi alpha score of each company. This score is an equally weighted aggregation of
several factors depending on information ranging from the momentum, the risk and the esti-
mated growth of the stock. It provides an all-round assessment of the underlying company’s
situation. As such, we expect the performances to improve when using this information.

To show the influence of this score on our models, we train two GCN with LSTM models
on the S&P 500 index using our architecture, on the same number of epochs and the same
random seed for both. One is trained with the features of the previous experiment on the

36

Graph Neural Networks for Asset Management

Table 5: Influence of the Amundi alpha score on the performance of the portfolio on S&P
500 built using GCNs and a classification loss (bold shows the best for each strategy).

Year 2016 2017 2018 2019 2020 2021
Alpha Score yes no yes no yes no yes no yes no yes no

Perf (in %)

SP500 14.47 17.79 7.74 29.83 11.68 54.1
long 5 17.24 13.97 31.87 14.13 10.77 -10.46 22.16 32.21 35.82 8.32 17.52 9.79
long 10 19.94 19.36 25.36 15.88 1.06 -11.91 31.62 33.10 29.78 11.40 11.54 18.83
long 20 19.82 20.38 21.53 12.73 2.35 -9.91 33.08 32.10 19.92 11.52 10.34 22.20

Vol (in %)

SP500 10.91 5.88 17.06 11.85 39.93 12.3
long 5 15.89 22.81 10.15 10.91 18.43 18.72 15.02 16.25 35.05 43.62 18.22 19.30
long 10 15.97 22.48 10.10 10.69 18.56 18.04 14.90 15.74 36.06 41.71 18.77 18.23
long 20 13.81 19.52 8.43 9.56 16.27 17.19 12.99 15.14 34.10 42.59 15.38 17.37

SR

SP500 1.33 3.02 -0.45 2.52 0.29 4.40
long 5 1.08 0.61 3.14 1.30 0.58 -0.56 1.47 1.98 1.02 0.19 0.96 0.51
long 10 1.25 0.86 2.51 1.49 0.06 -0.66 2.12 2.10 0.83 0.27 0.61 1.03
long 20 1.43 1.04 2.55 1.33 0.14 -0.58 2.55 2.12 0.58 0.27 0.67 1.28

MDD (in %)

SP500 4.68 3.01 17.66 7.13 37.88 3.53
long 5 -13.79 -18.98 -4.55 -5.41 -15.08 -23.13 -11.07 -10.51 -30.78 -50.07 -4.51 -6.51
long 10 -12.34 -17.51 -5.02 -5.78 -18.70 -22.97 -9.92 -10.68 -30.38 -47.06 -7.36 -6.21
long 20 -8.10 -13.58 -2.90 -5.08 -16.34 -22.48 -7.33 -10.02 -32.03 -47.61 -5.79 -5.84]

MDD/Vol

SP500 0.43 0.51 1.03 0.6 0.95 0.29
long 5 0.87 0.83 0.45 0.50 0.82 1.24 0.74 0.65 0.88 1.15 0.25 0.34
long 10 0.77 0.78 0.50 0.54 1.01 1.27 0.67 0.68 0.84 1.13 0.39 0.34
long 20 0.59 0.70 0.34 0.53 1.00 1.31 0.56 0.66 0.94 1.12 0.38 0.34

MSCI World index, the other is trained with the same features along with the Amundi alpha
score. The results of the backtests are given in Table 5, where we can clearly see that the
portfolio built using the Amundi alpha score as a feature has superior performances. The
new feature reduces the volatility while increasing returns in the majority of periods. It also
has a positive effect on the maximum drawdown. 2021 is the only year in which both the
long 10% and long 20% have a better Sharpe ratio without the score as a feature, but the
positive effect of the score on high volatility periods is obvious.

Other quantitative factors or macroeconomic information can be added as a feature. For
instance, Bloomberg Quant Research (2020) uses the market capitalization and the relative
importance of a supply chain relationship on profits. However, this information is scarce in
our datasets. Still, this experiment with the Amundi alpha score provides an indication that
more informative features about the firm behind the stock should substantially improve the
performances of the portfolios.

6.7 Discussion on the S&P 500 index backtests

We compare the results of the models on the S&P 500 companies from 2010 to June 2021
to the actual S&P 500 index’s performances in Tables 9, 10 and 11 at pages 61 to 63. We
see that the classification loss is no longer as stable as before, it leads to some severe under
performance in stressed years. Regression brings higher returns, which can be explained
by the fact that classification does not really classify stocks according to their predicted
performance but rather the probability that they will be even slightly better than the market.
This is why classification still leads to less volatility, except on hypergraphs where there are
no noticeable differences. The year 2015 is interesting since it shows the two graph layers
completely missing the mark, whereas the hypergraph layers are beating the index. Here the
classification loss does not help the GCN layer, but improves on the GAT’s performance. All
in all, the hypergraph layer is the only one consistently outperforming the S&P 500 index
in all three portfolios.

37

Graph Neural Networks for Asset Management

6.8 Discussion on the relevance of the classical machine learning
measures for market finance

On the one hand several research papers show very high accuracy and precision on the
classification problem but have disappointing backtests. On the other hand, our models
tend to show disappointing accuracy and precision measures (the classification networks all
have accuracies around 50%), yet outperform several classical strategies. This discrepancy
is confirmed in Kim et al. (2019). In this study, the authors examine both the accuracy and
recall of their classification of stocks, but also compute the annualized returns and Sharpe
ratios of their backtests. Although their method has both the best mean accuracy and the
best mean Sharpe ratio over their testing periods, in the other models they showcase the
accuracy and backtest performance are completely uncorrelated, with the best classifiers
performing much worse in the backtest than more crude methods.

This paradox can be explained in many ways. The first is simply that classification losses
do not take into account the amount by which a stock will have increased in value, but rather
only the probability that it will increase in value. This means that highly performing but
volatile stocks might be given a worse score by the network than low performing but very
stable ones. Both could, for instance, be classified as increasing in value, but in the quantile
selection only the latter will be added, hence the backtest yielding disappointing returns.
Another potential reason, which also adds to the first point, is the fact that neural networks
will have a hard time taking into account mean reversion. Indeed, our lookback window for
our LSTM cells is two weeks, which might be too short to properly identify what the mean
pattern might be. This can lead the network to assume the data to be much more stable
than it actually is.

All in all, we are interested in whether the stocks selected are good enough, and less in
whether the allocation is optimal. This is why the majority of our testing relies on financial
backtests over strategies. This is also why we always compare the results to the related
index. This benchmark represents the mean performance of the market, beating it is a hard
task. Furthermore, the consistency with which we beat the benchmarks in our experiments,
even with Monte Carlo estimation, indicates that there is more than randomness at work,
even with an accuracy around 50%.

6.9 Transaction costs

Our experiments used a daily rebalancing of the portfolios to provide a theoretical measure
of the relevance of the methods. However, in practice, this approach is unrealistic. Indeed,
transaction costs will plague the portfolios’ returns if we rebalance that often. Furthermore,
this kind of turnover can be detrimental to an asset management firm the size of Amundi,
though smaller funds could make it work. This is why we also looked at the performance of
our strategies with a weekly rebalancing to study the effect of the turnover on transaction
costs. Figure 13 shows the impact of transaction costs on the cumulated returns of a Long
5% portfolio with weekly rebalancing. In blue we represent the portfolio cumulative returns
without transaction costs, in orange with 5 basis points of transaction costs and in green 20
basis points of transaction costs. Although LSTMs provide higher returns than the other
models over the period, it also comes with a much higher turnover. Adding a GCN layer
may decrease the overall returns without transaction costs, yet the two strategies are neck
and neck with 20 basis points of transaction costs. Overall, we can see the filtering effect on
the high frequency signals in the graph of the GCN and the HGCN layers arising from their

38

Graph Neural Networks for Asset Management

Figure 13: Comparison of the effect of transaction costs on performance on the MSCI world
for long 5% strategies with weekly rebalancing

(a) LSTM only (b) GCN*

(c) GAT* (d) HGCN*

spectral nature5, which stabilizes the selection and reduces transaction costs. The LSTM
and GAT layer change their predictions widely according to the situation which in turn leads
to higher turnover.

5See Appendix B on page 46 for the link with Chebyshev expansions and Appendix E on page 55 for
details on the frequency profile of the layer.

39

Graph Neural Networks for Asset Management

7 Conclusion

We implement a graph neural architecture for portfolio building on stocks. We use ablation
studies to look at the effect of each layer and find that the graph convolution provides
improvements on naive recurrent layer forecasting. Results were more promising on the
MSCI stocks than on the S&P 500, although adding quantitative information such as the
Amundi alpha score improves the backtesting performances. We also use graph to try
deterministic algorithms to build signals. Finally, we apply the more recent hypergraph
layers in our architecture, where they show promising results.

We observe that spectral theory-based layers like GCN act like filters on graph wide
signals, they stabilise the neural networks and reduce the variance generated by the random
initialization of weights. Attention mechanisms are more robust on very dense graphs but are
susceptible to overfitting. On sparse but informative graphs, such as supply chain graphs,
the GCN layer is to be preferred. Furthermore, the added information of the hypergraph
structure allows for a more stable forecast during high volatility periods, they can be used in
conjunction with graph layers to largely improve portfolios. All in all, graph neural networks
allow for more flexible strategies than deterministic algorithms on graphs.

There are many ways to improve on our work. We could provide more quantitative
factors as features to the algorithms to try to further improve the performance on the S&P
500. Another potential improvement of our architecture is to add more depth to the neural
network, although the smoothing problem may then arise as an issue. Lastly, papers using
hypergraphs for financial forecasting recommend a blend of graph and hypergraph layers,
where graph layers propagate information inside the hyperedges before the hypergraph layer
models inter hyperedge relationships. This should provide the best of both worlds, blending
the clique-based propagation of hypergraphs with the finer graph message passing.

40

Graph Neural Networks for Asset Management

References

Agarwal, S., Branson, K., and Belongie, S. J. (2006). Higher order learning with graphs. In
Cohen, W. W. and Moore, A. W., editors, Machine Learning, Proceedings of the Twenty-
Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-
29, 2006, volume 148 of ACM International Conference Proceeding Series, pages 17–24.

Aggarwal, C. C. and Yu, P. S. (1998). A new framework for itemset generation. In Mendel-
zon, A. O. and Paredaens, J., editors, Proceedings of the Seventeenth ACM Symposium on
Principles of Database Systems, June 1-3, 1998, Seattle, Washington, USA, pages 18–24.

Arroyo, A., Scalzo, B., Stankovic, L., and Mandic, D. P. (2021). Dynamic portfolio cuts: A
spectral approach to graph-theoretic diversification. arXiv, 2106.03417.

Bai, S., Zhang, F., and Torr, P. H. S. (2019). Hypergraph convolution and hypergraph
attention. In Pattern Recognition. arXiv, 1901.08150.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. J., and Kavukcuoglu, K. (2016). Inter-
action networks for learning about objects, relations and physics. In Lee, D. D., Sugiyama,
M., von Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
(NEURIPS 2016), December 5-10, 2016, Barcelona, Spain, pages 4502–4510.

Bloomberg Quant Research (2020). Supply chain momentum strategies with graph neural
networks (working paper).

Bronstein, M. M., Bruna, J., Cohen, T., and Velickovic, P. (2021). Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv, 2104.13478.

Calkin, N. and Lopez de Prado, M. (2014). Stochastic flow diagrams. In Algorithmic Finance,
pages 21–42.

Cellucci, C. J., Albano, A. M., and Rapp, P. E. (2005). Statistical validation of mutual
information calculations: Comparison of alternative numerical algorithms. In Physical
Review E, volume 71, page 066208.

Chan, T. H., Louis, A., Tang, Z. G., and Zhang, C. (2016). Spectral properties of hypergraph
laplacian and approximation algorithms. In Journal of the ACM. arXiv, 1605.01483.

Cheeger, J. (1969). A lower bound for the smallest eigenvalue of the laplacian. In Proceedings
of the Princeton conference in honor of Professor S. Bochner, pages 195–199.

Chen, J., Xu, X., Wu, Y., and Zheng, H. (2018). GC-LSTM: graph convolution embedded
LSTM for dynamic link prediction. arXiv, 1812.04206.

Chen, Z., Chen, F., Zhang, L., Ji, T., Fu, K., Zhao, L., Chen, F., Wu, L., Aggarwal,
C. C., and Lu, C.-T. (2021). Bridging the gap between spatial and spectral domains: A
theoretical framework for graph neural networks. arXiv, 2107.10234.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In Moschitti, A., Pang, B., and Daelemans, W., editors,
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724–
1734.

41

Graph Neural Networks for Asset Management

Cohen, L. and Frazzini, A. (2008). Economic links and predictable returns. In Journal of
Finance, volume 63(4), pages 1977–2011.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, 3rd Edition. MIT Press.

Cutura, G., Li, B., Swami, A., and Segarra, S. (2020). Deep demixing: Reconstructing the
evolution of epidemics using graph neural networks. arXiv, 2011.09583.

Dees, B. S., Stankovic, L., Constantinides, A. G., and Mandic, D. P. (2019). Portfolio cuts:
A graph-theoretic framework to diversification. In ICASSP 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems (NEURIPS 206), pages 3837–3845. arXiv, 1606.09375.

Dionisio, A., Menezes, R., and Mendes, D. A. (2004). Mutual information: a measure
of dependency for nonlinear time series. In Physica A: Statistical Mechanics and its
Applications, volume 344, pages 326–329.

Feng, F., He, X., Wang, X., Luo, C., Liu, Y., and Chua, T.-S. (2019). Temporal relational
ranking for stock prediction. In ACM Transactions on Information Systems (TOIS),
volume 37, page 27.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural mes-
sage passing for quantum chemistry. In Precup, D. and Teh, Y. W., editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 1263–1272.

Graves, A., Mohamed, A., and Hinton, G. E. (2013). Speech recognition with deep recur-
rent neural networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pages 6645–6649.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure,
dynamics, and function using networkx. In Varoquaux, G., Vaught, T., and Millman, J.,
editors, Proceedings of the 7th Python in Science Conference, pages 11–15, Pasadena, CA
USA.

Hamilton, W. L. (2020). Graph representation learning. In Synthesis Lectures on Artificial
Intelligence and Machine Learning, volume 14, pages 1–159. Morgan and Claypool.

Hamilton, W. L., Ying, R., and Leskovec, J. (2018). Inductive representation learning on
large graphs. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NEURIPS 2017), pages 1025–1035.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. In Neural Computa-
tion, volume 9, pages 1735–1780.

Hsu, Y.-L., Tsai, Y.-C., and Li, C.-T. (2021). Fingat: Financial graph attention networks
for recommending top-k profitable stocks. arXiv, 2106.10159.

Kannan, R., Vempala, S., and Veta, A. (2000). On clusterings: good, bad and spectral. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 367–377.

42

Graph Neural Networks for Asset Management

Kaya, H. (2015). Eccentricity in asset management. In Journal of Network Theory in
Finance, volume 1, pages 1–32.

Kim, R., So, C. H., Jeong, M., Lee, S., Kim, J., and Kang, J. (2019). Hats: A hierarchical
graph attention network for stock movement prediction. arXiv, 1908.07999.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations (ICLR 2017).
arXiv, 1609.02907.

Kyono, T., Zhang, Y., and van der Schaar, M. (2020). CASTLE: regularization via auxiliary
causal graph discovery. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NEURIPS 2020), volume 33. arXiv, 2009.13180.

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M. (2019). Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. In IEEE Trans. Signal
Process., volume 67, pages 97–109.

Muhammet, B., Guillaume, R., Pierre, H., Benoit, G., Sébastien, A., and Honeine, P.
(2020). When Spectral Domain Meets Spatial Domain in Graph Neural Networks. In
Thirty-seventh International Conference on Machine Learning (ICML 2020) - Workshop
on Graph Representation Learning and Beyond (GRL+ 2020), Vienna, Austria.

Murphy, C., Laurence, E., and Allard, A. (2021). Deep learning of contagion dynamics on
complex networks. arXiv, 2006.05410.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems (NEURIPS 2019), volume 32, pages
8024–8035. Curran Associates, Inc.

Pearl, J. (2019). The new science of cause and effect, with reflections on data science and
artificial intelligence. In Baru, C., Huan, J., Khan, L., Hu, X., Ak, R., Tian, Y., Barga,
R. S., Zaniolo, C., Lee, K., and Ye, Y. F., editors, 2019 IEEE International Conference
on Big Data (Big Data), Los Angeles, CA, USA, December 9-12, 2019, page 4.

Romain, M. and d’Aspremont, A. (2020). A bregman method for structure learning on
sparse directed acyclic graphs. arXiv, 2011.02764.

Rozemberczki, B., Scherer, P., He, Y., Panagopoulos, G., Astefanoaei, M. S., Kiss, O., Béres,
F., Collignon, N., and Sarkar, R. (2021). Pytorch geometric temporal: Spatiotemporal
signal processing with neural machine learning models. arXiv, 2104.07788.

Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken
word recognition. In IEEE Transactions on Acoustics, Speech, and Signal Processing,
volume 26, pages 43–49.

Sehanobish, A., Ravindra, N. G., and van Dijk, D. (2021). Gaining insight into sars-cov-2
infection and COVID-19 severity using self-supervised edge features and graph neural net-
works. In Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2021) February
2-9, 2021, pages 4864–4873. AAAI Press.

43

Graph Neural Networks for Asset Management

Seo, S. and Liu, Y. (2019). Differentiable physics-informed graph networks. arXiv,
1902.02950.

Shen, Y., Hu, J., Lu, Y., and Wang, X. (2012). Stock trends prediction by hypergraph
modeling. In 2012 IEEE International Conference on Computer Science and Automation
Engineering (ICSESS 2012), pages 104–107.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. J. (2006). A linear non-gaussian
acyclic model for causal discovery. In Journal of Machine Learning Research, volume 7,
pages 2003–2030.

Stankovic, L., Mandic, D. P., Dakovic, M., Brajovic, M., Dees, B. S., and Constantinides, T.
(2019). Graph signal processing - part I: graphs, graph spectra, and spectral clustering.
arXiv, 1907.03467.

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair,
C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe,
A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D., Jaakkola,
T. S., Barzilay, R., and Collins, J. J. (2020). A deep learning approach to antibiotic
discovery. In Cell, volume 180, pages 688–702.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018.

Wu, J. and Birge, J. R. (2014). Supply chain network structure and firm returns. SSRN,
238547.

Wu, L. (2015). Centrality of the supply chain network. SSRN, 2651786.

Wu, T., Chen, F., and Wan, Y. (2018). Graph attention LSTM network: A new model for
traffic flow forecasting. In 2018 5th International Conference on Information Science and
Control Engineering (ICISCE 2018), pages 241–245.

Yu, B., Yin, H., and Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI 2018), pages 3634–3640.

Zhang, S., Ding, Z., and Cui, S. (2020). Introducing hypergraph signal processing: Theoret-
ical foundation and practical applications. In IEEE Internet of Things Journal, volume 7,
pages 639–660.

Zheng, X., Aragam, B., Ravikumar, P., and Xing, E. P. (2018). DAGs with NO TEARS:
Continuous Optimization for Structure Learning. In Advances in Neural Information
Processing Systems (NEURIPS 2018), volume 31, pages 9492–9503.

Zhu, Z., Peng, Q., and Guan, X. (2016). A time series clustering method based on hypergraph
partitioning. In 2016 International Conference on Progress in Informatics and Computing
(PIC 2016), pages 27–31.

Zimmermann, H., Tietz, C., and Grothmann, R. (2012). Forecasting with recurrent neural
networks: 12 tricks. In Montavon, G., Orr, G. B., and Müller, K., editors, Neural Net-
works: Tricks of the Trade - Second Edition, volume 7700 of Lecture Notes in Computer
Science, pages 687–707.

44

Graph Neural Networks for Asset Management

A The LSTM layer

The LSTM layer was introduced by Hochreiter and Schmidhuber (1997) as a recurrent
neural layer more robust to long and complex temporal dependencies. Like all recurrent
layer, the LSTM cell keeps information from its precious state in a hidden vector, which will
be combined to the new data in order to incorporate temporal information. It is structured
into several gates, each operating a transformation of the inputs. The particularity of LSTM
units is the presence of a so called forget gate, which gives the unit the ability to forget its
previous state for some values of the input. This enables the cell to react to sudden changes in
the behavior of the time series by not taking into account information relating to a previous
regime. LSTM are widely use for any task dealing with temporal information, from speech
recognition (Graves et al., 2013) to time series forecasting, or even complex AI for games
like DOTA or Starcraft 2.

The layer is governed by the following equations:

ft = σ (Wfxt + Ufht−1 + bf)

it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

C̃t = tanh (Wcxt + Ucht−1 + bc)

Ct = ft � Ct−1 + it � C̃t
ht = ot � tanh(Ct)

(29)

where � is the hadamard product of two vectors. It has three inputs: the new data xt, the
hidden state of the cell at the previous time step ht−1 and the cell state at the previous time
step Ct−1. The cell state acts like a memory which can be forgotten should xt and ht−1
reach certain values. This would make the signal ft be equal to zero and thus will filter Ct−1
out in the second to last formula. it and ot, called the input and output gates respectively,
act in a similar fashion. The input gate weights the signal C̃t, which is a perceptron layer
on the input xt and hidden state ht−1, whereas the output gate weights the cell state Ct
before it becomes the new hidden state ht. Figure 14 presents a schematisation of the inner
workings of a LSTM cell, where two black lines merging symbolise the concatenation of the
vectors.

The hidden and the cell state vectors must be initialised, though some papers recommend
Gaussian or Xavier initialisation (Zimmermann et al., 2012), we used the PyTorch default
with h0 = C0 = ~0. The LSTM cell is sometimes criticised for its forgetting mechanism,
which can hide long term relationships in temporal data. This is why the simpler GRU unit
of Cho et al. (2014) is often found instead. This cell has a similar structure than the LSTM
cell, but without the ft gate. However LSTM cells have a history of being used for financial
series forecasting and appear in many graph neural network for finance research papers (Hsu
et al., 2021; Kim et al., 2019).

A graph extension of the LSTM layer, proposed by Chen et al. (2018), modifies the for-
mulas in equations 29 by replacing every occurrence of ht−1 and ct−1 by a graph convolution

45

Graph Neural Networks for Asset Management

of these vectors with the nodes’ neighbors:

ft = σ (Wfxt +GCNf (ht−1) + bf)

it = σ (Wixt +GCNi(ht−1) + bi)

ot = σ (Woxt +GCNo(ht−1) + bo)

C̃t = tanh (Wcxt +GCNc(ht−1) + bc)

Ct = ft �GCNC(Ct−1) + it � C̃t
ht = ot � tanh(Ct)

(30)

where the GCN function denotes a Chebyshev approximation of the graph convolution
operator as described in Appendix B. In our study, we chose to remain close to the imple-
mentation of Yu et al. (2018); Hsu et al. (2021); Kim et al. (2019) and others and keep the
LSTM layer as is presented in equations 29 and the graph convolution separated.

Figure 14: Graphical illustration of the LSTM architecture

σ σ Tanh σ

� +

� �

Tanh

Ct−1

ht−1

xt

Ct

ht

ht

ft
it

C̃t

ot

B Graph spectral theory and convolution layer

This Appendix details the construction of the GCN layer. This layer is basically a convolu-
tion filter in the graph spectral domain. This section is heavily inspired by Kipf and Welling
(2017), with added information about the graph spectral theory found in Chen et al. (2021).

B.1 Graph fourier transform

A graph is a non Euclidean representation of relationships. As such, we lack the foundation
for applying many algorithms. Spectral transforms like the Fourier transform enable us
to project the data in a vector space parametrised by the eigenvalues of the Laplacian.
The general idea is to first transform the data into the spectral domain, in which we can
apply the known theory, before applying the inverse transform to return to the real data.
For instance, k-means or DBSCAN clustering algorithms only make sense in an Euclidean

46

Graph Neural Networks for Asset Management

space, so instead of trying to define distances between nodes, one can simply apply these
algorithms in the spectral domain and use the resulting labels in the true domain.

Let G = (V,E) be a graph, where V is the set of vertices of G and E the set of its edges.
Let A be the adjacency matrix of G, that is the matrix such that

Ai,j =

{
1, if (i, j) ∈ E
0, otherwise

(31)

where D is the diagonal matrix such that Di,i = deg(i) and deg is the degree function of a
vertex, i.e. the function counting the number of neighbors of each vertex. The Laplacian
matrix is then defined as L = D − A. A normalised version of the Laplacian is L̃ =
D−

1
2LD−

1
2 , which makes every diagonal term equal to 1. The Laplacian matrix can be used

as a discrete Laplace-Beltrami operator for solving differential equations on the graph.

The normalised Laplacian of an undirected graph is a symetric semi-definite matrix,
meaning that its eigenvectors (µl)l∈{1,N} form an orthogonal basis. As such, one can define
a graph Fourier transform of any function f : V 7→ R and its inverse by projecting on the
eigenvectors of a Laplacian:

f̂(λl) = F(f)(λl) =
∑
i∈V

f(i)µl(i) (32)

and

F−1(f̂)(i) =

N∑
l=0

f̂(λl)µl(i) = f(i) (33)

where λl denotes the lth eigenvalue of the Laplacian matrix. This Fourier transform acts very
much like the classical Fourier transform. For instance, Parseval’s identity is still verified:

||f ||22 = ||f̂ ||22 (34)

Furthermore, one can define a convolution operator in the graph domain such that it keeps
the properties of the classical convolution operator in the spectral domain:

(f ∗ g)(x) =

N−1∑
l=0

f̂(λl)ĝ(λl)µl(x) (35)

Just like the classical convolution operator on L2(R), graph convolution is the multiplication

in the graph spectral domain : f̂ ∗ g = f̂ ĝ. Similarly, it verifies every distributivity properties
found in the L2(R) theory.

B.2 Convolution with a filter and Chebyshev approximation

In theory, once given an analytical expression of the convolution operator, creating a con-
volution neural layer is immediate. For instance, the convolution layer in Euclidean space
is exactly the discreet cross-correlation operator. Kipf and Welling (2017) thus introduce
a layer convolving a filter gθ = diag(θ), θ ∈ RN and the node features x ∈ RN . The filter
will simply be the function that we will optimise in the learning phase, similar to the weight
matrix of a linear layer. The analytical expression of the convolution gives:

(gθ ∗ x) = UgθU
>x (36)

47

Graph Neural Networks for Asset Management

where U is the Laplacian’s eigenvectors matrix. The problem with the explicit graph convo-
lution operator is that it requires to compute the eigenvector matrix of the Laplacian, which
can be very computationally intensive for large or dense graphs. Instead, Kipf and Welling
(2017) consider a truncated expansion of the normalised Laplacian L̃ with Chebyshev poly-
nomials. The idea is to express gθ as a function of the Laplacian eigenvalues, which can
be expanded by a truncated Chebyshev expansion. It is interesting to note that this is not
the only way to build a convolution filter on the spectral domain, other filters have been
proposed using other kernels (Muhammet et al., 2020). To improve the stability of the layer,
the authors rescale the normalised Laplacian’s eigenvalues using spectral properties of the
Chebyshev kernels (proof in Appendix E at page 55):

(gθ ∗ x) ≈
K∑
k=0

θkTk

(
2

λmax
L̃− IN

)
x (37)

where Tk(x) = 2xTk−1(x)− Tk−2(x), T1(x) = x, T0(x) = 1, θk are the Chebyshev coefficient
related to the filter gθ and K the order of the Chebyshev expansion. The paper argues that
empirically, the maximum eigenvalue of the normalised Laplacian is around 2, so 2/λmax = 1.
The interest of this formula is that we can limit ourselves to K = 1, and thus avoid any
power of L. Indeed, taking the Kth power of the Laplacian matrix means taking into account
information from all nodes at path-distance K from the origin (i.e. nodes such that there
exists a path with fewer than K nodes between them). Since we only want a convolution
layer to look at direct neighbors, just like an image convolution layer only looks at pixels
next to those it focuses on, we can set K = 1. A generalisation of GCN which does not use
this hypothesis, and for which K is seen as a hyperparameter is ChebNet (Defferrard et al.,
2016). In the end, they get the following approximation:

(gθ ∗ x) ≈ θ0x+ θ1

(
L̃− IN

)
x (38)

with θ0 and θ1 two arbitrary parameters. If we choose θ0 = −θ1 = θ, which simply re-
stricts the number of parameters in the convolution layer, we finally get the simplified graph
convolution operator:

(gθ ∗ x) ≈ θ
(
IN +D−

1/2AD−
1/2
)
x (39)

B.3 The graph convolution layer

Kipf and Welling (2017) also look at stability issues with this expression of the convolution
operator. The eigenvalues of L̃ are empirically situated between 0 and 2, which may lead to
instability when using the Chebyshev approximation multiple times in a row. This is bound
to happen since neural layers are meant to be piled onto one another. The authors use the
renormalisation trick, which replaces IN + D−

1
2AD−

1
2 by D̃−

1
2 ÃD̃−

1
2 , where Ã = IN + A

and D̃ is its degree matrix. Ã can be interpreted as the adjacency matrix with added self
loops and the matrix D̃−

1
2 ÃD̃−

1
2 is known in graph spectral theory as the renormalised

symmetric adjacency matrix. This filter comes with lower eigenvalues (λmax ≈ 1) and has
been shown empirically to hold similar effects than the normalised adjacency matrix (Chen
et al., 2021). The approximation then becomes, for σ a non linear function:

Y = σ
(
D̃−

1/2ÃD̃−
1/2XΘ

)
(40)

where Θ = diag(θ) is a matrix with the parameters of the filter. Though it seems that more
matrix multiplication are done than the analytical expression of the convolution operator, D

48

Graph Neural Networks for Asset Management

and Θ are diagonal matrices. This means that the matrix D̃−
1
2 can be computed in O(N).

The costliest operation is the multiplication with X which is of complexity O(N2F) where
F is the number of features associated to X, while the complexity of an eigenvalue decom-
position is that of the multiplication of two square matrices, i.e. Θ(Na), 2 < a < 3, using
the Landeau notation for above and below domination. We notice that eigenvalue decom-
position algorithms have other steps than the matrix multiplications driving its asymptotic
behavior, so even for a small number of vertices, the GCN approximation still decreases
computation time.

C Hypergraph spectral theory

Hypergraphs are a generalisation of graphs, but by relaxing the constraint on the edges they
lose some properties, among which the straight forward definition of the Laplacian operator.

C.1 Hypergraph Laplacians

Let G = (V,E) be a hypergraph, defined by V the set of vertices and H ∈ RN,M the
incidence matrix. Let B ∈ RM be the edge degree matrix and D ∈ RN the vertex degree
matrix. Several definitions of the Laplacian of such a hypergraph exist in the literature,
though they cannot always be expressed as a simple function of one-another like the graph
Laplacian (Agarwal et al., 2006).

Most hypergraph Laplacians use a transformation from hypergraphs to graphs to build
the associated graph Laplacian. This is the idea behind the clique expansion Laplacian,
the star expansion Laplacian and Rodriguez’s Laplacian. The clique expansion Laplacian is
simply the Laplacian matrix of the clique expansion graph of the hypergraph. Although a
Laplacian is well defined on this graph, it will describe a slightly different propagation than
the one truly happening in the hypergraph, since the transformation loses the information
about the redundancy of relationships in the hypergraphs. Indeed, the Laplacian will only
propagate once over nodes that might be linked through several hyperedges.

This issue is solved in the star expansion Laplacian, since the star expansion graph keeps
intact every structural information of the hypergraph. But the Laplacian matrix of this
new graph still does not match the propagation in the actual hypergraph. Since the star
expansion graph links true nodes to hyperedge encoding nodes, one needs two propagation
steps for the information of a node to reach its neighbors in the hypergraph. This means that
the actual propagation in the hypergraph is a two-step process, with first every true node
propagating to the hyperedge nodes, then the hyperedge nodes redistributing the resulting
encoding to its true nodes. This is not the propagation defined through the Laplacian
matrix.

Zhou’s normalised Laplacian is the one that interests us for the properties of its eigen-
vectors, which are similar to those of the graph Laplacian. This Laplacian is derived from
an operator first used for regularisations on vertex functions (Agarwal et al., 2006). It takes
inspiration from a definition of the Laplacian matrix for graphs as being the unique matrix
L such that:

〈f, Lf〉 =
1

2

∑
(i,j)∈V

Ai,j (f(i)− f(j))
2

(41)

where f is a function over the nodes, 〈·, ·〉 the inner product between two functions and A is
the adjacency matrix. This property of the Laplacian matrix comes from the fact that it is
related to diffusion processes in the graph6. The 1

2 term controls the redundancy of directed

6See Appendix D at page 52 for the different definitions of the graph Laplacian matrix.

49

Graph Neural Networks for Asset Management

edges in an undirected graph. Chan et al. (2016) adapted this penalisation for hypergraphs
and found a matrix L such that:

〈f, Lf〉 =
1

2

∑
e∈E

1

|e|
∑

(i,j)∈V

(
f(i)√
d(i)
− f(j)√

d(j)

)2

(42)

This equation is slightly different than its graph equivalent. The division by two remains to
account for the undirected nature of the hypergraph, but another redundancy appears with
the set structure. Since two vertices can be linked through several hyperedges, they need,
in order to control this new redundancy, to divide each f(i) by

√
d(i), which is the square

root of the number of hyperedges i belongs to. The resulting matrix L is then:

L = IN −D−
1
2HB−1H>D−

1
2 (43)

This matrix is also related to diffusion in the hypergraph, Chan et al. (2016) uses this
fact to demonstrate inequalities resembling the Cheeger equations on graphs. In particular,
the second eigenvalue is also related to an adapted conductance measure on hypergraphs.
However, the other eigenvalues are less informative of the structure. In particular, in order
to define a hypergraph Fourier transform another representation is required, which uses
tensors (Zhang et al., 2020). Contrary to graph spectral theory, which is already firmly in
the state of the art, such hypergraph spectral theory is very recent.

C.2 Links with graphs

Let G = (V,E) be a graph, let A and D be its binary adjacency matrix and degree matrix
respectively. We can express the adjacency matrix as an incidence matrix by given each
M = |E| edges a unique number from 1 to M . We thus have:

Aij = 1 ⇐⇒ ∃!k ∈ {1, . . . ,M}, (Hik = 1) and (Hjk = 1) (44)

an such a k is different for each pair (i, j). This incidence matrix can define a hypergraph
whose node set is V and whose incidence matrix is H.

This hypergraph formalism of graphs has two interesting properties. The first is that the
degree matrix of the related hypergraph is exactly the degree matrix of the graph.

Proof. Let D′ be the degree matrix of the hypergraph related to incidence matrix H. By
definition, both D and D′ are diagonal matrices. Let us then show that their diagonal terms
are the same. Let i ∈ {1, N}, then:

D′ii =

M∑
k=1

Hik (45)

We know that Hik = 1 if, and only if, there exist a node j such that (i, j) ∈ E, such that
for any such j there exists only one ek. Thus counting the hyperedges ek is the same as
counting the neighbors j. This means that:

D′ii =

N∑
j=1

Aij

= Dii

(46)

50

Graph Neural Networks for Asset Management

Another property is that HH> = A + D. A simple intuition is to see the matrix H
as an operator from node to hyperedges. H defines a transformation from node space to
hyperedge space, and H> a transformation from edge space to node space. Then HH> links
every node to every other node connected by a hyperedge, excluding itself. In our special
case, this operator links the nodes to a single neighborhood without redundancy, which is
exactly what the operator defined by A+D does on graphs. Here is a more rigorous proof
of this fact.

Proof. Since D is a diagonal matrix and A has no diagonal terms, we can show this property
by separating two cases. This property is obvious for diagonal terms since, ∀i ∈ {1, . . . , N}:

HH>ii =

M∑
k=1

HikH
>
ki

=

M∑
k=1

H2
ik

(47)

Since H is a binary matrix:

HH>ii =

M∑
k=1

Hik

= D′ii = Dii

(48)

As shown above. Now remains the case of non diagonal terms. Let i, j ∈ {1, . . . , N}, i 6= j:

HH>ij =

M∑
k=1

HikHjk

=

M∑
k=1

1i∈ek and j∈ek

(49)

Since such a hyperedge ek is unique and exists if, and only if, Aij = 1, this sum is either 1
if (i, j) ∈ E or else 0, thus:

HH>ij = Aij (50)

which ends the demonstration.

C.3 Hypergraph convolution layers

Since the resulting hypergraph Laplacian is very similar to the graph Laplacian, Bai et al.
(2019) simply adapts the layer of Kipf and Welling (2017) to provide the following formula:

Y = σ
(
D−

1
2HB−1H>D−

1
2XΘ

)
(51)

Contrary to the graph convolution layer, this layer has no spectral justification. According to
Bai et al. (2019), the motivation behind this form is that the GCN layer can be reinterpreted
as a particular case of the Hypergraph layer, keeping with the idea that hypergraphs are
supposed to be a generalisation of graphs. The demonstration of this fact is as follows. A
graph can be interpreted as a hypergraph where any hyperedge’s cardinal is 2. Hence, the

51

Graph Neural Networks for Asset Management

hyperedge degree matrix is simply B = 2IM , with IM the identity matrix of size M . Then,
the layer becomes:

Y = σ

(
1

2
D−

1
2HH>D−

1
2XΘ

)
(52)

We demonstrated in the previous section that HH> = A+D. By expanding this expression,
we get:

1

2
D−

1
2 (A+D)D−

1
2XΘ =

1

2

(
D−1D +D−

1
2AD−

1
2

)
XΘ

=
1

2

(
IN +D−

1
2AD−

1
2

)
XΘ

(53)

This is the exactly the same form as Equation (39) of page 48. Indeed, the factor 1/2 can
be hidden inside the diagonal filter parameter matrix Θ. The renormalisation trick has to
be applied to recover Kipf and Welling (2017)’s exact layer, therefore the stability issues
will be present in this layer. However, no equivalent to the renormalisation trick exists for
hypergraphs, hence the compromise.

D Properties of the Laplacian matrix

Clustering problems are fundamental to graph theory. Here we provide more details on
clustering techniques. In particular, the use of the Laplacian and its eigenvalues in clustering
provides a further justification of the GCN layer.

D.1 Graph calculus

In this paper we defined the graph Laplacian as a algebraic object from which we used
the eigenvalue decomposition. We stressed the role of this operator in diffusion processes,
arguing it was the graph equivalent of the Laplace-Beltrami operator on grids. Here we
show that the graph Laplacian is in fact a natural operator in the field of graph calculus,
thus reinforcing this link between the algebraic matrix and diffusion processes.

Let us begin by defining the graph gradient. Let G = (V,E) be a weighted graph with
adjacency matrix A. The gradient of graph G is a discrete operator ∇ : L2(V)→ L2(E):

(∇f)i,j = (fj − fi)1(i,j)∈E (54)

where f : V → R is a function over the vertices, or equivalently a vector of RN . Similarly,
the divergent of graph G is an operator div : L2(E)→ L2(V):

(divF)i =
∑

j∈N (i)

Ai,jFi,j (55)

where F : E → R is a function over the edges, or equivalently a square matrix of RN×N .
The Laplacian matrix on graphs can then be defined equivalently as:

L = ∆ = −div∇
⇐⇒ Li =

∑
j∈N (i)

Ai,j(fi − fj)

⇐⇒ L = D −A

(56)

52

Graph Neural Networks for Asset Management

Finally, we can define a curl operator on 3-cliques, i.e. cliques of three vertices, also known
as the triangles of the graph. Let T be the set of triangles in the graph G. Then the curl of
the graph is the operator:

(curlF)i,j,k = Fi,j + Fj,k + Fk,i (57)

and
(curl∗F)i,j =

∑
k, (i,j,k)∈T

wijk
Ai,j
F(i, j, k) (58)

where F ∈ L2(T) is a function over the triangles and wijk a weight coefficient defined for
each triangle. These operators allow for the modelisation of complex physical systems on
graphs, leading the way for differential equation solving on graphs. Seo and Liu (2019),
for instance, use these operators to train neural networks on electro-magnetic differential
equations. They also predict weather variation in a region with a mountain range and other
factors to show how graph neural networks can improve the prediction of the forecasts.

D.2 On the Laplacian eigenvalues

The Laplacian matrix is related to random walks in the Laplacian. Indeed, the matrix D−1L,
also called the random walk normalised Laplacian, is exactly equal to IN − P with P the
transition matrix of a random walk in the graph. Hence, the eigenvalues of the Laplacian give
an indication of the topology of graph walks. For instance, if 0 is an eigenvalue of multiplicity
more than 1, that means that there is a section of the graph that is unattainable from the
rest. The number of isolated subgraphs, also called connex components, is given by the
multiplicity of the eigenvalue 0.

The lowest eigenvalues of the Laplacian describes a bottleneck in graph diffusion speed.
We saw that if the eigenvalue 0 appears more than once, then a random walk starting
from any given node will never reach some parts of the graph. If zero is an eigenvalue of
multiplicity one, then a diffusion process starting from any node will eventually have an
impact on every node, but the speed at which the entirety of the nodes will be affected
depends on another eigenvalue. Specifically, this speed is controlled by a measure called the
conductance of the graph, which in turn is controlled through Cheeger’s inequality by the
second smallest eigenvalue of the Laplacian. The second smallest eigenvalue is fundamental
in describing the topology of a fully connected graph, it links the conductance with clustering
through the minimum cut problem.

D.3 The minimum cut problem

The graph Laplacian gives information on the sparsest cut of the graph, and can thus be
used for clustering. Let us define the minimum cut problem. Let G = (V,E) be a undirected
weighted graph, let A be its adjacency matrix. Let V1, V2 ⊂ V, V1 ∪ V2 = V and V1 ∩ V2 = ∅
a partition of the vertices of graph G. Let C = {(i, j) ∈ V, i ∈ V1 and j ∈ V2} be the cut,
i.e. the set of edges that, if removed, would separate the graph G in exactly the subgraphs
defined by V1 and V2. The cut is also sometimes called the frontier of sets V1 and V2, noted
δV1 or δV2. We define the cost of the cut as follows:

W (C) =

(
1

|V1|
+

1

|V2|

) ∑
(i,j)∈C

Ai,j (59)

The minimum cut problem consists in solving the discrete minimisation problem:

min
C

W (C) (60)

53

Graph Neural Networks for Asset Management

This combinatorial problem can be rephrased using the Laplacian matrix. Let x(C) be the
vector such that:

xi =

1

|V1|
, if i ∈ V1

−1

|V2|
, if i ∈ V2

(61)

Then the minimum cut program is equivalent to solving the problem (Cormen et al., 2009):

min
x
x>Lx

s.t. x>x = 1
(62)

The solution to this program is exactly the eigenvector relative to the second smallest eigen-
value of the Laplacian. Indeed, the smallest eigenvalue is 0 since L1 = 0. This vector
allocation 1 corresponds to a cut where V2 is empty, which would make the minimisation
undefined due to equation 61.

D.4 Link with the graph conductance

The conductance of a graph, described in equation 64 is a measure controlling the weight of
the minimal cut as well as the convergence speed of a random walk towards the stationary
distribution. Indeed, the conductance of a subgraph S can be interpreted as the probability
that a random hop will escape the subgraph having started in it. As such, it can also give a
measure of the quality of a clustering, since a it should be difficult for a random walk to get
from a cluster to another(Kannan et al., 2000). The graph overall conductance φG being
the minimum conductance over every subgraph, it gives an idea of the difficulty a random
walk will have to reach every node at least once.

Let S be a subset of V . Let ∂S be the frontier between S and S̃ = V \S. The frontier is
the cut inducing S as one of the two subgraphs. Since a cut is a set of edges, we can define
|∂S| the cardinal of the frontier. Let finally vol(S) =

∑
i∈S Di,i be the volume of subgraph

S, i.e. the sum of the degrees of every vertex in S. The conductance of a subgraph S is
defined as:

φS =
|∂S|

min{vol(S), vol(S̄)} (63)

and the overall conductance of the graph φG is defined as the maximum of the conductance
of its subgraphs:

φG = min
S⊂V

φS (64)

This graph theory measure is related to the eigenvalues of the Laplacian. Indeed, the Cheeger
inequality (Cheeger, 1969):

λ2
2
≤ φG ≤

√
2λ2 (65)

constrains the conductance of a graph according to the second smallest eigenvalue of the
Laplacian matrix. Thus, the sparsest cut of a graph can be approached by a fully spectral
approach.

Since the conductance of a cut is a measure of the quality of its clustering, and that
the minimum conductance is controlled by the second smallest eigenvalue of the Laplacian,
which happens to solve the minimal cut problem, one can compare the conductance of any
cut found through clustering algorithms and verify that it follows Cheeger’s inequalities. If
the cut does not fall within the domain defined using the eigenvalues of the Laplacian, then
a better clustering exists. This demonstrates how the eigenvalues of the graph Laplacian

54

Graph Neural Networks for Asset Management

provide structural information about the graph. Furthermore, this relationship between
cuts, clusters and eigenvalues can be generalised for every eigenvalue of a Laplacian. This
validates spectral clustering, which is simply the use of classical clustering algorithms such
as k-means or DBSCAN on the spectral domain, i.e. on the eigenvectors of the Laplacian
Stankovic et al. (2019).

E Spectral analysis of Chebyshev graph filters

This section is heavily inspired by Muhammet et al. (2020). We provide a spectral analysis of
Chebyshev spectral filters like the GCN layer, which justifies the choices in the construction
of Appendix B.

Let G be undirected graph (ie A the adjacency matrix is symetric). Let L = D − A be
its Laplacian matrix. Let also λ be the vector of its eigenvalues and U the matrix of its
eigenvectors.

E.1 Frequency profile of a graph convolution kernel

Muhammet et al. (2020) studies the frequency profile of the spectral convolution family of
graph neural layers. The start from a general expression of spatial convolution layers:

Y = σ

(
K∑
s=1

CsXΘ

)
(66)

where Y is the convolved graph, X the feature matrix and Θ a learnable weight matrix.
Cs is a convolution kernel approximating a message passing function. Spectral layers, they
prove, is a special case of this spatial convolution family where the kernel Cs can be written
as follows:

Cs = Udiag (Fs(λ))U> (67)

where Fs is a function providing the frequency profile vector of the kernel at order s. Since
the Laplacian is symetric semi-definite, U is orthogonal and U−1 = U>, we can then isolate
the frequency profile and get:

Fs(λ) = diag−1
(
U>CsU

)
(68)

Since GCN layers use a Chebyshev kernel in its approximation, we can compute its exact
frequency profile.

E.2 Frequency profile of Chebyshev expansions

The first Chebyshev convolution filter C0 = IN has frequency profile F0(λ) = 1, with 1 the
vector of 1s.

Proof. The identity kernel defines an all-pass filter. Using the formula given in the previous
subsection, we have that:

F0(λ) = diag−1
(
U>INU

)
= diag−1 (IN)

= 1

(69)

55

Graph Neural Networks for Asset Management

The second Chebyshev convolution filter is C1 = 2L/λmax− IN and its frequency profile
is F1(λ) = 2λ

λmax
− 1.

Proof. Indeed, by definition of C1 the second Chebyshev kernel:

F1 = diag−1
(
U>C1U

)
= diag−1

(
U>

(
2

λmax
L− IN

)
U

)
= diag−1

(
2

λmax
U>LU − U>INU

)
= diag−1

(
2

λmax
U>LU − IN

)
(70)

Furthermore, since U is the eigenvector matrix of L, we have LU = Udiag(λ). Thus:

F1 = diag−1
(

2

λmax
U>Udiag(λ)− IN

)
= diag−1

(
2

λmax
diag(λ)− IN

)
=

2λ

λmax
− 1

(71)

Here we obtained the frequency profiles of the two Chebyshev kernels used in the ap-
proximation leading to the GCN layer. In particular, this provides the frequency profile of
the layer before the renormalisation trick. While this trick changes the profile, the HGCN
hypergraph layer is inspired by the non-normalised version of the GCN. We also provide
the general expression of any Chebyshev kernels to illustrate the generalisation of the GCN
layer known as ChebNet, where the layer is based on higher order Chebyshev expansions
(Defferrard et al., 2016). The kth frequency profiles are defined by:

Fk(λ) = 2F1(λ)Fk−1(λ)− Fk−2(λ) (72)

Proof. By definition of the Chebyshev polynomials, we know that, for k > 2

Ck = 2C1Ck−1 − Ck−2 (73)

We once again apply the general formula giving Fk according to Ck:

Fk = U> (2C1Ck−1 − Ck−2)U

= 2U>C1Ck−1U − U>Ck−2U
(74)

Since UU> = IN , Muhammet et al. (2020) inserts this matrix into the equation:

Fk = 2(U>C1U)(U>Ck−1U)− U>Ck−2U (75)

And finally, since Fk = U>CkU for all k:

Fk(λ) = 2F1(λ)Fk−1(λ)− Fk−2(λ) (76)

The Chebyshhev expansion is only one of the possible filters that can be used to build
neural layers. Muhammet et al. (2020) provides similar analysis on Cayley expansion neural
layers, first introduced in Levie et al. (2019).

56

Graph Neural Networks for Asset Management

E.3 The GCN layer’s frequency profile

Since the renormalisation trick changes the frequency profile of the GCN layer, Muhammet
et al. (2020) provides a different proof, which assumes that all nodes have the same degree
d ∈ N. Let Ã = A+ IN the adjacency matrix of the graph with self loops and let D̃ = dIN
be its degree matrix. By definition of the GCN layer:

CGCN = D̃
−1/2ÃD̃

−1/2

= (D + IN)
−1/2(A+ IN)(D + IN)

−1/2

= ((d+ 1)IN)
−1/2

(A+ IN) ((d+ 1)IN)
−1/2

=
A+ IN
d+ 1

(77)

Which we can use in the frequency profile formula. We then have:

FGCN =
1

d+ 1

(
U>AU + IN

)
(78)

Then, since U is the eigenvector matrix of L the normalised Laplacian:(
IN −D−1/2AD

−1/2
)
U = Udiag(λ) (79)

Which can be transformed, since D−1/2AD−1/2 = A/d, into:

AU = dU − dUdiag(λ) (80)

There remains to replace AU by this expression to get the following expression:

FGCN =
1

d+ 1
U> (dU − dUdiag(λ)) +

1

d+ 1
IN

=
(d+ 1)IN − diag(λ)d

d+ 1

= IN −
d

d+ 1
diag(λ)

(81)

We have the frequency profile of the GCN layer, both before and after the renormalisation
trick. Since the GAT layer relies on a more complex mechanism than the GCN layer, an
analytical spectral profile is impossible to obtain. This is why Muhammet et al. (2020) only
provides an empirical profile computed through Monte Carlo simulations.

57

Graph Neural Networks for Asset Management

F Tables

Table 6: Annual backtest of the long 5% strategies on the MSCI World index

Perf (in %) Vol (in %) SR MDD (in %)
model MSE BCE MSE BCE MSE BCE MSE BCE

2016

MSCI 8.15 - 12.69 - 0.64 - -11.47 -
LSTM 48.69±18.20 59.32±11.43 16.41±1.09 16.51±1.55 2.94±1.01 3.57±0.53 -7.33±1.98 -7.43±1.31

GCN 36.41±15.13 37.54±13.28 16.24±0.77 16.65±1.39 2.24±0.95 2.29±0.90 -8.84±1.58 -9.68±1.89
GCN* 43.05±11.99 41.66±10.35 15.65±1.12 15.65±1.03 2.72±0.68 2.69±0.71 -7.96±1.42 -7.89±0.95

GAT 35.86± 9.99 33.10±11.44 15.73±1.14 16.01±1.40 2.29±0.65 2.09±0.76 -8.68±1.40 -9.07±1.66
GAT* 27.27± 5.24 30.58± 9.53 15.52±1.62 15.67±0.96 1.77±0.32 1.97±0.65 -10.02±1.48 -9.12±2.29

HGCN 43.98±12.64 38.13± 9.61 17.06±1.01 16.68±1.32 2.58±0.72 2.33±0.71 -9.69±1.72 -8.29±1.60
HGCN* 37.38±10.16 36.04± 8.37 16.02±1.27 15.30±1.29 2.36±0.71 2.38±0.64 -8.96±1.73 -8.70±1.87

2017

MSCI 23.07 - 5.71 - 4.04 - -1.95 -
LSTM 36.11±8.15 34.88± 6.25 8.87±0.47 9.23±0.50 4.07±0.87 3.79±0.68 -3.54±0.64 -4.08±0.81

GCN 31.51±6.93 32.62± 6.40 8.36±0.44 8.57±0.69 3.78±0.86 3.79±0.63 -3.76±0.95 -3.71±0.57
GCN* 32.61±5.89 28.55± 6.14 8.65±0.61 8.67±0.88 3.83±0.89 3.36±0.96 -3.22±0.48 -3.52±0.74

GAT 30.42±4.57 26.61±13.51 8.36±0.43 8.43±0.34 3.63±0.46 3.19±1.61 -3.74±0.56 -4.15±1.43
GAT* 29.50±4.16 29.02± 4.94 8.24±0.36 8.36±0.39 3.58±0.43 3.46±0.54 -3.34±0.50 -4.00±0.71

HGCN 30.60±7.02 31.74± 8.14 9.24±0.82 8.80±0.88 3.38±0.95 3.72±1.21 -4.59±1.67 -4.16±1.21
HGCN* 37.61±7.16 37.05± 5.80 8.80±0.36 15.30±1.29 4.29±0.89 4.17±0.70 -4.18±1.17 -4.55±1.051

2018

MSCI -8.85 - 12.59 - -0.70 - -18.28 -
LSTM 1.00±8.43 6.41±5.14 16.19±1.26 18.02±0.87 0.04±0.55 0.36±0.30 -17.49±3.74 -17.14±2.67

GCN -2.33±5.65 1.92±4.12 15.13±0.82 14.86±1.08 -0.16±0.39 0.12±0.29 -19.94±2.05 -9.97±1.95
GCN* 0.43±7.25 0.21±3.30 14.50±2.36 15.04±1.56 0.10±0.47 0.03±0.22 -15.94±4.77 -14.78±3.69

GAT -1.14±9.44 0.36±7.48 14.25±1.09 15.02±1.07 -0.09±0.68 0.01±0.53 -16.40±3.46 -17.00±1.93
GAT* 1.48±5.90 1.46±3.04 13.84±0.98 15.48±1.02 0.09±0.43 0.10±0.20 -14.68±2.65 -16.81±1.68

HGCN -2.59±4.77 8.97±8.21 16.41±1.62 15.55±1.27 -0.16±0.30 0.56±0.52 -18.91±4.46 -15.35±2.74
HGCN* 2.91±6.83 -0.65±4.93 15.15±1.90 16.91±1.18 0.21±0.45 -0.03±0.29 -15.61±4.50 -18.39±2.15

2019

MSCI 28.40 - 10.09 - 2.81 - -5.91 -
LSTM 37.34±10.42 42.92±5.76 12.98±0.74 13.6±0.53 2.86±0.72 3.16±0.41 -7.73±0.80 -8.79±1.08

GCN 29.59± 8.46 28.85±7.37 12.51±0.78 12.66±0.38 2.39±0.74 2.28±0.59 -9.34±2.23 -9.97±1.95
GCN* 33.09± 5.28 31.91±5.56 12.18±1.42 11.78±1.12 2.71±0.25 2.70±0.31 -8.62±2.06 -8.09±1.35

GAT 25.82± 5.96 27.74±5.12 12.17±0.62 11.94±0.54 2.13±0.50 2.33±0.44 -9.90±2.11 -8.56±1.17
GAT* 37.12± 7.86 33.04±4.16 11.8±0.79 12.54±0.43 3.16±0.68 2.64±0.33 -7.44±1.83 -9.21±1.05

HGCN 34.28± 9.96 37.8±7.33 13.20±0.52 13.60±0.50 2.61±0.80 2.78±0.55 -8.16±1.75 -9.45±1.12
HGCN* 30.06± 8.20 37.06±8.84 12.10±0.94 13.42±0.80 2.46±0.61 2.75±0.62 -8.90±1.82 -9.17±0.85

2020

MSCI 16.50 - 28.60 - 0.58 - -33.99 -
LSTM 22.14±14.92 53.17±16.93 33.38±6.66 39.00±5.19 0.65±0.41 1.36±0.39 -36.95±5.96 -40.31±4.36

GCN 14.49± 0.99 21.16±11.90 30.42±3.14 30.90±2.49 0.49±0.25 0.70±0.43 -30.85±4.07 -32.07±3.86
GCN* 23.34±11.46 37.27± 4.70 33.67±1.75 31.40±2.49 0.70±0.36 1.19±0.18 -35.45±3.38 -30.63±3.47

GAT 26.43± 8.40 21.56± 7.15 29.42±2.67 31.73±3.51 0.90±0.29 0.70±0.27 -29.00±4.38 -34.19±5.22
GAT* 20.50±15.54 36.68±12.48 29.64±3.20 31.34±3.02 0.68±0.50 1.20±0.46 -32.50±4.82 -31.94±4.98

HGCN 6.39±10.99 31.08±10.86 32.51±3.40 34.13±3.70 0.20±0.35 0.93±0.37 -36.67±4.76 -35.21±5.46
HGCN* 20.19±16.60 36.28±19.89 31.67±4.25 30.84±3.28 0.66±0.54 1.15±0.62 -35.17±4.75 -32.46±2.88

2021

MSCI 36.50 - 11.27 - 3.24 - -4.21 -
LSTM 35.40±15.22 30.17± 3.82 15.05±1.23 16.48±0.48 2.34±0.91 1.83±0.25 -7.60±1.59 -8.72±0.79

GCN 31.16±25.80 25.64±19.23 13.81±1.10 14.15±1.39 2.18±1.66 1.75±1.12 -6.22±1.26 -7.86±1.46
GCN* 40.20±16.21 31.23±11.23 13.86±1.16 14.70±1.47 2.89±1.15 2.10±0.70 -5.90±1.08 -6.41±1.41

GAT 32.86±13.09 23.12±12.12 13.88±1.57 13.51±1.13 2.38±1.01 1.71±0.85 -6.91±1.05 -7.24±1.47
GAT* 32.82±20.66 25.28±12.84 13.81±1.64 14.24±1.03 2.35±1.46 1.74±0.83 -6.67±1.50 -7.44±0.83

HGCN 31.32±20.71 19.86± 9.14 14.34±2.29 14.87±1.35 2.16±1.22 1.34±0.65 -6.61±1.35 -7.08±1.30
HGCN* 30.27± 9.45 29.69± 9.35 14.52±1.84 15.72±1.05 2.11±0.67 1.91±0.71 -7.41±1.65 -8.74±0.88

58

Graph Neural Networks for Asset Management

Table 7: Annual backtest of the long 10% strategies on the MSCI World index

Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol
Model MSE BCE MSE BCE MSE BCE MSE BCE MSE BCE

2016

MCSI 8.15 12.69 0.64 11.47 0.9
LSTM 70.68 48.84 18.05 15.99 3.92 3.05 -6.62 -9.15 -0.37 -0.57
GCN 53.65 37.15 17.45 15.95 3.07 2.33 -10.01 -13.19 -0.57 -0.83
GCN* 47.13 38.12 14.72 17.71 3.20 2.15 -5.21 -10.76 -0.35 -0.61
GAT 29.08 36.77 16.84 16.21 1.73 2.27 -9.68 -9.14 -0.57 -0.56
GAT* 37.64 40.48 18.66 14.93 2.02 2.71 -10.97 -7.65 -0.59 -0.51
HGCN 27.86 42.34 15.81 14.54 1.76 2.91 -11.81 -8.06 -0.75 -0.55
HGCN* 33.80 35.94 18.96 15.29 1.78 2.35 -8.66 -10.36 -0.46 -0.68

2017

MCSI 23.07 5.71 4.04 1.95 0.34
LSTM 26.24 27.53 8.41 9.81 3.12 2.81 -3.95 -3.91 -0.47 -0.40
GCN 27.49 34.17 7.84 7.82 3.50 4.37 -3.50 -3.31 -0.45 -0.42
GCN* 30.42 17.03 7.38 10.08 4.12 1.69 -3.77 -4.85 -0.51 -0.48
GAT 28.46 36.78 8.38 8.73 3.40 4.21 -3.94 -3.57 -0.47 -0.41
GAT* 42.00 30.15 8.60 7.83 4.88 3.85 -3.43 -3.08 -0.40 -0.39
HGCN 46.04 28.48 8.03 8.85 5.73 3.22 -2.16 -5.05 -0.27 -0.57
HGCN* 25.51 36.47 9.20 9.32 2.77 3.91 -4.26 -4.76 -0.46 -0.51

2018

MCSI -8.85 12.59 -0.70 18.28 1.45
LSTM 4.60 11.26 18.36 15.83 0.25 0.71 -15.47 -12.33 -0.84 -0.78
GCN -10.71 9.01 14.29 15.39 -0.75 0.59 -21.00 -14.54 -1.47 -0.94
GCN* 5.33 -11.29 11.58 17.45 0.46 -0.65 -9.51 -20.58 -0.82 -1.18
GAT -2.59 -6.81 15.53 15.35 -0.17 -0.44 -21.31 -19.21 -1.37 -1.25
GAT* -7.28 -0.78 14.39 13.65 -0.51 -0.06 -19.87 -18.37 -1.38 -1.35
HGCN -3.17 -1.89 13.49 17.49 -0.24 -0.11 -18.13 -22.56 -1.34 -1.29
HGCN* 11.44 -4.58 15.56 14.89 0.74 -0.31 -14.40 -14.33 -0.93 -0.96

2019

MCSI 28.4 10.09 2.81 5.91 0.59
LSTM 53.54 36.90 13.58 12.80 3.94 2.88 -7.82 -9.70 -0.58 -0.76
GCN 33.13 33.26 11.96 12.20 2.77 2.73 -9.72 -10.70 -0.81 -0.88
GCN* 25.97 27.02 9.93 14.24 2.61 1.90 -8.59 -12.09 -0.86 -0.85
GAT 33.69 42.22 12.06 11.13 2.79 3.79 -8.15 -5.16 -0.68 -0.46
GAT* 26.31 27.61 12.93 10.95 2.03 2.52 -10.68 -6.54 -0.83 -0.60
HGCN 32.41 40.77 12.85 13.85 2.52 2.94 -10.26 -7.66 -0.80 -0.55
HGCN* 47.63 31.45 13.03 13.71 3.66 2.29 -7.92 -8.41 -0.61 -0.61

2020

MCSI 16.5 28.6 0.58 33.99 1.19
LSTM 36.61 77.53 44.49 36.57 0.82 2.12 -45.58 -39.04 -1.02 -1.07
GCN 21.85 18.29 25.40 29.96 0.86 0.61 -32.79 -32.93 -1.29 -1.10
GCN* 14.33 38.80 33.00 36.85 0.43 1.05 -39.06 -35.19 -1.18 -0.96
GAT 52.72 -5.13 30.60 25.05 1.72 -0.20 -30.02 -32.77 -0.98 -1.31
GAT* 21.16 42.40 35.15 30.53 0.60 1.39 -40.40 -31.50 -1.15 -1.03
HGCN 22.72 9.32 27.60 31.75 0.82 0.29 -27.45 -33.50 -0.99 -1.06
HGCN* 12.14 47.49 38.95 31.07 0.31 1.53 -42.86 -34.74 -1.10 -1.12

2021

MCSI 36.5 11.27 3.24 4.21 0.37
LSTM 20.83 13.73 7.27 7.80 2.87 1.76 -2.02 -3.30 -0.28 -0.42
GCN 20.81 15.06 9.90 10.04 2.10 1.50 -3.26 -3.56 -0.33 -0.35
GCN* 16.70 7.39 7.96 7.23 2.10 1.02 -2.37 -4.78 -0.30 -0.66
GAT 14.21 11.51 7.40 12.98 1.92 0.89 -3.62 -6.97 -0.49 -0.54
GAT* 4.14 4.86 11.05 7.26 0.37 0.67 -2.97 -1.83 -0.27 -0.25
HGCN 3.27 50.12 8.33 10.28 0.39 4.87 -3.03 -2.02 -0.36 -0.20
HGCN* 16.85 8.92 7.79 8.07 2.16 1.11 -2.59 -5.31 -0.33 -0.66

59

Graph Neural Networks for Asset Management

Table 8: Annual backtest of the long 20% strategies on the MSCI World index

Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol
Model MSE BCE MSE BCE MSE BCE MSE BCE MSE BCE

2016

MCSI 8.15 12.69 0.64 11.47 0.9
LSTM 48.99 38.49 15.54 14.57 3.15 2.64 -7.08 -7.53 -0.46 -0.52
GCN 41.86 34.24 14.74 14.73 2.84 2.32 -8.96 -9.94 -0.61 -0.67
GCN* 41.38 29.88 13.29 15.12 3.11 1.98 -5.03 -9.20 -0.38 -0.61
GAT 23.18 36.19 14.58 13.78 1.59 2.63 -10.16 -7.60 -0.70 -0.55
GAT* 33.36 34.28 16.20 12.64 2.06 2.71 -9.83 -6.54 -0.61 -0.52
HGCN 28.84 38.49 13.79 14.54 2.09 2.65 -9.66 -8.21 -0.70 -0.56
HGCN* 34.52 31.18 16.16 12.78 2.14 2.44 -8.14 -7.24 -0.50 -0.57

2017

MCSI 23.07 5.71 4.04 1.95 0.34
LSTM 29.94 30.10 7.22 8.08 4.15 3.73 -2.57 -2.55 -0.36 -0.32
GCN 26.68 30.58 6.82 6.86 3.91 4.46 -2.62 -2.24 -0.38 -0.33
GCN* 34.32 21.73 6.08 7.86 5.65 2.77 -1.93 -3.25 -0.32 -0.41
GAT 29.25 30.51 7.25 7.33 4.04 4.16 -2.94 -3.44 -0.41 -0.47
GAT* 34.02 29.88 7.59 7.05 4.49 4.24 -2.38 -3.06 -0.31 -0.43
HGCN 43.86 26.23 7.15 7.93 6.14 3.31 -1.82 -3.91 -0.26 -0.49
HGCN* 28.35 32.36 8.03 8.01 3.53 4.04 -3.21 -4.09 -0.40 -0.51

2018

MCSI -8.85 12.59 -0.70 18.28 1.45
LSTM 6.31 0.23 16.07 14.47 0.39 0.02 -14.00 -13.66 -0.87 -0.94
GCN -8.30 5.30 12.81 14.23 -0.65 0.37 -17.52 -12.10 -1.37 -0.85
GCN* 1.18 -8.29 11.76 15.60 0.10 -0.53 -13.14 -19.75 -1.12 -1.27
GAT 0.40 -2.99 15.27 15.21 0.03 -0.20 -19.77 -18.34 -1.29 -1.21
GAT* 2.89 0.24 14.13 13.42 0.20 0.02 -14.59 -19.32 -1.03 -1.44
HGCN -4.70 -3.12 12.95 14.77 -0.36 -0.21 -17.24 -19.56 -1.33 -1.32
HGCN* 6.14 -0.15 14.61 14.13 0.42 -0.01 -14.35 -13.71 -0.98 -0.97

2019

MCSI 28.4 10.09 2.81 5.91 0.59
LSTM 45.16 31.71 12.29 11.43 3.67 2.77 -7.78 -7.11 -0.63 -0.62
GCN 30.62 30.44 11.03 11.50 2.78 2.65 -8.98 -9.56 -0.81 -0.83
GCN* 27.14 32.83 8.88 13.21 3.06 2.48 -6.38 -9.21 -0.72 -0.70
GAT 37.69 38.14 11.90 11.11 3.17 3.43 -8.74 -5.29 -0.73 -0.48
GAT* 27.18 39.83 12.56 11.75 2.16 3.39 -11.17 -7.32 -0.89 -0.62
HGCN 40.74 32.49 12.06 11.73 3.38 2.77 -8.34 -5.93 -0.69 -0.51
HGCN* 35.47 39.44 12.33 12.16 2.88 3.24 -7.94 -7.25 -0.64 -0.60

2020

MCSI 16.5 28.6 0.58 33.99 1.19
LSTM 17.70 62.22 41.01 34.87 0.43 1.78 -41.89 -35.96 -1.02 -1.03
GCN 20.25 17.60 27.54 30.47 0.74 0.58 -32.66 -32.25 -1.19 -1.06
GCN* 21.68 31.24 31.25 31.86 0.69 0.98 -36.92 -33.50 -1.18 -1.05
GAT 50.00 -5.05 31.33 25.73 1.60 -0.20 -29.07 -31.27 -0.93 -1.22
GAT* 17.14 33.08 35.32 30.92 0.49 1.07 -39.85 -30.94 -1.13 -1.00
HGCN 21.30 8.24 26.77 31.11 0.80 0.26 -26.76 -31.37 -1.00 -1.01
HGCN* 10.82 53.21 38.58 30.60 0.28 1.74 -43.91 -29.86 -1.14 -0.98

2021

MCSI 36.5 11.27 3.24 4.21 0.37
LSTM 16.71 9.93 7.50 6.85 2.23 1.45 -1.99 -2.31 -0.26 -0.34
GCN 16.65 14.80 10.88 10.51 1.53 1.41 -4.15 -4.14 -0.38 -0.39
GCN* 15.27 7.32 7.49 7.08 2.04 1.03 -2.29 -2.87 -0.31 -0.40
GAT 12.38 17.27 9.23 11.96 1.34 1.44 -2.96 -4.61 -0.32 -0.39
GAT* 6.89 6.35 11.20 7.02 0.62 0.90 -3.26 -2.01 -0.29 -0.29
HGCN 9.85 32.55 7.84 9.48 1.26 3.43 -2.11 -2.39 -0.27 -0.25
HGCN* 17.74 12.69 9.24 6.73 1.92 1.88 -3.15 -2.73 -0.34 -0.41

60

Graph Neural Networks for Asset Management

Table 9: Annual backtest of the long 5% strategies on the S&P index

Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol
model MSE BCE MSE BCE MSE BCE MSE BCE MSE BCE

2010

SP500 12.32 - 17.74 - 0.69 - 15.99 - 0.90 -
GCN* 23.46 24.01 27.80 25.72 0.84 0.93 22.62 21.98 0.81 0.85
GAT* 15.45 24.91 28.77 17.80 0.54 1.4 27.49 8.12 0.96 0.46

HGCN* 9.49 11.19 13.31 23.20 0.71 0.48 10.68 19.39 0.80 0.83

2011

SP500 0.00 - 22.91 - 0.00 - 19.39 - 0.85 -
GCN* -10.68 -6.92 39.05 33.33 -0.27 -0.21 40.49 31.54 1.04 0.95
GAT* -15.38 2.76 37.48 20.70 -0.41 0.13 38.40 20.00 1.02 1.00

HGCN* 11.22 7.12 18.59 25.45 0.60 0.28 15.39 25.59 0.83 1.01

2012

SP500 12.91 - 12.49 - 1.03 - 9.94 - 0.80 -
GCN* 18.03 20.94 21.36 18.40 0.84 1.14 21.49 15.59 1.01 0.85
GAT* 17.23 17.47 21.58 13.04 0.8 1.34 23.01 9.64 1.07 0.74

HGCN* 11.73 13.80 9.77 17.52 1.2 0.79 7.35 14.81 0.75 0.84

2013

SP500 28.45 - 10.88 - 2.61 - 5.76 - 0.53 -
GCN* 38.76 25.30 15.17 10.61 2.56 2.39 6.57 5.79 0.43 0.55
GAT* 29.50 29.84 12.13 10.37 2.43 2.88 6.75 4.53 0.56 0.44

HGCN* 25.85 30.13 11.38 11.63 2.27 2.59 6.97 6.40 0.61 0.55

2014

SP500 10.98 - 11.17 - 0.98 - 7.40 - 0.66 -
GCN* 12.82 28.09 16.77 10.68 0.76 2.63 13.06 5.57 0.78 0.52
GAT* 5.12 29.49 18.28 10.36 0.28 2.85 15.32 5.31 0.84 0.51

HGCN* 25.71 -8.68 10.07 15.56 2.55 0.56 5.31 17.79 0.53 1.14

2015

SP500 -0.70 - 15.22 - -0.05 - 12.35 - 0.81 -
GCN* -10.83 -14.09 22.02 18.87 -0.49 -0.75 28.41 24.00 1.29 1.27
GAT* -13.09 -6.79 23.16 19.49 -0..56 -0.35 30.29 21.72 1.31 1.11

HGCN* 1.71 1.58 13.32 17.21 0.13 0.09 9.87 18.94 1.74 1.1

2016

SP500 9.19 - 12.87 - 0.71 - 10.51 - 0.82 -
GCN* 43.04 1.64 28.09 14.54 1.53 0.11 16.19 14.86 0.58 1.02
GAT* 33.95 19.04 28.24 16.02 1.2 1.19 19.90 10.55 0.7 0.66

HGCN* 12.26 8.59 13.23 13.91 0.93 0.62 9.56 10.43 0.72 0.75

2017

SP500 18.77 - 6.57 - 2.86 - 2.80 - 0.43 -
GCN* 15.60 16.19 10.70 8.49 1.46 1.91 6.59 4.58 0.62 0.54
GAT* 8.74 1.62 11.47 11.57 0.76 0.14 8.58 14.89 0.75 1.29

HGCN* 16.71 10.92 11.26 8.92 1.48 1.22 8.84 4.74 0.79 0.53

2018

SP500 -6.03 - 16.72 - -0.36 - 19.78 - 1.18 -
GCN* -5.06 -3.29 20.50 19.99 -0.25 -0.16 22.54 25.12 1.1 1.26
GAT* -4.97 -21.07 19.48 15.72 -0.26 -1.34 23.88 31.41 1.23 2

HGCN* -3.91 -14.85 18.67 16.75 -0.21 -0.89 22.25 26.00 1.19 1.55

2019

SP500 27.76 - 12.25 - 2.27 - 6.84 - 0.56 -
GCN* 38.72 37.41 18.75 18.55 2.06 2.02 12.33 11.93 0.66 0.64
GAT* 43.74 34.11 18.29 12.62 2.39 2.7 12.13 5.52 0.66 0.44

HGCN* 29.24 28.63 16.37 14.40 1.79 1.99 11.09 10.14 0.68 0.7

2020

SP500 15.59 - 33.83 - 0.46 - 33.92 - 1.00 -
GCN* 14.49 11.48 55.74 35.56 0.26 0.32 46.37 39.70 0.83 1.12
GAT* 6.50 -10.38 57.56 30.78 0.11 -0.34 54.06 39.57 0.94 1.29

HGCN* 18.36 3.50 43.19 42.26 0.43 0.08 41.54 46.43 0.96 1.1

2021

SP500 32.26 - 13.16 - 2.45 - 4.23 - 0.32 -
GCN* 21.14 64.14 22.16 19.41 0.95 3.3 9.84 5.59 0.44 0.29
GAT* 37.81 26.46 19.42 15.99 1.95 1.65 7.26 7.42 0.37 0.46

HGCN* 22.76 51.10 16.97 18.04 1.34 2.83 6.91 5.93 0.41 0.33

61

Graph Neural Networks for Asset Management

Table 10: Annual backtest of the long 10% strategies on the S&P index

Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol
model MSE BCE MSE BCE MSE BCE MSE BCE MSE BCE

2010

SP500 12.32 - 17.74 - 0.69 - 15.99 - 0.90 -
GCN* 17.22 31.26 26.60 22.29 0.65 1.4 22.49 18.97 0.85 0.85
GAT* 14.04 21.52 27.20 17.55 0.52 1.23 24.88 9.17 0.91 0.52

HGCN* 13.10 12.72 13.82 23.11 0.95 0.55 9.12 19.83 0.66 0.86

2011

SP500 0.00 - 22.91 - 0.00 - 19.39 - 0.85 -
GCN* -14.05 -1.75 35.87 27.69 -0.39 -0.06 38.71 30.37 1.08 1.1
GAT* -11.99 7.68 35.81 20.50 -0.33 0.37 34.72 19.53 0.97 0.95

HGCN* 10.93 17.32 17.97 25.61 0.61 0.68 14.19 20.62 0.79 0.81

2012

SP500 12.91 - 12.49 - 1.03 - 9.94 - 0.80 -
GCN* 17.11 16.34 20.67 17.61 0.83 0.93 22.59 18.94 1.09 1.08
GAT* 14.02 18.78 19.89 12.79 0.7 1.47 23.61 8.63 1.19 0.67

HGCN* 9.22 18.06 9.30 17.55 0.99 1.03 6.16 15.56 0.66 0.89

2013

SP500 28.45 - 10.88 - 2.61 - 5.76 - 0.53 -
GCN* 33.50 36.88 14.22 12.45 2.36 2.96 6.17 7.65 0.43 0.61
GAT* 30.19 31.44 11.97 10.45 2.52 3.01 5.39 4.83 0.45 0.46

HGCN* 28.90 33.97 11.01 11.06 2.62 3.07 6.70 5.85 0.61 0.53

2014

SP500 10.98 - 11.17 - 0.98 - 7.40 - 0.66 -
GCN* 10.12 12.91 15.81 13.12 0.64 0.98 13.29 11.17 0.84 0.85
GAT* 5.28 21.57 16.08 10.35 0.33 2.08 12.49 5.55 0.78 0.54

HGCN* 25.21 -11.98 9.76 16.66 2.58 -0.72 5.09 22.99 0.52 1.38

2015

SP500 -0.70 - 15.22 - -0.05 - 12.35 - 0.81 -
GCN* -16.92 -12.18 20.14 18.66 -0.84 -0.65 27.84 23.06 1.34 1.24
GAT* -10.68 -7.19 20.80 18.19 -0.51 -0.4 24.83 19.63 1.19 1.08

HGCN* -1.63 6.46 13.88 16.92 -0.12 0.38 13.05 15.72 0.94 0.93

2016

SP500 9.19 - 12.87 - 0.71 - 10.51 - 0.82 -
GCN* 30.31 6.47 24.17 14.60 1.25 0.44 15.97 14.88 0.66 1.02
GAT* 25.64 17.74 24.05 14.72 1.07 1.21 16.43 11.29 0.68 0.77

HGCN* 9.01 7.84 12.96 13.36 0.7 0.59 10.20 6.46 0.79 0.63

2017

SP500 18.77 - 6.57 - 2.86 - 2.80 - 0.43 -
GCN* 18.92 9.85 10.24 10.20 1.85 0.97 6.63 8.34 0.65 0.82
GAT* 7.76 1.61 10.40 10.55 0.75 0.15 9.89 12.34 0.95 1.17

HGCN* 45.44 15.70 10.59 8.41 1.46 1.87 9.05 4.52 0.85 0.54

2018

SP500 -6.03 - 16.72 - -0.36 - 19.78 - 1.18 -
GCN* -9.68 -7.24 19.54 18.06 -0.5 -0.4 23.54 23.25 1.2 1.29
GAT* -12.00 -16.88 18.66 16.21 -0.64 -1.04 25.36 27.14 1.36 1.67

HGCN* -4.52 -6.58 19.55 16.35 -0.23 -0.4 22.48 21.89 1.15 1.34

2019

SP500 27.76 - 12.25 - 2.27 - 6.84 - 0.56 -
GCN* 43.29 30.33 17.92 15.65 2.42 1.94 12.53 9.70 0.7 0.62
GAT* 37.39 30.49 17.82 12.16 2.1 2.51 12.25 5.41 0.69 0.44

HGCN* 20.17 31.48 16.98 14.20 1.19 2.22 12.37 9.05 0.73 0.64

2020

SP500 15.59 - 33.83 - 0.46 - 33.92 - 1.00 -
GCN* 16.10 3.35 54.10 29.78 0.3 0.11 46.94 36.69 0.87 1.23
GAT* 7.78 -10.83 53.88 32.24 0.14 -0.34 51.39 40.61 0.95 1.26

HGCN* 18.70 15.75 40.87 41.06 0.46 0.38 41.47 44.07 1.01 1.07

2021

SP500 32.26 - 13.16 - 2.45 - 4.23 - 0.32 -
GCN* 43.58 58.94 20.45 16.71 2.13 3.53 7.22 4.85 0.35 0.29
GAT* 49.18 38.24 19.19 15.11 2.56 2.53 7.49 5.36 0.39 0.35

HGCN* 47.01 52.09 16.69 17.72 2.82 2.94 5.48 5.94 0.33 0.34

62

Graph Neural Networks for Asset Management

Table 11: Annual backtest of the long 20% strategies on the S&P index

Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol
model MSE BCE MSE BCE MSE BCE MSE BCE MSE BCE

2010

SP500 12.32 - 17.74 - 0.69 - 15.99 - 0.90 -
GCN* 19.95 33.30 25.97 23.05 0.77 1.44 21.34 16.79 0.82 0.73
GAT* 16.68 19.82 25.70 18.04 0.65 1.10 22.40 12.56 0.87 0.7

HGCN* 10.62 15.89 14.20 22.39 0.75 0.71 9.47 20.18 0.67 0.9

2011

SP500 0.00 - 22.91 - 0.00 - 19.39 - 0.85 -
GCN* -8.77 2.97 25.97 28.89 -0.26 0.1 33.23 24.21 0.98 0.84
GAT* -6.55 3.93 33.73 21.26 -0.19 0.18 30.53 19.70 0.91 0.93

HGCN* 4.76 10.21 20.00 25.61 0.24 0.4 16.59 23.27 0.83 0.91

2012

SP500 12.91 - 12.49 - 1.03 - 9.94 - 0.80 -
GCN* 20.20 15.54 19.19 17.27 1.05 0.9 19.28 17.67 1 1.02
GAT* 16.93 17.39 18.12 12.86 0.93 1.35 19.82 9.08 1.09 0.71

HGCN* 13.11 17.17 9.90 15.82 1.32 1.09 6.73 13.02 0.83 0.91

2013

SP500 28.45 - 10.88 - 2.61 - 5.76 - 0.53 -
GCN* 32.12 40.25 13.95 12.50 2.3 3.22 7.54 6.02 0.54 0.48
GAT* 32.24 36.02 11.96 10.90 2.69 3.3 5.88 4.46 0.49 0.41

HGCN* 31.44 32.60 10.69 10.88 2.94 3 6.06 6.11 0.57 0.56

2014

SP500 10.98 - 11.17 - 0.98 - 7.40 - 0.66 -
GCN* 6.63 12.36 14.93 12.77 0.44 0.97 12.55 10.08 0.84 0.79
GAT* 8.10 16.99 14.16 10.79 0.57 1.57 10.17 7.05 0.72 0.65

HGCN* 23.03 3.46 10.00 13.88 2.3 0.25 4.42 13.28 0.44 0.96

2015

SP500 -0.70 - 15.22 - -0.05 - 12.35 - 0.81 -
GCN* -12.40 -6.36 18.69 17.78 -0.66 -0.36 23.00 18.70 1.23 1.05
GAT* -10.41 -7.73 18.70 17.12 -0.56 -0.45 21.39 17.84 1.14 1.04

HGCN* 2.18 2.94 14.03 14.91 0.16 0.2 10.55 13.88 0.75 0.93

2016

SP500 9.19 - 12.87 - 0.71 - 10.51 - 0.82 -
GCN* 19.85 7.77 21.25 13.31 0.93 0.58 14.93 12.86 0.7 0.97
GAT* 20.48 11.27 20.62 13.56 0.99 0.83 13.82 11.23 0.67 0.83

HGCN* 13.79 5.50 12.43 14.17 1.11 0.39 6.62 9.62 0.53 0.68

2017

SP500 18.77 - 6.57 - 2.86 - 2.80 - 0.43 -
GCN* 13.39 11.17 9.19 9.59 1.46 1.16 6.08 6.15 0.66 0.64
GAT* 9.52 7.55 9.01 9.64 1.06 0.78 7.79 8.33 0.86 0.86

HGCN* 28.48 15.84 9.37 7.65 3.04 2.07 4.67 3.44 0.5 0.45

2018

SP500 -6.03 - 16.72 - -0.36 - 19.78 - 1.18 -
GCN* -11.48 -8.12 18.48 16.82 -0.62 -0.48 23.49 23.30 1.27 1.39
GAT* -11.22 -12.64 17.76 16.00 -0.63 -0.79 24.34 24.98 1.37 1.56

HGCN* -4.52 -7.88 17.74 15.47 -0.25 -0.51 19.57 21.46 1.1 1.39

2019

SP500 27.76 - 12.25 - 2.27 - 6.84 - 0.56 -
GCN* 39.53 28.70 17.02 15.13 2.32 1.9 11.99 10.29 0.7 0.68
GAT* 37.81 28.62 16.79 12.00 2.25 2.38 11.19 5.20 0.67 0.43

HGCN* 30.11 36.37 15.47 13.38 1.95 2.72 9.34 7.86 0.6 0.59

2020

SP500 15.59 - 33.83 - 0.46 - 33.92 - 1.00 -
GCN* 17.20 6.96 51.67 30.03 0.33 0.23 46.04 37.15 0.89 1.24
GAT* 17.03 -0.37 49.77 33.44 0.34 -0.01 46.95 37.96 0.94 1.14

HGCN* 11.40 5.85 39.66 38.13 0.29 0.15 40.63 42.27 1.02 1.11

2021

SP500 32.26 - 13.16 - 2.45 - 4.23 - 0.32 -
GCN* 53.63 40.07 19.03 14.46 2.82 2.84 5.60 4.91 0.29 0.34
GAT* 61.06 41.82 18.02 14.52 3.39 2.88 5.90 5.22 0.33 0.36

HGCN* 27.46 52.75 15.18 15.89 1.81 3.32 6.14 5.12 0.4 0.32

63

Graph Neural Networks for Asset Management

Table 12: Ablation study of the three adjacency matrices taken in isolation

Perf (in %) Vol (in %) SR MDD (in %) MDD/Vol

2016

MSCI 8.15 12.69 0.64 -11.47 0.90
GCN sector 38.38±10.19 15.40±1.21 2.53±0.76 -9.19±1.84 0.59±0.09
GAT sector 39.39±12.51 15.00±1.09 2.62±0.80 -8.00±1.93 0.54±0.13

GCN corr 44.33±12.38 15.31±2.18 2.92±0.85 -7.22±2.19 0.46±0.09
GAT corr 56.75±10.61 15.51±1.27 3.64±0.51 -6.63±1.21 0.43±0.07

GCN supply chain 33.59±6.97 13.61±0.90 2.50±0.60 -7.13±1.36 0.52±0.09
GAT supply chain 32.11±8.30 14.13±0.91 2.27±0.57 -7.73±1.18 0.55±0.08

2017

MSCI 23.07 5.71 4.04 -1.95 0.34
GCN sector 35.22±6.60 8.49±0.43 4.15±0.80 -3.84±0.64 0.45±0.07
GAT sector 29.36±6.26 8.11±0.64 3.64±0.81 -3.69±0.81 0.45±0.10

GCN corr 31.3±10.85 9.08±1.34 3.55±1.40 -3.89±0.93 0.42±0.07
GAT corr 41.78±8.31 8.48±1.20 5.07±1.33 -3.30±0.85 0.38±0.05

GCN supply chain 32.73±7.29 8.02±0.65 4.09±0.86 -3.52±0.53 0.44±0.05
GAT supply chain 31.77±7.83 8.27±0.29 3.83±0.87 -3.58±0.77 0.43±0.09

2018

MSCI -8.85 12.59 -0.70 -18.28 1.45
GCN sector 3.17±4.85 16.36±1.06 0.21±0.31 -18.92±1.84 1.16±0.07
GAT sector 0.63±7.13 15.40±1.28 0.04±0.45 -17.95±2.69 1.16±0.14

GCN corr 3.92±7.84 17.49±1.50 0.23±0.44 -16.93±3.48 0.97±0.20
GAT corr 12.32±9.94 17.08±1.93 0.77±0.64 -16.06±4.69 0.92±0.18

GCN supply chain -1.66±5.03 15.95±0.63 -0.11±0.32 -18.62±4.05 1.17±0.25
GAT supply chain -0.71±3.00 15.19±0.55 -0.05±0.20 -16.22±2.20 1.06±0.13

2019

MSCI 28.40 10.09 2.81 -5.91 0.59
GCN sector 35.11±5.34 14.13±0.39 2.48±0.36 -9.52±0.89 0.67±0.06
GAT sector 33.57±8.72 13.39±0.93 2.52±0.68 -9.31±0.94 0.69±0.06

GCN corr 35.66±3.98 13.88±1.22 2.58±0.30 -8.11±2.40 0.58±0.13
GAT corr 38.78±8.73 13.38±1.58 2.91±0.64 -7.80±1.51 0.58±0.08

GCN supply chain 35.17±7.47 13.04±0.74 2.70±0.61 -9.04±1.96 0.69±0.12
GAT supply chain 35.89±7.41 12.78±0.79 2.80±0.53 -8.90±1.89 0.69±0.13

2020

MSCI 16.50 28.60 0.58 -33.99 1.19
GCN sector 35.02±14.28 32.12±2.49 1.09±0.43 -30.30±3.21 0.95±0.12
GAT sector 42.73±12.64 30.55±2.62 1.39±0.33 -28.69±2.90 0.95±0.14

GCN corr 28.58±14.39 37.40±3.41 0.79±0.46 -37.17±5.29 0.99±0.10
GAT corr 40.31±9.55 30.35±2.26 1.32±0.29 -31.02±2.24 1.02±0.06

GCN supply chain 37.54±8.94 30.03±2.39 1.24±0.23 -31.41±1.40 1.05±0.08
GAT supply chain 29.64±11.51 31.58±4.08 0.96±0.36 -31.68±3.50 1.01±0.11

2021

MSCI 36.50 11.27 3.24 -4.21 0.37
GCN sector 15.18±9.40 14.18±0.72 1.07±0.67 -7.86±1.20 0.56±0.08
GAT sector 16.53±6.30 13.94±0.51 1.19±0.46 -6.81±0.97 0.49±0.06

GCN corr 33.41±8.87 15.05±1.27 2.20±0.44 -7.71±1.13 0.51±0.07
GAT corr 33.41±15.49 14.54±1.76 2.33±1.07 -7.66±1.81 0.52±0.08

GCN supply chain 34.24±7.85 13.73±1.75 2.54±0.69 -6.28±1.64 0.45±0.08
GAT supply chain 43.02±11.43 15.14±0.96 2.81±0.61 -7.31±1.39 0.48±0.09

64

Chief Editors

Pascal BLANQUÉ
Chief Investment Officer

Philippe ITHURBIDE
Senior Economic Advisor

Find out more about
Amundi Publications

research-center.amundi.com

DISCLAIMER

This document is solely for informational purposes.

This document does not constitute an offer to sell, a solicitation of an offer to buy, or a recommendation of any security
or any other product or service. Any securities, products, or services referenced may not be registered for sale with the
relevant authority in your jurisdiction and may not be regulated or supervised by any governmental or similar authority
in your jurisdiction.

Any information contained in this document may only be used for your internal use, may not be reproduced or
redisseminated in any form and may not be used as a basis for or a component of any financial instruments or products
or indices.

Furthermore, nothing in this document is intended to provide tax, legal, or investment advice.

Unless otherwise stated, all information contained in this document is from Amundi Asset Management SAS. Diversification
does not guarantee a profit or protect against a loss. This document is provided on an “as is” basis and the user of
this information assumes the entire risk of any use made of this information. Historical data and analysis should not be
taken as an indication or guarantee of any future performance analysis, forecast or prediction. The views expressed
regarding market and economic trends are those of the author and not necessarily Amundi Asset Management SAS and
are subject to change at any time based on market and other conditions, and there can be no assurance that countries,
markets or sectors will perform as expected. These views should not be relied upon as investment advice, a security
recommendation, or as an indication of trading for any Amundi product. Investment involves risks, including market,
political, liquidity and currency risks.

Furthermore, in no event shall any person involved in the production of this document have any liability for any direct,
indirect, special, incidental, punitive, consequential (including, without limitation, lost profits) or any other damages.

Date of first use: 1st December 2021.

Document issued by Amundi Asset Management, “société par actions simplifiée”- SAS with a capital of €1,086,262,605 -
Portfolio manager regulated by the AMF under number GP04000036 – Head office: 90 boulevard Pasteur – 75015 Paris
– France – 437 574 452 RCS Paris – www.amundi.com

Photo credit: iStock by Getty Images - monsitj/Sam Edwards

Working Paper
December 2021

	Page vierge
	Graph neural networks for asset management.pdf
	Introduction
	Information propagation with graphs
	Convolution operations in Euclidean space
	A primer on graph theory
	Message passing
	Creating graphs for portfolio management
	Sector graph
	Correlation graph
	Supply chain graph
	Combining graphs

	Deterministic portfolio creation using graph theory
	Centrality and supply chain
	Strategy on clustering
	Signal building using graph theory

	Graphs and neural networks
	Two graph convolutional layers
	Kipf and Welling's graph convolutional layer
	Graph attention layer (GAT)

	Discussion on the two layers
	Adding temporal dependencies
	Generating adjacency matrices
	Static and dynamic graph learning

	From graphs to hypergraphs
	Definition
	A generalization with more freedom
	Examples of hypergraphs
	From graphs to hypergraphs
	Hypergraph partitioning
	From hypergraphs to graphs

	Hypergraph convolution layers

	Portfolio construction using graph neural networks
	Description of the models
	Features
	Dataset separation
	Backtest metrics
	Losses for stock movement prediction
	Stock return forecasting
	Stock return ordering
	Stock movement classification

	Results
	Experimental setup on the MSCI World index highest capitalizations
	Discussion on the MSCI World index backtests and ablation study
	Graph ablation study
	Blending Strategies
	Experiments on the S&P 500 Index
	The effect of adding the Amundi alpha score
	Discussion on the S&P 500 index backtests
	Discussion on the relevance of the classical machine learning measures for market finance
	Transaction costs

	Conclusion
	The LSTM layer
	Graph spectral theory and convolution layer
	Graph fourier transform
	Convolution with a filter and Chebyshev approximation
	The graph convolution layer

	Hypergraph spectral theory
	Hypergraph Laplacians
	Links with graphs
	Hypergraph convolution layers

	Properties of the Laplacian matrix
	Graph calculus
	On the Laplacian eigenvalues
	The minimum cut problem
	Link with the graph conductance

	Spectral analysis of Chebyshev graph filters
	Frequency profile of a graph convolution kernel
	Frequency profile of Chebyshev expansions
	The GCN layer's frequency profile

	Tables

	Page vierge
	Page vierge

