
Working Paper 139 I February 2023

Time Series Forecasting
with Transformer Models
and Application to Asset
Management
Document for the exclusive attention of professional clients, investment services
providers and any other professional of the financial industry

Time Series Forecasting with Transformer Models
and Application to Asset Management

Abstract

Edmond LEZMI
Amundi Institute
edmond.lezmi@amundi.com

Jiali XU
Amundi Institute
jiali.xu@amundi.com

Since its introduction in 2017 (Vaswani et al., 2017), the
Transformer model has excelled in a wide range of tasks
involving natural language processing and computer vision.
We investigate the Transformer model to address an important
sequence learning problem in finance: time series forecasting.
The underlying idea is to use the attention mechanism and
the seq2seq architecture in the Transformer model to capture
long-range dependencies and interactions across assets and
perform multi-step time series forecasting in finance. The first
part of this article systematically reviews the Transformer
model while highlighting its strengths and limitations. In
particular, we focus on the attention mechanism and the
seq2seq architecture, which are at the core of the Transformer
model. Inspired by the concept of weak learners in ensemble
learning, we identify the diversification benefit of generating
a collection of low-complexity models with simple structures
and fewer features. The second part is dedicated to two
financial applications. First, we consider the construction
of trend-following strategies. Specifically, we use the
encoder part of the Transformer model to construct a binary
classification model to predict the sign of an asset’s future
returns. The second application is the multi-period portfolio
optimization problem, particularly volatility forecasting. In
addition, our paper discusses the issues and considerations
when using machine learning models in finance.

Keywords: Machine learning, Transformer model, attention mechanism, seq2seq
architecture, time series forecasting, quantitative asset management, backtesting,
trading strategy, multi-period optimization.

JEL classification: C45, C53, G11.

Acknowledgement

The authors are very grateful to Amina Cherief, Thierry Roncalli and Takaya Sekine for their
helpful comments. The opinions expressed in this research are those of the authors and are not
meant to represent the opinions or official positions of Amundi Asset Management.

About the author

Edmond LEZMI
Edmond Lezmi is the Head of Multi-Asset Quant Portfolio
Strategy at Amundi Institute. He is involved in the
application of machine learning techniques, notably
optimization, Bayesian optimization, graph neural
networks and generative models.
He joined Amundi in 2002. Prior to his current role, he was
Head of Quantitative Research at Amundi Alternative
Investments (2008-2012), a Derivatives and Fund
Structurer at Amundi IS (2005-2008), and Head of Market
Risk (2002-2005). Before joining Amundi, he was Head
of Market Risk at Natixis, and an Exotic FX Derivatives
Quantitative Developer at Société Générale. He started his
working career with Thales in 1987 as a Research Engineer
in signal processing.
Edmond holds an MSc in Stochastic processes from the
University of Orsay.

Jiali XU
Jiali Xu is a Multi-Asset Quant Researcher at Amundi
Institute. In this role, he is involved in developing
investment applications for advanced optimization and
machine learning techniques, and specializes in designing
alternative risk premia strategies.
He joined Amundi in 2018 as a Quantitative Research
Analyst within the Multi-Asset Quantitative Research
team. Prior to that, he was a Quantitative Analyst in the
Risk Analytics and Solutions team at Société Générale
between 2014 and 2018.
Jiali is a graduate from Ecole des Ponts ParisTech and also
holds a Master’s degree in Financial Mathematics from the
University of Paris-Est Marne-la-Vallée.

Time Series Forecasting with Transformer models and Application to Asset Management

1 Introduction

The continuous increase in computer processing power and storage capacity and the explo-
sion of data volumes have led to successful applications of deep learning models in various
fields, such as computer vision, natural language processing, speech recognition, gaming and
robotics. Two of the most famous are AlphaGo developed by DeepMind Technologies, the
first computer program to defeat a world champion in the board game Go in 2016, and the
new internet sensation ChatGPT launched by OpenAI at the end of 2022. This Chatbot
can generate human-like responses to user input in a variety of situations, such as writing
articles, answering questions, or generating lines of code in response to prompts.

Time series analysis has a wide range of applications in many fields, such as engineering,
economics, meteorology, and finance. In particular, time series forecasting is, without a
doubt, one of the most difficult tasks in investing. Due to the rapid growth of financial data,
we have seen a significant increase in the number of studies on time series forecasting of
financial indicators, such as macroeconomic indicators, asset prices, asset returns, and risk
indicators like realized and implied volatility, etc. The traditional statistical models used
to model time series can be divided into two categories: linear time series models, such as
ARIMA models; and nonlinear time series models, like GARCH models. In recent years,
machine learning models have had many potential applications with the ability to enhance
our knowledge of financial markets.

The development of deep learning provides us with powerful tools to create the next
generation of time series prediction models. Deep artificial neural networks, as a way of
learning temporal dynamics in a completely data-driven way, are particularly well adapted
to the challenge of finding complex nonlinear relationships between inputs and outputs.
Initially, recurrent neural networks and their extended LSTM networks were designed to
handle sequential information in time series. Convolutional neural networks were then used
to forecast time series as a result of their success in image analysis tasks. The Transformer
model was subsequently published by Google in 2017 (Vaswani et al., 2017), and it was
designed to use attention mechanisms to handle sequential data in order to address the
sequence learning problem in natural language processing, such as machine translation. In
essence, the Transformer model enables us to convert an input sequence from one domain
into an output sequence from another domain. For example, we can use the Transformer
model to train a robot to translate English sentences into French. By analogy, if we consider
one segment of a time series as a sentence in one language, and the following segment
as a sentence in another language, this multi-step time series forecasting problem is also
a sequence learning problem. Therefore, the Transformer model can be used to address
forecasting in time series analysis. As described in Wen et al. (2022), many variants of the
Transformer model have been successfully applied to time series forecasting tasks, such as
Li et al. (2019) and Zhou et al. (2021).

This paper is organized as follows. We begin with an overview of traditional models used
for time series forecasting, and explain why the seq2seq architecture used in the Transformer
model is suitable for modeling complex relationships in sequence data and for multi-step time
series forecasting. In Section Three, we present the attention mechanism and the details of
each part of a Transformer model. In this section, we also point out the advantages and
applications of Transformer models in time series forecasting. In Section Four, we discuss
the challenges of applying machine learning models in finance and argue that we should
maintain a balance between model complexity, calibration quality and prediction quality. In
Section Five, we show two applications of Transformer models in portfolio management: the
first one is to build a trend-following strategy, and the second one concerns the multi-period
portfolio optimization problem. Finally, Section Six offers some concluding remarks.

7

Time Series Forecasting with Transformer models and Application to Asset Management

2 Multi-step time series forecasting

2.1 Sequence learning problems

We generally define a sequence as a set of symbols of the same type that are arranged in a
particular order, such as a time series or a sentence. These symbols can be numbers, letters,
words, or even events or objects. For example, the order in which we visit web pages is also
a sequence. To the best of our knowledge, sequence learning problems include at least 3
categories as follows:

• Sequence prediction
The objective is to predict a categorical label or a continuous value. For example,
given a financial time series, we often predict the next value of the sequence itself,
which is also known as time series forecasting;

• Sequence generation
The objective is to convert sequences from one domain into sequences from another
domain, such as machine translation, text summarization, chatbots, etc.;

• Sequential decision making
The objective is to make various decisions that are sequential in order to optimize the
whole process, such as optimally playing a card game.

It is worth mentioning that the boundary between the above categories is not strict, which
means that one problem can be classified into different categories. For instance, chatbots
can also be categorized as both a sequence generation problem and a sequential decision
making problem, i.e., the bot must not only generate appropriate answers to the questions,
but also take the context into account in order to give the best answer.

2.2 Traditional methods for multi-step time series forecasting

In the field of economics and finance, we are most exposed to time series consisting of num-
bers ordered in time, and we are mainly concerned with sequence prediction problems, such
as predicting national GDP, forecasting financial market returns and volatility, etc. For a
long time, we have been using traditional statistical models to model time series, such as
autoregressive integrated moving average model (ARIMA), generalized autoregressive con-
ditional heteroskedasticity model (GARCH), etc. With the rapid development of computing
power and the popularity of machine learning over the past few years, more and more ma-
chine learning models, especially deep learning models, are applied to time series forecasting,
such as recurrent neural networks (RNNs), long short-term memory model (LSTM), gated
recurrent unit model (GRU), etc.

Let Xt
1 = {x1, x2, . . . , xt} be a time series of t past values of a dynamic system, where

each xi is a d-dimensional vector, i.e. xi = (x1
i , x

2
i , . . . , x

d
i). The time series forecasting task

at time t is to predict the values Xt+τ
t+1 = {xt+1, xt+2, . . . , xt+τ} at the τ future time steps.

When d = 1, we have an univariate time series forecasting problem and when d > 1, the
problem is multivariate. Furthermore, when τ > 1, we call the task multi-step time series
forecasting and we have two modeling approaches:

• Iterated multi-step forecasting
In this case, our goal is to build a single-step forecaster f that models between t past
values Xt

1 = {x1, x2, . . . , xt} and the next future value xt+1 of the dynamic system:

xt+1 = f
(
Xt

1

)
+ ε

8

Time Series Forecasting with Transformer models and Application to Asset Management

where ε is the error term, often called noise. In the process of prediction, we iteratively
apply this model to obtain multi-step predictions as shown in Figure 1.

x̂t+1 = f (x1, x2, . . . , xt)

x̂t+2 = f (x2, x3, . . . , x̂t+1)

x̂t+3 = f (x3, x4, . . . , x̂t+2)

· · ·
Thus, we only need to build one model f to make multi-step predictions, but the error
will keep accumulating because the prediction at time t + 1 is used as input for the
next time step.

Figure 1: Iterated multi-step forecasting

xt−3 xt−2 xt−1 xt x̂t+1

f

xt−3 xt−2 xt−1 xt x̂t+1 x̂t+2

f

xt−3 xt−2 xt−1 xt x̂t+1 x̂t+2 x̂t+3

f

Source: Amundi Institute.

• Direct multi-step forecasting
Alternatively, we can look for a series of models gi with i = 1, 2, . . . , τ , each modeling
the relationship between t past values Xt

1 = {x1, x2, . . . , xt} and one future value of
the dynamic system. It follows that:

xt+1 = g1

(
Xt

1

)
+ ε1

xt+2 = g2

(
Xt

1

)
+ ε2

· · ·
xt+τ = gτ

(
Xt

1

)
+ ετ

where εi is a series of noises. Furthermore, using the property that neural networks
support multiple outputs, we can replace all single models gi with a model g with more
parameters, which can predict all τ future values at once:

Xt+τ
t = g

(
Xt

1

)
+ ε

The process of prediction is shown in Figure 2. In this case, we directly predict the
values of several time steps without accumulating errors, but we do not model the
relationship between xt+1, xt+2, . . . , xt+τ . In addition, this approach requires training
more models or a model with more parameters.

2.3 Seq2seq models

As mentioned in the previous section, an increasing number of deep learning models have re-
cently been used to process sequential data, the best known of which are RNN and LSTM1.

1The technical details about RNN and LSTM models can be found in Appendix B.1 and B.2

9

Time Series Forecasting with Transformer models and Application to Asset Management

Figure 2: Direct multistep forecasting

xt−3 xt−2 xt−1 xt x̂t+1

g1

xt−3 xt−2 xt−1 xt x̂t+2

g2

xt−3 xt−2 xt−1 xt x̂t+3

g3

Source: Amundi Institute.

However, the structure of classical RNN or LSTM models is not flexible enough and cannot
model very complex relationships in sequence data. In some NLP tasks, such as machine
translation, speech recognition, text summarization and question and answer systems, the
lengths of the input and output sequences are often not the same. In this case, we need an-
other structure of neural networks, namely the sequence-to-sequence model (seq2seq model),
which can solve these problems well. In short, seq2seq models consist of training models
that convert sequences from one domain into sequences from another domain. As shown
in Figure 3, a seq2seq model, which can be considered as a special type of many-to-many
structure, usually has an encoder-decoder structure:

• Encoder: it transforms the input sequence into a single fixed length vector, called
the context vector. This context vector contains all the information that the encoder
can extract from the input, including relationships between different time steps and
within network layers.

• Decoder: it transforms the context vector into the output sequence. Depending on
the objectives and different ways of training, we may have input for the decoder or
not.

Figure 3: The structure of seq2seq model

Encoder Decoder
Context

Encoder
Input

Decoder
Input

Output

Source: Amundi Institute.

Due to the increasing computer performance since 2000, more and more deep learning
models are used to deal with time series forecasting problems, since these problems can be

10

Time Series Forecasting with Transformer models and Application to Asset Management

considered as sequence-to-sequence problems, especially in the case of multi-step time series
forecasting. In practice, the encoder and the decoder can consist of a single or a stack of
RNN layers and LSTM layers.

The encoder will transform an input sequence {x1, . . . , xt} into a d′-dimensional context
vector z = (z1, . . . , zd′) and the decoder will map this sequence of context to an output
sequence {yt+1, . . . , yt+τ}. As we have explained in Section 2.2, two main methods can be
used for multi-step time series forecasting when using traditional models such as ARIMA or
GARCH. Similarly, we can use the encoder-decoder structure in two ways:

• Figure 4a illustrates a simple encoder-decoder structure that corresponds to the direct
multi-step forecasting in Figure 2. In this structure, the context vector z is common
to all outputs {yt+1, . . . , yt+τ}, and there are no other inputs for the decoder.

• Figure 4b illustrates a recursive encoder-decoder structure, which is similar to the iter-
ated multi-step forecasting. The context vector z is used only as input to Decodert+1 to
predict the first output yt+1, then z may be updated before being passed to Decodert+2.
In particular, we may have inputs for the decoder in this structure. If we do not use
the ground truth labels as the input of the decoder during training, we call it free
running technique and if we use them as the correct answer, the approach is called
teacher forcing technique. More technical details about free running and teacher forc-
ing techniques can be found in Appendix B.3.

Figure 4: The illustration of Encoder Decoder

(a) Simple encoder-decoder

Encodert−2 Encodert−1 Encodert

xt−2 xt−1 xt

Decodert+1 Decodert+2 Decodert+3

z z z

Context vector
z = (z1, . . . , zd′)

yt+1 yt+2 yt+3

(b) Recursive encoder-decoder

Encodert−2 Encodert−1 Encodert Decodert+1 Decodert+2 Decodert+3

xt−2 xt−1 xt

z

yt yt+1 yt+2

yt+1 yt+2 yt+3

Source: Amundi Institute.

The use of an encoder-decoder structure with the teacher forcing technique is suitable
for multi-step time series forecasting problems. In this case, we can model the dependence
relationship between predictions while also mitigating forecast error accumulation.

11

Time Series Forecasting with Transformer models and Application to Asset Management

3 Transformer model

In many sequence learning problems, such as machine translation, understanding the context
is crucial. As shown in Example 1, the word “it” refers to different things in these two similar
sentences, depending on the context. In the first sentence, the word “it” refers to the dog,
and in the second sentence, the word “it” means the bone.

Example 1. • The dog didn’t eat the bone because it wasn’t hungry.

• The dog didn’t eat the bone because it smelled bad.

Sometimes the valuable information appears early in the sequence, so it is difficult for the
model to capture it, especially in sequence prediction problems. To address this challenge,
Google introduced the Transformer model in Vaswani et al. (2017), which is an evolution of
the seq2seq model. Transformer models are designed to use attention/self-attention mecha-
nisms to capture patterns and long-term memory in the data, such as dependencies between
words in a paragraph or contextual information in an article. The most significant differ-
ence between the attention mechanism and traditional RNN or LSTM models is that the
attention mechanism focuses directly on specific parts of the sequence rather than treating
them equally according to order, which makes it possible for the model to capture informa-
tion at very early positions in the sequence. As a result, the attention mechanism will help
the model to have a better understanding of the context of the sequence. By analogy, the
“context” is also very important in the financial market, such as serial correlation, volatil-
ity clustering, regime switching, and some significant financial events. This is the driving
force behind our desire to apply a Transformer model to time series forecasting problems in
portfolio management. In this section, we will introduce the different parts of a Transformer
model and their uses and benefits, and in the next section, we will show that the use of
Transformer models can provide computational advantages in some quantitative investment
applications.

3.1 Attention mechanism

When we look at a picture, we are attracted to certain conspicuous parts of the picture and
ignore others, which means that our attention is not equally distributed to all areas of the
picture. As shown in Figure 5, when we first look at the painting, we focus more on the dogs
and cats than on the trees and slides, and, in particular, most people would completely ignore
the plane in the sky. Mathematically speaking, we give different weights to different areas
of the picture: areas with high weights will produce a higher intensity of signals, and these
signals will be received by the brain through the eyes. Thus, the attention mechanism is in
fact a weight distribution system. In practice, we want to mimic this attention mechanism
of our brain in deep learning so that the model can pay more attention to the important
parts of the input data, depending on the context.

3.1.1 Queries, keys and values

Vaswani et al. (2017) introduced an attention mechanism called scaled dot-product attention
in their Transformer models. In their paper, the authors used the query (Q) / key (K) /
value (V) concept that is often found in information retrieval systems: given a query, we
calculate the relevance of the query to the key, and then find the most suitable value based
on the relevance. For instance, when we do online shopping at an e-commerce platform, we
will enter our preferences, such as brand, price, features into the search engine. The site will
then match our preferences to all available products’ basic details and return the one that

12

Time Series Forecasting with Transformer models and Application to Asset Management

(a) Animals in a playground (b) Our attention is drawn to animals

Figure 5: An illustration of the attention mechanism
Source: pixabay.com & Amundi Institute.

best matches our preferences. In this example, the query is our preference, the key is the
basic information of each product and the value is the product. By analogy, the attention
mechanism in Transformer models uses the dot-product2 to calculate the similarity between
the query and the key, and uses a softmax function3 to decide the weights of each element
of values. Higher weights will be assigned to those elements whose corresponding keys are
more relevant to the query.

Dot-product is a simple way to measure the relevance of the query to the key, but this
operation requires that both the query and the key have the same dimension. Let dk denote
the dimension of the query and the key, and dv denote the dimension of the value. Formally,
the attention vector for n queries Q and m key-value pairs (K,V) is calculated as:

Attention(Q,K, V) = softmaxk

(
QK>√
dk

)
V (1)

where Q ∈ Rn×dk , K ∈ Rm×dk , V ∈ Rm×dv and we can notice that the dot products QK>

are scaled down by
√
dk. This is also the origin of the name “scaled dot-product attention”

for Equation (1). We may suppose that Q and K have a mean of 0 and a variance of 1
in each dimension. In this case, the matrix multiplication QK> will have a mean of 0 and
variance of dk in each dimension. So the square root of dk is used to ensure the variance of
QK> is scaled to one, regardless of the value of dk. The consistent variance of the matrix
multiplication facilitates the training process of machine learning models.

In addition, we notice that the dot product between queries Q and keys K, which deter-
mines the attention vector, is a type of kernel function. As explained in Tsai et al. (2019), we
can reformulate Equation (1) via the lens of kernel. For the i-th row of Attention(Q,K, V),

2The dot product of two vectors is equal to the product of their magnitudes and the cosine of the angle
between them. A larger dot product means a smaller angle. Therefore, we may use the dot product to
determine the similarity between two vectors.

3The softmax function is a generalization of the logistic function to multiple dimensions. It converts a
numerical vector into a probability vector, where the probability is proportional to the exponentials of the
numerical value. Given z = (z1, . . . , zd) ∈ Rd, the standard softmax function σ : Rd → Rd is defined by the
formula:

σ(z)i =
ezi∑d

j=1 e
zj

for i = 1, . . . , d

13

Time Series Forecasting with Transformer models and Application to Asset Management

we have:

Attention(Q,K, V)i =

m∑
j=1

exp

(
QiK

>
j√

dk

)
∑m
j′=1 exp

(
QiK>j′√
dk

)Vj
=

m∑
j=1

K
(
Qi,Kj

)∑m
j′=1K

(
Qi,Kj

)Vj
(2)

where Qi, Kj are respectively the i-th row of Q and the j-th row of K, and K (·, ·) :
Rdk × Rdk → R is the kernel function defined as:

K (x, y) = 〈φ (x) , φ (y)〉

where x, y are dk-dimensional inputs, 〈·, ·〉 denotes the inner product and φ (·) is a map from
dk-dimension to another dimension space, usually a higher dimension space. It makes sense
in machine learning to transform the input feature space into a higher dimensional space.
For example, we can project non-linear separable data onto a higher dimension space via a
map φ (·), so as to make it easier to classify the data with a hyperplane, as illustrated in
Figure 6.

Figure 6: An illustration of the benefit of mapping to a higher dimension space

ϕ

Source: Amundi Institute.

However, because it involves operations in higher dimensional spaces, it can be rather
expensive to first compute φ (x) , φ (y), then 〈φ (x) , φ (y)〉 to produce just a scalar value for
K (x, y). The kernel trick is a technique that allows us to determine directly an explicit kernel
function K (x, y) without computing the coordinates of the data in a higher dimensional
space, which means that we compute (x, y) → K (x, y) directly without passing φ(x), φ(y)
and 〈φ (x) , φ (y)〉.

Example 2. Kernel trick for a 2nd-degree polynomial mapping

We assume that x = (x1, x2), y = (y1, y2) and φ (x) =
(
x2

1,
√

2x1x2, x
2
2

)
. Then, we have

〈φ(x), φ(y)〉 = x2
1y

2
1 + 2x1y1x2y2 + x2

2y
2
2 =

(
x>y

)2
. Therefore, in order to simplify the

calculation, we can define K (x, y) =
(
x>y

)2
.

In addition, Equation (3) is a class of linear smoother with kernel smoothing. In the
case of a non-negative kernel function K (·, ·), the attention vector is a weighted average of
all values of V and we can rewrite this equation in the form of the expected value:

Attention(Q,K, V)i =

m∑
j=1

K
(
Qi,Kj

)∑m
j′=1K

(
Qi,Kj

)Vj
= EP(Kj |Qi) (V)

(3)

14

Time Series Forecasting with Transformer models and Application to Asset Management

where P
(
Kj |Qi

)
=

K(Qi,Kj)∑m
j′=1

K(Qi,Kj)
is the conditional probability function determined by

the kernel function K (·, ·). Tsai et al. (2019) demonstrate how these kernel functions help
us understand the Transformer model’s attention mechanism in an unified way. Different
choices for the kernel function imply various Transformers architectures.

3.1.2 Self-attention

There are various attention mechanisms depending on the different definitions of queries,
keys and values. In the Transformer model introduced by Vaswani et al. (2017), the authors
use a self-attention mechanism, which means that the query, key and value come from the
same sequence. Given a multivariate sequence X ∈ Rn×dinput , such as a sentence of length n
converted to a word embedding representation of dimension dinput, we use dmodel to denote
the dimension of the query, key and value and we have:

Q = XWQ

K = XWK

V = XWV

Self-Attention(X) = softmax

XWQ
(
XWK

)>
√
dmodel

XWV (4)

where WQ, WK and WV ∈ Rdinput×dmodel are parameter matrices to learn and have the
same dimension, such that the queries Q, keys K, and values V are all n× dmodel matrices.
We train the model with the aim of learning these parameters WQ, WK and WV that will
transform the input X to queries Q, keys K and values V .

Self-attention is designed to capture the dependencies in the sequence, such as the re-
lationship between each word with each other word in a sentence, which is the focus of
sequence learning. With the help of neural networks, the model will learn the attention dis-
tribution of each element relative to the other elements in the same sequence. As shown in
Example 1, for the word “it”, in the first sentence, more attention weight should be assigned
to the words like“dog” and “hungry”, and in the second sentence, the words such as “bone”,
“smell” and “bad” should have higher attention weight.

According to Vaswani et al. (2017), self-attention has several advantages, such as fewer
parameters and a better ability to capture long-term memory in sequences, which is a key
challenge for many sequence learning problems. In the self-attention mechanism, elements in
a sequence have practically no notion of order, which makes it easier for the model to learn
long-range dependencies. The model will directly learn the attention weight of an element
relative to all other elements, even those that are far away from it.

3.1.3 Multi-head attention

As we have explained in the previous paragraph about the self-attention mechanism, for a
given query, we compare it with all keys K and get different weights for different values V .
The weights can be interpreted as the relevance between the query and each key. Then,
we use these weights to weight the values and average them to obtain an attention score.
Therefore, our task is to learn WQ, WK and WV using neural networks. Once these
parameters are learned, the queries, keys, values are fixed, then the assignment of weights
and the attention score matrix are also fixed. However, we want to increase the flexibility
of the model and be able to understand the information in the sequence from different

15

Time Series Forecasting with Transformer models and Application to Asset Management

aspects. To address this, we will do the scaled dot-product attention process several times
independently to obtain different attention score matrices and then merge them together.
In this case, we refer to each scaled dot product attention as a head and the whole process
is known as the multi-headed attention mechanism.

Let h denote the number of head in the multi-head self-attention mechanism. Given an
input X, we have:

Qi = XWQ
i

Ki = XWK
i for i = 1, · · · , h

Vi = XWV
i

where WQ
i ∈ Rdinput×dhead ,WK

i ∈ Rdinput×dhead ,WV
i ∈ Rdinput×dhead . Then, each head is an

attention score matrix:
headi = Attention (Qi,Ki, Vi)

Then, we concatenate all these attention score matrices:

Self-MultiHead(X) = Concat (head1, . . . ,headh)WO (5)

where WO ∈ Rh·dhead×dmodel is also a learnable parameter for linear transformation.

As the authors state in their paper Vaswani et al. (2017), “multi-head attention allows
the model to jointly attend to information from different representation subspaces at different
position”, which means that the model can use different ways to learn the dependencies in
the sequence, such as capturing both short-term and long-term dependencies. Based on
this design, more complex functions than a simple weighted average can be expressed by a
multi-head attention mechanism. Moreover, it can be used as ensembles and play the role
of aggregation to avoid over-fitting and allows us to perform parallel computing to speed up
the learning process.

3.1.4 Positional encoding

As mentioned in Sections 3.1.2 and 3.1.3, the self-attention and multi-head attention are
permutation-equivariant with respect to its inputs, which means that the result will not
change as we change the order of elements in a sequence, due to the fact that we only do
dot product operations in the attention mechanism. Thus, any element in the sequence
has the same distance from all other elements, so that the model will capture long-term
dependencies more easily. However, for some sequence learning problems, such as machine
translation, we do not want to completely ignore the positional information in sequences.
To address this, we add positional encoding to the input features.

X̃ = X + PE

To the best of our knowledge, there is no state-of-the-art model among many choices
of positional encoding, but some criteria need to be met, such as positional embedding
can reflect the positional relationship of elements of the sequence, the values of elements
of positional encoding should not too large compared to the input features and should be
deterministic, etc. In Vaswani et al. (2017), the authors designed a positional encoding using
sine and cosine functions of different frequencies:

PE =

 pi,2j = sin
(

i

100002j/dinput

)
pi,2j+1 = cos

(
i

100002j/dinput

)
16

Time Series Forecasting with Transformer models and Application to Asset Management

where j = 0, 1, · · · , dinput/2− 1. Gehring et al. (2017) also claims that we can also use the
learned positional encoding, and according to their tests, there is essentially no difference in
the results obtained by these two versions of positional encoding.

Figure 7: The illustration of the positional encoding

0 20 40 60 80
0

10

20

30

40

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Source: Amundi Institute.

Machine learning methods are often unable to deal with text data directly, so it is
necessary to find suitable methods to convert text data into numeric data, which leads to the
concept of word embedding. Mathematically, an embedding is a relatively low-dimensional
space into which a high-dimensional vector may be transformed. The embedding technique
serves as a way of doing feature extraction and dimensionality reduction as well as making
it easier to perform machine learning on large inputs. Therefore, the usage of embedding
techniques is a key success factor for many applications in Deep Learning, such as:

• In the field of computer vision, a convolutional neural network (CNN) uses kernels to
create the image embedding and pull out features like texture and edges from the raw
image.

• Word2Vec (Mikolov et al., 2013), which is a type of word representation that allows
words with similar meaning to have a similar representation, is one of the most used
embedding techniques in natural language processing.

• In graph neural networks, node embedding techniques such as DeepWalk (Perozzi et
al., 2014), Node2vec (Grover and Leskovec, 2016) and graph embedding techniques
like Graph2vec (Narayanan et al., 2017) are frequently employed.

Though widely used in Deep Learning, embedding techniques are less prevalent when
applied to time series because it is difficult to measure how similar the samples are since
alignment is required. One of the embedding techniques often used is the Time2Vec model,
which was first developed by Kazemi et al. (2019). For a raw time series τ , Time2Vec of τ ,
denoted as t2v(τ), is a vector of size k + 1 defined as follows:

t2v(τ)[i] =

{
ωiτ + ϕi, if i = 0

F (ωiτ + ϕi) , if 1 ≤ i ≤ k

where t2v(τ)[i] is the i-th element of t2v(τ), F is a periodic activation function, and ωi and
ϕi are learnable parameters. Therefore, this technique can also be utilized as a learnable
positional encoding in the Transformer model when applied to time series data.

17

Time Series Forecasting with Transformer models and Application to Asset Management

3.2 Model architecture

As explained by Vaswani et al. (2017), the network architecture of a Transformer model
follows a recursive encoder-decoder structure with multi-head attention mechanisms, using
teacher forcing technique for training. It is actually equivalent to the parallelized version of
the recursive encoder decoder as shown in Figure 4b. Therefore, we need to provide inputs
to the encoder and decoder, as shown in Figure 9. If we take a machine translation task as
an example, during the training process, each time the input to the encoder is a complete
English sentence, the input to the decoder will be the corresponding French sentence but
shifted right and the output of the decoder will be the next word in this French sentence,
as shown in Figure 8.

Figure 8: The illustration of the inputs and outputs of the Transformer model

The coffee is free here

The coffee is free here

The coffee is free here

The coffee is free here

The coffee is free here

Encoder Inputs

Le

Le

Le

Le

Le

café

café

café

café

est

est

est

gratuit

gratuit

ici

Decoder Inputs

café

est

gratuit

ici

<end>

Decoder Outputs

Source: Amundi Institute.

3.2.1 Encoder

The task of the encoder is to map an input sequence to a continuous representation called
a “context” vector. In a Transformer model, the encoder part consists of a stack of N
identical encoder blocks, all of which are connected back-to-back (series connection). Thus,
N controls the depth of the network. Obviously, a larger N means a more complex model
and more parameters to learn. Each encoder block, as shown on the left side of Figure 9, is
made up of two parts:

• A multi-head self-attention layer
This layer, as described in Section 3.1.3, measures the relevance of each element in
relation to all other elements in the sequence.

• A fully connected feed-forward network of two layers
The first layer takes ReLU4 as the activation function and the second takes Linear5

activation function, so that :

FFN (x) = ReLU (W1x+ b1)W2 + b2

where W1, b1 and W2, b2 are respectively the weights and bias parameters of two layers.
This fully connected feed-forward network acts as the hidden layers in a classical neural
network.

4Rectified linear unit (ReLU) : f(x) = x+ = max(0, x)
5Linear : f (x) = x

18

Time Series Forecasting with Transformer models and Application to Asset Management

Figure 9: The Transformer model architecture taken from “Attention is All Your Need”
Vaswani et al. (2017)

Encoder Input
Embedding

Decoder Input
Embedding

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head

Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Linear

Softmax

Encoder Inputs Decoder Inputs

Output
Probabilities

N×

N×

Positional
Encoding

Positional
Encoding

Source: Vaswani et al. (2017).

19

Time Series Forecasting with Transformer models and Application to Asset Management

In addition, we apply residual connection and layer normalization to these two compo-
nents, respectively. The residual connection is to solve the degradation problem in deep
learning, as explained in Appendix B.5, while the layer normalization technique is to nor-
malize the statistics of the output of the hidden layers to avoid the vanishing or exploding
gradient problem due to high learning rates. We will find more technical details about the
layer normalization technique in Appendix B.4. Thus, let X denote the input of the decoder,
then we have in each encoder block:

X̃ = X + PE (positional encoding)

X̃ = LayerNorm
(
X̃ + Self-MultiHead(X̃)

)
(multi-head self-attention)

X̃ = LayerNorm

(
X̃ + FFN

(
X̃
))

(feed-forward network)

3.2.2 Decoder

As shown on the right side of Figure 9, the decoder part also consists of a stack of identical
decoder blocks and each decoder block has 3 components:

• A masked multi-head self-attention layer
This layer is similar to the one in the encoder block, and its purpose is also to capture
the relationship between the elements of the decoder sequence input. In the multi-head
attention mechanism, all inputs will be fed together and linear transformations will
be done in each head to capture the connections between data according to different
criteria. It is no problem for the encoder to receive all the inputs at once. In Figure
10a, we illustrate an example of the attention score matrix for the multi-head self-
attention mechanism in the encoder. For the word “free”, it is quite normal to pay
more attention to the word “coffee”, which allows us to understand that “free” in
this sentence means “without cost” and not “no longer restricted”. However, the
Transformer model’s decoder still predicts the output sequence recursively, meaning
that the decoder predicts one element at a time, based on the elements generated so
far. To ensure that future information is not utilized, we must hide the sequence of
upcoming elements during the training process. So, we need to add a padding mask to
the input for the decoder as shown in Figure 10b. We call this process masked forward
looking.

• A multi-head attention layer
This part is still different from the multi-head self-attention layer in the encoder block
and the masked multi-head self-attention layer in the decoder block. In this multi-
head attention layer, the query, the key and the value come from different sources: the
query comes from the previous component in the decoder block and the key and value
are the output of the encoder. In fact, this mechanism is responsible for searching the
relationship between the input of the encoder and the input of the decoder.

• A fully connected feed-forward network of two layers
This part is identical to the one implemented in the encoder block.

We add residual connections and a normalization layer for each component in the decoder
block, just as we did in the encoder block. Thus, let Y be the input of the decoder, then we

20

Time Series Forecasting with Transformer models and Application to Asset Management

Figure 10: Multi-head self-attention in the Transformer model

(a) No masked (Encoder)

The

coffee

is

free

here

The coffee is free here

(b) Masked (Decoder)

Le

café

est

gratuit

ici

Le café est gratuit ici

Source: Amundi Institute.

have in each decoder block:

Ỹ = Y + PE (positional encoding)

Ỹ = LayerNorm
(
Ỹ + Masked Self-MultiHead(Ỹ)

)
(masked multi-head self-attention)

Ỹ = LayerNorm
(
Ỹ + MultiHead(Ỹ , X̃, X̃)

)
(multi-head attention)

Ỹ = LayerNorm

(
Ỹ + FFN

(
Ỹ
))

(feed-forward network)

where X̃ is the output of the encoder as described in Section 3.2.1.

3.3 Advantages of Transformer models

In summary, Transformer models use the seq2seq architecture, and its flexibility allows
us to handle more complex sequence learning problems. Using the attention mechanism,
we can capture the long-term dependencies between the elements in the sequence, and
in particular, using multi-head attention will capture the information in the sequence from
different aspects. Furthermore, in addition to the self-attentive mechanisms we apply for the
encoder and decoder, we use another attention mechanism to capture the relevance between
the encoder and decoder. Since the self-attentive mechanisms do not analyze their inputs
in chronological order, the Transformer model is less likely to suffer from the vanishing or
exploding gradient problem6. Using teacher forcing technique in the training process will also
avoid the accumulation of errors on multi-step prediction problems or sequence generation
problems. In addition, another advantage of Transformer models is their parallelization.
Each head in a Transformer model can capture the relationship of the elements in the input
with all other elements on different standards thanks to the multi-head attention mechanism.
As a comparison, we need to feed the elements into the RNN model one by one in temporal
order, which makes its parallelization impossible.

6More technical details can be found in Appendix B.1

21

Time Series Forecasting with Transformer models and Application to Asset Management

3.4 Applications to time series forecasting

By understanding the principle of the attention mechanism and the seq2seq architecture
of Transformer models, we find that they are very suitable for sequence generation tasks,
where the goal is to convert sequences from one domain into sequences from another domain.
Similarly, we can also apply these advanced machine learning techniques to time series
forecasting, especially multi-period multivariate time series forecasting, as shown in Figure
11. In this type of task, we need to learn not only the temporal relationships in time series to
model how dynamic systems evolve, but also the spatial relationships in multivariate data to
understand how they affect each other. In finance, time series forecasting is a common task
and plays a very important role in analyzing the economy and making business decisions.
Therefore, we will illustrate two financial applications of Transformer models:

• Using only the encoder part to make one-step prediction

As illustrated in Figure 12, if we use only the encoder part of the Transformer model
and connect the encoder output directly to the final layer, the model is similar to
a traditional many-to-one type7 of RNN but employs an self-attention mechanism.
Therefore, we can use this model in one-step prediction problems, as we often do with
recursive models like RNN or LSTM and these recursive models can be completely
replaced by encoders because it allows for more flexible parallelization, more efficient
long-term memory retention, and fewer vanishing or exploding gradient problems. We
can also handle different problems by modifying the activation function in the last layer
of the model, such as classification problems, e.g., predicting the sign of next week’s
return, or dealing with regression problems, e.g., single-step time series forecasting.

• Using the complete Transformer model to make multi-step prediction

As explained in Section 2.2, the one-step prediction model is difficult to apply to multi-
step prediction tasks, whether using the iterative approach shown in Figure 1 or the
direct approach shown in Figure 2. Because of the seq2seq architecture in Transformer
models, we can use these models to handle a multi-step prediction problem.

Figure 11: Inputs and outputs of a Transformer model for time series forecasting

xt−5 xt−4 xt−3 xt−2 xt−1

xt−5 xt−4 xt−3 xt−2 xt−1

xt−5 xt−4 xt−3 xt−2 xt−1

Encoder Inputs

xt

xt

xt

xt+1

xt+1

xt+2

Decoder Inputs

xt+1

xt+2

xt+3

Decoder Outputs

Source: Amundi Institute.

Therefore, in Section 5, we will test Transformer models in two separate situations:
time-series trend-following strategy and multi-period portfolio optimization problem.

• In the case of a trend following strategy, we will use the encoder part of the Transformer
model to predict the sign of an asset’s next week’s return using its short, medium, and

7Figure 21 in Appendix B.1.

22

Time Series Forecasting with Transformer models and Application to Asset Management

Figure 12: One-step prediction model using only the encoder part

Encoder Input
Embedding

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Linear

Sigmoid

Encoder Inputs

Output

N×

Positional
Encoding

Source: Vaswani et al. (2017) & Amundi Institute.

long term trends. In our case, we do not put all these features together to train a
complex model. We borrow the idea of weak learners in ensemble learning, and we
will train many models, each simple and using only one or two features. Finally, we
will aggregate these weak learners to get a strong learner. In Section 4.1, we will
explain our motivation for doing so.

• For the multi-period portfolio optimization problem, we will use the full Transformer
model to make multi-period forecasting of volatility time series and these forecasts
will be used as inputs to portfolio allocation methods, such as the mean variance opti-
mization approach and the risk budgeting approach. We will compare the differences
between single-period optimal portfolios, multi-period optimal portfolios based on his-
torical estimates and multi-period optimal portfolios based on Transformer’s forecasts.

4 Quantitative investment and machine learning

Due to the vast increase in computational power, more and more machine learning models
have been applied to the financial field, enabling us to better understand financial markets.
In the investment field, one of the most difficult and important tasks in portfolio construc-
tion is the forecasting of future returns. We also believe that machine learning models
may bring some computational advantages to quantitative investing, such as the ability to
capture non-linear relationships and time dependence. For instance, Cherief et al. (2022)
have employed tree-based machine learning algorithms to capture nonlinearities and detect
interaction effects among risk factors in the EUR and USD credit space. However, in our
opinion, successful application of a machine learning model requires many conditions to

23

Time Series Forecasting with Transformer models and Application to Asset Management

be met: the data must be clean, the amount of data must also be sufficient, the patterns
present in the data must be persistent, the complexity of the model must be appropriate,
and the quality of the training must also be very good. In practice, we often cannot meet
all the previous conditions due to the differences between financial time series data and
data in other domains, such as text or images. In this case, machine learning models and
training processes must be carefully designed to prioritize conditions that are also important
in quantitative investing, such as diversification. Therefore, we believe that using machine
learning in quantitative investing is a big engineering problem that requires careful attention
at every step of the application process.

4.1 The challenges of applying machine learning in finance

Machine learning models are sometimes perceived as black boxes, which means that the
algorithms give you a result without explaining how they did so. This is a typical situation
when using neural networks for deep learning. Beyond that, we can find at least three other
obstacles when applying machine learning in finance as described in Israel et al. (2020):

Low signal-to-noise ratio Unlike traditional use cases of machine learning techniques
such as image processing or natural language processing, the signal-to-noise ratio in financial
data is very low. In other words, there is too much noise in the data and therefore the system
is not predictable enough. It is worth pointing out that if we consider a classification or
regression problem, noise is present not only in the features but also in the labels. For
example, we can consider the return of an asset to be the sum of the expected return and
the noise. We can easily observe realized returns from market data, but it is very difficult
to know what the real expected return is, especially if the noise is very strong.

Market regime switch The market is constantly evolving, and that’s why the term
“regime switch” is used to describe a change in the interconnections between several compo-
nents of a financial system. As a classic example, we use expansion or recession to describe
different regimes of the economic cycle and bull or bear markets to describe financial market
cycles. In order to train a robust machine learning model, in addition to ensuring that the
training and validation datasets have a similar distribution, we must ensure that future data
also follow the same distribution. Due to the sequential nature of most financial data, these
two points are difficult to achieve. Therefore, if we want to have a machine learning model
that can be adapted to the current regime, the inputs used to train the model should not
include data that is too old.

Not enough data Unlike other industries, the financial sector has fewer big data sce-
narios. The main issue is that all financial data are collected and are stochastic and non-
stationary, making it difficult to produce new data through experimentation that tracks the
temporal dynamics of the financial market. In addition, size limitations come not only from
features but also often from labels, as we prefer to be able to directly predict returns on
financial assets for which there are limited observations. For example, if we have 20-year
daily returns on a financial asset, there are only about 5,000 data points, also distributed
among different market regimes. For some extreme events, the number of occurrences is
much lower, such as the financial crisis, Covid-19, etc. This order of magnitude of data is
insufficient to train a deep learning model relative to its number of parameters, especially
in the multivariate case. Therefore, in addition to the reasons introduced in the previous
paragraph, the volume of the dataset used to train the model is frequently constrained.

24

Time Series Forecasting with Transformer models and Application to Asset Management

4.2 The balance between model complexity, calibration quality and
prediction quality

When we use machine learning techniques in quantitative investing, especially when pre-
dicting the sign or value of asset returns, we tend to feed all features into a complex deep
learning model, hoping to capture the non-linear relationships and complex structures in
financial data. Based on the three problems with machine learning in financial applications
we’ve previously mentioned, it’s easy for us to make two mistakes:

• Since the quality and quantity of data in finance are not as good as in many other fields
where machine learning techniques are used, the accuracy of models will not be high
enough to determine whether a model is good and robust. In particular, the labels we
use for machine learning, such as the positive and negative signs for asset returns, are
very volatile, noisy, and sometimes wrong. Therefore, using these low quality labels
and complex models will result in models that learn nothing or overfit.

• In our experience, we have found that the use of complex deep learning models without
enough data for training will have a tendency to put more emphasis on certain features,
which means that the models tend to overfit. In this case, we will face the problem
of losing diversification, which is one of the most important points in quantitative
investment.

Thus, in cases where we cannot significantly improve the accuracy of the model, the out-
of-sample performance using complex deep learning models with a very large number of
features is often inferior to that of traditional rule-based models, because we similarly lose
the opportunity to take advantage of diversification when trying to capture more complex
relationships in the data. Therefore, we believe we should choose a balance between model
complexity and diversification. Inspired by the concept of weak learners in ensemble learning,
we tend in practice to train many weak models with simple structures and using fewer
features. Then, we build a strong model by weighting the predictions of all models, rather
than just training a complex machine learning model. Also, we choose different kinds of
weak models as we expect them to obtain useful information from different aspects. When
training each kind of weak model, we should use as few parameters/hyperparameters as
possible to avoid overfitting, while using different sets of hyperparameters to obtain more
robust results. Another advantage of using fewer features to train the model is that the
model can be trained well with relatively less data, even with neural network structures.
In this way, our strategy remains diverse and is more robust. We believe that this is a
very important point when applying machine learning in finance, especially for quantitative
investments.

This approach, on top of maintaining the principle of diversification, is consistent with the
Vapinik-Chervonenkis theory, which seeks to provide a statistical explanation for the learning
process. According to Vapnik (2000), when training a machine learning model, we need to
find a balance between model complexity, calibration quality and prediction quality. In the
context of deep learning, model complexity refers to the number of parameters used in the
model, such as the number of layers of the neural network and the number of nodes per layer.
More parameters mean more complex models, which can learn more complex relationships
in the data, but requires more data for model calibration in the training process. Calibration
quality is measured in terms of training error and the complexity of the model and the data
have to match each other to increase the calibration quality. For example, a model that is
too simple cannot capture all the information in the data, and a linear model cannot find the
nonlinear relationships in the training data set, while a model that is too complex requires
a large amount of high-quality data for training, which is usually not possible. Prediction

25

Time Series Forecasting with Transformer models and Application to Asset Management

quality relates to the out-of-sample error of the model, and a complicated model is frequently
prone to overfitting, which can result in large out-of-sample errors.

As explained in Section 4.1, building very complex machine learning models with data
from the financial domain is extremely difficult because the data used to train the models
contains numerous flaws. Therefore, our goal is to sacrifice model complexity to obtain
better calibration and prediction quality, which means less difficulty fitting the model with
the financial data and less out-of-sample error. We believe this is a very suitable solution
for the application of machine learning in quantitative investing, where the quality and
quantity of data are relatively lower than in industry and we cannot find a definitive law to
describe exhaustively the action in the market. The sacrifice of model complexity will be
compensated by the diversification of quantitative investments. Therefore, when we want to
apply a traditional machine learning model or a deep learning model to predict the future
return of an asset, we prefer to use low-complexity models with simple structures and fewer
features, such as a Transformer model, which has little depth in its encoder and decoder
parts, and uses two or three features for inputs. In this case, deep learning models are still
used in order to take advantage of their ability to handle time series and capture long-term
memory in the data, rather than use their ability to fit complex nonlinear relationships with
very deep structures.

5 Empirical results

5.1 Trend-following investing

Often considered as one of the most straightforward strategies, time-series trend-following
strategies consists of taking long positions on assets with positive excess returns over a
specified lookback period and taking short positions on assets as their trend declines with
the expectation that the price movement is expected to continue. Typically, we consider
using 1-month, 3-month and 12-month look-back periods to capture short-, medium- and
long-term trends. The strategy is typically implemented through a set of liquid futures
such as commodity futures, equity futures, currency forwards and government bond futures.
Among the many research papers on trend-following strategies, Lempérière et al. (2014)
backtested this strategy over a two-hundred-year time frame and identified patterns that
existed across asset classes and various study periods.

In our test, we consider a classic time-series trend-following strategy, as described in
Chapter 12 of the book of Pedersen (2015). In his book, the author shows the backtest of a
time series trend following strategy from January 1985 to June 2012, using 24 commodity
futures, 9 equity index futures, 13 bond futures and 12 currency forwards8, with the following
formula to determine the size of the asset allocation for each rebalancing date t:

wi,mt+1 = sign (excess return of asset i over past m months)
σ?

σit

8Commodity futures: Aluminum, Brent Oil, Cattle, Cocoa, Coffee, Copper, Corn, Cotton, Crude Oil,
Gas Oil, Gold, Heating Oil, Hogs, Natural Gas, Nickel, Platinum, Silver, Soybeans, Soy Meal, Soy Oil,
Sugar, Gasoline, Wheat, Zinc;
Currency forwards: AUD-NZD, AUD-USD, EUR-JPY, EUR-NOK, EUR-SEK, EUR-CHF, EUR-GBP,
AUD-JPY, GBP-USD, EUR-USD, USD-CAD, USD-JPY;
Equity index future: Australia, Germany, Spain, France, Italy, Japan, UK, US;
Bond futures: 3 Yr Australian Bond, 10 Yr Australian Bond, 2 Yr Euro - Schatz, 5 Yr Euro - Bobl, 10 Yr
Euro - Bund, 30 Yr Euro - Buxl, 10 Yr CGB, 10 Yr JGB, 10 Yr Long Gilt, 2 Yr US Treasury Note, 5 Yr US
Treasury Note, 10 Yr US Treasury Note, 30 Yr US Treasury Bond.

26

Time Series Forecasting with Transformer models and Application to Asset Management

where σit is the ex-ante annualized volatility for each instrument, estimated using an ex-
ponentially weighted average and σ? is a chosen annualized volatility target. This scaling
of volatility is designed to normalize the different levels of volatility across assets and time
to ensure that each asset has a similar risk contribution to the overall portfolio. Based
on the backtest results, the author argued that these single-asset trend-following strategies
provide positive performance in almost every case, i.e., a combination of assets and the
backward-looking window used to measure the trend, and emphasized that the benefits of
diversification are significant due to the low pairwise correlation between these strategies.

We follow the same framework to build a baseline time series trend following strategy
as a benchmark and test some machine learning methods to try to improve the strategy.
To eliminate the bias caused by commodity price increases since the COVID-19 and the
Russia-Ukraine war, our dataset includes five futures contracts on global equity indices such
as the S&P 500, Eurostoxx 50, etc., as well as five futures contracts on 10-year sovereign
bonds such as those of the US, Germany, Australia, Canada, and the UK. Their descriptive
statistics of performance and risk are given in Table 4 in Appendix A.

We consider a classification to predict the sign of each asset’s excess return for next
week, using the different models, such as logistic regression, support vector machine and
the encoder with the attention mechanism. As explained in Section 4.1, for each model, we
train weak learners with one or two features and aggregate the results of all weak learners to
build a strong learner. To avoid selection bias, we calculate the short-, medium-, long-term
trend of the asset with 5 classical lookback windows (1-month, 2-month, 3-month, 6-month,
12-month), using the following formulas:

TSMOMi,m
t =

1

m

t∑
s=t−m+1

r̃is, r̃is =
σ?

σis
ris

where m is the number of days in the lookback window, rit is the return of asset i at t, σit is
the maximum of the estimated annualized volatilities using 5 lookback windows (1-month,
2-month, 3-month, 6-month, 12-month) as the ex-ante volatility and σ? is the annualized
volatility target. This operation is designed to normalize the different levels of volatility of
the assets, then we can use an equal weight approach to construct the portfolio:

wi,mt+1 =

 1 if TSMOMi,m
t > 0

−1 if TSMOMi,m
t < 0

The realized gain of the strategy with a m-day lookback window for t+ 1 is then calculated
as:

Rmt+1 =
1

N

N∑
i=1

wi,mt+1 × r̃it+1

where N is the number of assets in the portfolio.

Binary classification In a binary classification problem, we have (x1, y1) , . . . , (xn, yn)
that are n observations of (X,Y), where xi = (xi1, . . . , xid) ∈ Rd is called the feature and
yi ∈ {0, 1} is called the label. We denote the joint probability distribution of (X,Y) by
P (X,Y) and we assume that X and Y have some linear or nonlinear relationship between
them and that we can use a classifier function f : Rd → {0, 1} to describe this relationship

Y = f(X). The goal of using machine learning models is to find a classifier function f̂ to
approximate f in order to predict Y for a given X, such as

Y = f̂(X) + ε

27

Time Series Forecasting with Transformer models and Application to Asset Management

where ε denotes the noise. Training a model means calibrating the function f̂ with a dataset
of n observations to minimize noise.

To fairly compare the performance of strategies using machine learning models with
that of the benchmark strategy, the features used to train the model are the same in-
puts used by the benchmark strategy, such as the short-, medium-, long-term trend of
the asset with 5 classical lookback windows (1-month, 2-month, 3-month, 6-month, 12-
month). In this case, we make sure that the machine learning model-based strategy and
the benchmark strategy use the same level of information in the data, and we want to
know if the machine learning model-based strategies can have some computational advan-
tage, that is, they can capture more useful information in the data. As explained in Sec-
tion 4.1, we prefer to train a few simple machine learning models for each asset rather
than a complex cross-asset model with all assets at once. Thus, for each asset i, we have

xit =
(

TSMOMi,1m
t ,TSMOMi,2m

t ,TSMOMi,3m
t ,TSMOMi,6m

t ,TSMOMi,12m
t

)
as the feature

to train the model.

As for the labels to be used in the model, we choose to predict the sign of the next week’s
excess return for each asset, in order to strike a balance between the number and quality
of the labels. The daily returns are too volatile and noisy to predict, while forecasting the
monthly returns would significantly reduce the size of the training set. In this research, we
compare the results of several models, including Logistic regression, SVM, and Encoder with
the multi-head attention mechanism. For the portfolio construction, we show in this paper
the result of using an equal weight approach as used in benchmark strategy:

wi,mt+1 =

 1 if f̂
(
xit
)
> 0

−1 if f̂
(
xit
)
< 0

where f̂ denotes the machine learning model to test in this paper, such as f̂LR, f̂SVM,
f̂Encoder.

The purpose of this backtest is to illustrate the importance of the trade-off between
model complexity and diversification when applying machine learning models to quantitative
investing and to test if machine learning models could capture more information in the data.
Different models are used to capture the information from different aspects of the data:

• The baseline strategy is equivalent to a linear classifier trained on only one feature,
e.g., 12-month momentum, with the threshold set to 09.

• The logistic regression is also to build a linear classifier trained on only one feature,
but the thresholds are learned from the data.

• To capture the nonlinear relationships in the data using the RBF kernel (Radial basis
function kernel) used in SVM, we train a model using two features at a time, say
1-month and 12-month momentum. We believe that it is better to train many weak
learners using one combination of features at once than to train one strong learner
directly with all features together, which means that we have to train C2

5 = 10 models
when we have 5 features.

• We also trained the encoder with the multi-head attention mechanism to capture
information in the time series dimension. The features used to calibrate the models
are still trends using 5 different lookback windows, but these features are fed into the

9When the 12-month momenum is greater than 0, we will go long the asset and when it is below 0, we
will go short the asset.

28

Time Series Forecasting with Transformer models and Application to Asset Management

models as time series. We will apply the same idea as before, training many weak
learners to build a strong learner, so each model is also trained with two features, even
though in our case we are using a deep learning model.

For each case, if we need to choose hyperparameters for the model, we will choose a set
of hyperparameters instead of one and average the prediction results for all models using
different hyperparameters. For example, we need to choose a hyperparameter C for the SVM
model, which serves as the importance of misclassification and the choice of hyperparameters
is always abstract and often leads to selection bias. That is why we choose different values
of C in our case, such as C = 0.5, 1, 2, in order to obtain a robust result.

For our encoder with multi-head attention mechanism, we used a simple structure of 2
encoder blocks, which means that N = 2 as shown in Figure 12. Since our design is to
train models using only a small number of features as input, this linear layer does not need
to have too many nodes. In our case, the number of nodes in the linear layer is set to
8. Then, for the same reason, the number of heads is set to 4 and the number of node in
feed forward network is also set to 4. To accelerate the training process, we used an early
stopping method.

For the backtesting framework setup, we use a weekly rebalance and the transaction
cost on the futures was set to 2bps. We recalibrate our machine learning models every
3 months with observed data from the last 3 years. Due to random effects in the model
training process, we trained several models on the same training dataset at each recalibration
date and then averaged the prediction results of all models. As explained and emphasized
throughout this paper, our goal is to train many weak learners and the structure of each
model is simple; the risk of overfitting for each model is relatively low. This is an important
advantage when we try to apply machine learning in finance, because there is a notion of
time in financial data, and very often the data in the training set and the data in the test
set do not follow the same distribution, which leads to huge out-of-sample errors by using
too complex models.

Backtest results In Figure 13, we have reported the cumulative performance of the
benchmark strategy and all strategies that use the machine learning model. Moreover,
the descriptive statistics of performance and risk are given in Table 1.

Figure 13: Cumulative performance of all strategies

2008
2010

2012
2014

2016
2018

2020
2022

80

100

120

140

160

180
Logistic Regression

SVM

Encoder (2 features)

Benchmark

Source: Authors’ calculations.

29

Time Series Forecasting with Transformer models and Application to Asset Management

Table 1: Performance of different strategies

µ σ SR MDD ξ

Logistic Regression 2.37% 6.25% 0.38 -17.23% 2.76

SVM 2.68% 6.22% 0.43 -15.98% 2.57

Encoder (2 features) 3.30% 6.30% 0.52 -17.59% 2.79

Benchmark 2.47% 5.72% 0.43 -13.12% 2.29

Source: Authors’ calculations.

µ is the annualized return, σ is the annualized volatility, SR is the Sharpe ratio10, MDD is
the maximum drawdown and ξ is the skew measure, which is the ratio between the maximum
drawdown and the volatility11.

From Figure 13 and Table 1, we notice that all strategies using machine learning models
perform very differently relative to the benchmark strategy. Logistic regression and SVM
models have Sharpe ratios comparable to the benchmark strategy, and the encoder with
the multi-head attention mechanism outperforms all other models. All strategies have the
same level of volatility and maximum drawdown, especially the skew which is the ratio of
the maximum drawdown to the volatility. Our three machine learning models have different
levels of model complexity and use different numbers of features to train. In this regard,
the more complex the model, the more likely it is to capture the useful information in the
data. However, as we have discussed in Section 4.1, the evolution of financial markets is
continuous, and machine learning models trained on historical data may not be applicable
in the current environment. We have observed this in our backtest: all machine learning
models struggled after 2020, a period in which Covid-19, high inflation, interest rate hikes,
high correlations between stocks and bonds, and the Russian-Ukrainian war made financial
markets different than ever before. The more complex the model, the worse our performance
will be in this period because of the large out-of-sample error. This is why the encoder model
declines rapidly after 2021. In this case, the viable option to increase the frequency of model
recalibration and use more recent data in the training process in order to quickly adapt to
actual market conditions. As the backtesting results show, using machine learning models
can capture more useful information in the data to predict future returns, so we can try to
improve the strategy by adding some macro factors to the model.

All these models are designed to capture information about different dimensions of the
data, single feature or double feature, linear or non-linear, time series or static, so we can
aggregate all these models to achieve the advantage of diversification. For this reason, and to
maintain maximum generality, we consider a risk parity approach for portfolio construction.
However, as we saw in the previous section, all our machine learning models are trained
within a rolling 3-year window for each recalibration date. Therefore, all these models
inevitably have some similarities. Thus, we can try to first apply a risk parity approach to
all machine learning strategies to get a new strategy, and then apply another risk parity
approach or an equal-weighted approach to this new strategy and the benchmark strategy.

In Figure 14 and Table 2, we show a comparison between the benchmark strategy and
the new strategy, which combines three machine learning strategies and the benchmark
strategy with a two-level risk parity approach. The combined strategy outperformed the
benchmark strategy with a higher Sharpe ratio and a much lower maximum drawdown. This
result suggests that machine learning models may offer some computational advantages in
quantitative investing. In particular, it confirms the key idea of our strategy design, which

10For the sake of simplicity, the risk-free rate is set to 0.
11If ξ is greater than 3, this indicates that the strategy has a high skewness risk.

30

Time Series Forecasting with Transformer models and Application to Asset Management

Figure 14: Cumulative performance of strategies

2008
2010

2012
2014

2016
2018

2020
2022

100

110

120

130

140

150

160
Benchmark

Combined

Source: Authors’ calculations.

Table 2: Performance of different portfolio construction

µ σ SR MDD ξ

Benchmark 2.47% 5.72% 0.43 -13.12% 2.29

Combined 2.70% 4.45% 0.61 -8.92% 2.00

Source: Authors’ calculations.

is to train many weak machine learning models to build a strong learner, to ensure a balance
between model complexity and maintaining diversification.

5.2 Multi-Period Portfolio Optimization

A natural development of Harry Markowitz’s mean-variance optimization (MVO) model is
multi-period portfolio optimization. The objective is to identify the dynamic asset allocation
strategy by taking into account inter-temporal effects such as rebalancing costs, trading
impacts, time-varying constraints, price trends, etc. In our previous paper (Lezmi et al.,
2022), we proposed several efficient numerical algorithms to solve the multi-period portfolio
alignment problem defined by Le Guenedal and Roncalli (2022, pages 36-37), including
augmented quadratic programming, cyclical coordinate descent and alternating direction
method of multipliers. These advanced algorithms are explained in great detail in the
survey of Perrin and Roncalli (2020) in the context of portfolio optimization, e.g., risk parity
portfolios, strategic asset allocation, smart beta portfolios, minimum-variance strategies,
regularized allocation problems and turnover management.

Let us consider a universe of n assets. We define the following h-period optimization
problem:

x? = arg max
xt+1, xt+2,...

E
[
U (xt+1, . . . , xt+h) | Ft

]
(6)

s.t. x ∈ Ω

where xt =
(
x1,t, . . . , xn,t

)
is the vector of the portfolio weights at the tth period, x =

(xt+1, xt+2, . . . , xt+h) is the vector of the h allocations, U (xt+1, . . . , xt+h) is the inter-
temporal utility function, Ft is the filtration associated with the probability space, and
x ∈ Ω is a set of linear and non-linear constraints. As explained in Lezmi et al. (2022), we

31

Time Series Forecasting with Transformer models and Application to Asset Management

are only interested in x?t+1 in the solution x? =
(
x?t+1, x

?
t+2, . . . , x

?
t+h

)
of Problem (6). Since

the filtration at time t + 1 will be updated, the optimal solution x?t+2 founded at time t is
no longer valid. The right formulation of Problem (6) is then:

x?t+1 = arg max
x

f (x) (7)

s.t. x ∈ Ω

In particular, we consider a mean-variance optimization with ridge penalization in our exper-
iment to illustrate the application of Transformer models. Therefore, Problem (6) becomes:

x?t+1 = arg min
x

t+h∑
s=t+1

{
1

2
x>s Σsxs − γx>s µs

}
+
λs
2
‖xs − xs−1‖22 (8)

s.t. x ∈ Ω

where xt is the current portfolio weight, γ is a coefficient that controls the trade-off between
the portfolio’s expected return and its volatility and λs is the penalty coefficient for turnover.

However, multi-period portfolio optimization models are rarely used in practice. One
reason is that it can be quite challenging to accurately estimate the return/risk for multiple
periods or even just one period. In the framework of the MVO model, we need to estimate
the expected return vector µ and variance-covariance (VCV) matrix Σ of the assets in a
portfolio. In addition, the VCV matrix can be split into a volatility vector and a correlation
matrix. Empirically, the expected return vector is considered the most difficult to estimate
of these three inputs to the MVO model, while the correlation matrix is typically regarded as
being more stable than the expected return and volatility. Therefore, volatility forecasting
is an important issue in quantitative research.

As a standard measure of market risk, volatility is widely used in a variety of applica-
tions throughout the financial industry. In particular, all traditional portfolio construction
methods take the volatility of assets as an input to the model, not only in the mean-variance
optimization approach but also in the risk parity/risk budgeting approach. Both methods
are described in Appendix B.6 and B.7. At its core, the volatility forecasting problem can be
viewed as a time series forecasting problem. For a long time, GARCH model and its exten-
sions are the state-of-the-art models. As explained in Section 2.2, we can use these models
iteratively or directly to perform multi-step forecasting. However, both methods have their
shortcomings: the iterative method accumulates prediction errors, while the direct method
fails to model the relationship between predictions. In our study, we will leverage the at-
tention mechanism and the seq2seq architecture in the Transformer model to address these
issues. As we have explained in Section 3, Transformer models are suitable for modeling
complex relationships in sequence data and for multi-step time series forecasting.

In this section, we consider a classical small investment universe and our dataset consists
of 2 futures contracts on equity index S&P 500 and Eurostoxx 50 and 2 futures contracts
on 10Y sovereign bonds of the US and Germany. In our experiments, instead of directly
forecasting the entire VCV matrix using the Transformer model, we forecast the volatility of
each asset separately and then build the VCV matrix using the correlation matrix estimated
from the 1-year historical asset returns. The reason for this is that the Transformer model
is not guaranteed to return a positive semi-definite matrix and multivariate time series
forecasting needs more complex structure in the model and more data to train the model.
Therefore, it’s often more difficult to obtain good results. The phenomenon known as the
“curse of dimensionality” was first introduced by Richard E. Bellman (Bellman, 1961), when

32

Time Series Forecasting with Transformer models and Application to Asset Management

he considered the problem of dynamic programming. In addition, the correlation relationship
is generally considered to be more stable relative to return and volatility. Therefore, we use
the historical correlation matrix and consider that the correlation matrix will not change
during multi-step forecasting.

More precisely, the input to the model is the 1-month rolling volatility time series of assets
and we train a Transformer model for each asset. We train the model with weekly data from
2000 and 2018 and we split the data into training and validation subsets, representing 75%
and 25% of all samples, respectively. We consider rebalancing our portfolio once a month.
Therefore, our objective is to train a forecasting model to predict the volatility of assets in
the coming month at each rebalancing date. One of the benefits of the Transformer model,
as we discussed in Section 3.3, is that it can perform multi-step forecasting. For example, let

σ1-month
t =

√∑t−21
i=t (ri−r̄)2

21−1 denote 1-month realized volatility at date t, where r̄ =
∑t−21

i=t ri
21−1 .

In the case of forecasting the time series of 1-month rolling volatility {σ1-month
t }t∈T , we can

train a Transformer model with weekly data {. . . , σ1-month
t−2w , σ1-month

t−1w , σ1-month
t } and predict

the next values 4 times, as shown in Figure 15. Therefore, σ̂1-month
t+4w is the forecast of volatility

for the next one month at date t and using the correlation matrix estimated from historical
data, we can build a forward-looking VCV matrix, which will be introduced as input in
different portfolio construction methods. Training the model with weekly data is a trade-off
between the amount of data, the overlap of the data and the number of prediction steps:

• If we train the model with daily data, we will have more data to train the model, but
in forecasting we can only forecast one day at a time. In a typical case, we would
choose to rebalance the portfolio at a monthly frequency, which requires estimating
the forward-looking VCV matrix for the next one month. In this case, we would need
to forecast for 21 consecutive steps and the accumulated error would be huge.

• If we train the model with monthly data, we only need to predict the next one step
immediately after to estimate the future 1-month volatility. However, the amount of
data would be greatly reduced and there would not be enough data to train a deep
learning model.

Figure 15: Using Transformer models to forecast the time series of 1-month rolling volatility

σ1-month
t-3w σ1-month

t-2w σ1-month
t-1w σ1-month

t
σ̂1-month

t+1w

f

σ̂1-month
t+2w

f

σ̂1-month
t+3w

f

σ̂1-month
t+4w

f

rt−21 , . . . , rt−1 , rt

Source: Amundi Institute.

In our experiment, we consider three different portfolio allocation methods:

• Single-period MVO portfolio with monthly rebalancing

• Risk parity portfolio with monthly rebalancing

• Multi-period MVO portfolio with weekly rebalancing as described by Problem (8)

33

Time Series Forecasting with Transformer models and Application to Asset Management

For the sake of simplicity, we will consider the case where there are only no cash and leverage
and no short selling constraints. Therefore, Problem (8) becomes:

x?t+1 = arg min
x

t+h∑
s=t+1

{
1

2
x>s Σ̂sxs − γx>s µ

}
+
λs
2
‖xs − xs−1‖22 (9)

s.t.

{
1>n xs = 1

0n ≤ xs ≤ 1n
for s = t+ 1, . . . , t+ h

In general, we use the historical asset returns and VCV matrix for the past 12 months as
input to these portfolio allocation problems. In our case, we train a Transformer model for
each asset to forecast the volatility for the next 4 time steps (weeks) and the last one will
be the estimation of the future 1-month volatility. We then create a VCV matrix based on
this prediction and the historical correlation matrix, which will be the input to the portfolio
allocation problem described above. We compare the portfolio using empirical estimation
with the portfolio that uses Transformer models for multi-step forecasting.

We show the backtest results in Figures 16, 17 and 18. Given that our testing period co-
incides with an economically challenging period caused by Covid-19 and the Russia-Ukraine
War, and that all three portfolios are long-only portfolios, they all experienced significant
losses in 2022. However, the performance of portfolios that use Transformer models’ fore-
casts as input is superior to that of portfolios using historical estimates. We show descriptive
statistics of all backtest in Table 3. We notice that the portfolios using Transformer models
have a higher Sharpe ratio. Our weekly rebalanced multi-period MVO portfolios performed
better than the single-period MVO portfolios. As Risk Parity portfolios only use estimates
of the VCV matrix as input, we do not include errors in the estimation of returns in the
model, which are typically more difficult to estimate relative to the VCV matrix. As a
result, Risk Parity portfolios outperformed MVO portfolios in this economically challenging
period.

Figure 16: Single-period MVO portfolio

2019−01

2019−07

2020−01

2020−07

2021−01

2021−07

2022−01

2022−07
90

95

100

105

110

115

120

Historical estimate

Forecasting with Transformer

34

Time Series Forecasting with Transformer models and Application to Asset Management

Figure 17: Risk Parity portfolio

2019−01

2019−07

2020−01

2020−07

2021−01

2021−07

2022−01

2022−07
90

95

100

105

110

115

120

Historical estimate

Forecasting with Transformer

Figure 18: Multi-period MVO portfolio

2019−01

2019−07

2020−01

2020−07

2021−01

2021−07

2022−01

2022−07
90

95

100

105

110

115

120

Historical estimate

Forecasting with Transformer

Source: Authors’ calculations.

Table 3: Descriptive statistics of portfolios using different portfolio allocation approaches

µ σ SR MDD ξ

Single-period MVO
Historical estimate -0.99% 5.15% -0.19 -14.63% 2.84

Forecasting with Transformer -0.33% 5.27% -0.06 -14.49% 2.75

Risk Parity
Historical estimate -0.02% 5.72% 0.00 -14.18% 2.48

Forecasting with Transformer 0.66% 5.55% 0.12 -13.93% 2.51

Multi-period MVO
Historical estimate -0.44% 4.91% -0.09 -14.96% 3.05

Forecasting with Transformer 0.11% 5.61% 0.02 -15.48% 2.76

Source: Authors’ calculations.

35

Time Series Forecasting with Transformer models and Application to Asset Management

6 Conclusion and Future research

In this paper, we detail the attention mechanism and the seq2seq architecture used by Trans-
former models, two features that allow them to handle sequence learning problems well. We
explore two applications of Transformer models to time series forecasting in portfolio man-
agement: using only the encoder part of the Transformer model to build a trend-following
strategy and using both the encoder and decoder parts to forecast volatility in a multi-period
portfolio optimization problem. Our results show that the attention mechanism can cap-
ture complex relationships in sequential data and that the Transformer model is a powerful
tool for multi-step time-series forecasting, which is a difficult task for traditional statistical
models, such as ARIMA and GARCH.

We also discuss the challenges of applying machine learning to finance. We believe that
we must confront the differences between finance and other areas where machine learn-
ing techniques have been successfully applied. Since most machine learning models learn
the relationship between inputs and outputs in a completely data-driven way, we need to
maintain a balance between model complexity, calibration quality and prediction quality.
In particular, when we apply machine learning techniques to build quantitative investment
strategies, it’s crucial to make sure the portfolio is well diversified. Otherwise, we will easily
fall into the trap of overfitting and selection bias, which will result in significant differences
between our in-sample and out-of-sample results. As a result, applying machine learning
to finance is challenging and requires sufficient economic/financial knowledge to design a
robust framework.

There are at least two ways to improve our work. First, as we describe in this paper,
the main difficulty when applying machine learning techniques in finance is that the signal-
to-noise ratio in financial data is often weak. Therefore, the next phase of research focuses
on financial data denoising and labeling, which is the key to the successful application of
machine learning techniques in finance. Feature engineering is also important for time series
forecasting, where we can decompose time series into trend, seasonality and noise compo-
nents through pattern decomposition techniques. Using these methods in conjunction with
deep learning models is an interesting research topic. Second, as we described in our work-
ing paper about graph neural networks (Pacreau et al., 2021), the attention mechanism is
also used in the graph attention layer (GAT) to capture underlying relationships among
data dimensions. Therefore, it is natural to try to combine Transformer models and graph
neural networks (GNNs) to manage multivariate and spatio-temporal time series data, such
as traffic forecasting. Some researchers have claimed that this combination of models can
improve performance and provide a better understanding of the causality of data during
spatio-temporal time series forecasting, such as Cai et al. (2020) and Xu et al. (2020). In
the field of finance, the correlation or supply chain relationship between multiple companies
can be regarded as a spatial relationship. Therefore, combining Transformers and GNNs to
model the dynamics of time series and the dependency among dimensions is an important
future avenue for our research. This will open the door to a new field of research into cap-
turing more complex relationships in financial data and improving quantitative investment
strategies.

36

Time Series Forecasting with Transformer models and Application to Asset Management

References

Bellman, R.E. (1961), Adaptive Control Processes, Princeton University Press.

Cai, L., Janowicz, K., Mai, G., Yan, B. and Zhu, R. (2020), Traffic Transformer: Cap-
turing the Continuity and Periodicity of Time Series for Traffic Forecasting, Transactions
in GIS, 24(3), pp. 736-755.

Chaves, D.B., Hsu, J.C. and Shakernia, O. (2012), Efficient Algorithms for Computing
Risk Parity Portfolio Weights, Journal of Investing, 21(3), pp. 150-163.

Cherief, A., Ben Slimane M., Dumas J.-M. and Fredj, H. (2022), Credit Factor Invest-
ing with Machine Learning Techniques, SSRN, https://ssrn.com/abstract=4155247.

Feng, Y. and Palomar, D.P. (2015), SCRIP: Successive Convex Optimization Methods
for Risk Parity Portfolio Design, IEEE Transactions on Signal Processing, 63(19), pp.
5285-5300.

Gehring, J., Auli M., Grangier, D., Yarats, D. and Dauphin, Y.N. (2017), Convolu-
tional Sequence to Sequence Learning, Proceedings of the 34th International Conference
on Machine Learning, PMLR 70, pp. 1243-1252.

Goodfellow, I., Bengio Y. and Courville, A. (2016), Deep Learning, The MIT Press.

Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H. and Schmidhu-
ber, J. (2009), A Novel Connectionist System for Improved Unconstrained Handwriting
Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), pp.
855-868.

Griveau-Billion, T., Richard J.C. and Roncalli, T. (2013), A Fast Al-
gorithm for Computing High-dimensional Risk Parity Portfolios, SSRN,
https://ssrn.com/abstract=2325255.

Grover, A. and Leskovec, J. (2016), node2vec: Scalable Feature Learning for Networks,
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 855-864.

Hastie, T., Tibshirani R. and Friedman, J. (2009), The Elements of Statistical Learning,
Second edition, Springer.

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep Residual Learning for Image Recog-
nition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-
778.

Hochreiter, S., and Schmidhuber, J. (1997), Long Short-Term Memory, Neural Compu-
tation, 9(8), pp. 1735-1780.

Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M., Schmitt, S. and
Silver, D. (2021), Learning and Planning in Complex Action Spaces, In Proceedings of
the 38th International Conference on Machine Learning, PMLR 139.

Israel, R., Kelly, B. and Moskowitza, T. (2020), Can Machines Learn Finance?, Journal
of Investment Management, 18(2), pp. 23-36.

Jagannathan, R., and Ma, T. (2003), Risk Reduction in Large Portfolios: Why Imposing
the Wrong Constraints Helps, Journal of Finance, 58(4), pp. 1651-1684.

37

https://ssrn.com/abstract=4155247

Time Series Forecasting with Transformer models and Application to Asset Management

Kazemi, S.M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J., Thakur, S., Wu,
S., Smyth, C., Poupart, P. and Brubaker, M. (2019), Time2Vec: Learning a Vector
Representation of Time, arXiv preprint, arXiv:1907.05321.

Le Guenedal, T. and Roncalli, T. (2022), Portfolio Construction with Climate Risk
Measures, Climate Investing: New Strategies and Implementation Challenges, edited by
Emmanuel Jurczenko, Wiley, pp. 49-86.

Lempérière, Y., Deremble, C., Seager, P., Potters, M., Bouchaud, J.P. (2014), Two
centuries of trend following, Journal of Investment Strategies, 3(3), pp. 41-61.

Lezmi, E., Roncalli, T. and Xu, J. (2022), Multi-Period Portfolio Optimization and Ap-
plication to Portfolio Decarbonization, SSRN, https://ssrn.com/abstract=4078043.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y. and Yan, X. (2019), Enhanc-
ing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series
Forecasting, In NeurIPS 2019.

Markowitz, H. (1952), Portfolio Selection, Journal of Finance, 7(1), pp. 77-91.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013), Efficient Estimation of Word
Representations in Vector Space, arXiv preprint, arXiv:1301.3781.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y. and Jaiswal,
S. (2017), graph2vec: Learning Distributed Representations of Graphs, arXiv preprint,
arXiv:1707.05005.

Pacreau, G., Lezmi, E. and Xu, J. (2021), Graph Neural Networks for Asset Management,
ResearchGate, https://www.researchgate.net/publication/356634779.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013), On the difficulty of training Recur-
rent Neural Networks, ICML’13: Proceedings of the 30th International Conference on
International Conference on Machine Learning, vol. 28, pp. 1310-1318.

Pedersen, L.H. (2015), Chapter 12 Managed Futures: Trend-Following Investing, Effi-
ciently Inefficient: How Smart Money Invests and Market Prices Are Determined, Prince-
ton University Press, pp. 208-230.

Perrin, S. and Roncalli, T. (2020), Machine Learning Optimization Algorithms & Port-
folio Allocation, in Jurczenko, E. (Ed.), Machine Learning for Asset Management: New
Developments and Financial Applications, Chapter 8, Wiley, pp. 261-328.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014), DeepWalk: Online Learning of Social
Representations, arXiv preprint, arXiv:1403.6652..

Roncalli, T. (2013), Introduction to Risk Parity and Budgeting, Chapman & Hall / CRC
Press.

Tsai, Y.H., Bai, S., Yamada, M., Morency, L.P. and Salakhutdinov, R. (2019), Trans-
former Dissection: An Unified Understanding for Transformer’s Attention via the Lens of
Kernel, In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4344-4353.

Vapnik, V. (2000), The Structure of Statistical Learning Theory, Second edition, Springer.

38

Time Series Forecasting with Transformer models and Application to Asset Management

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L. and Polosukhin, I. (2017), Attention is all you need, NIPS’17: Proceed-
ings of the 31st International Conference on Neural Information Processing Systems.

Xu, M., Dai, W., Liu, C., Gao, X., Lin, W., Qi, G. and Xiong, H. (2020),
Spatial-Temporal Transformer Networks for Traffic Flow Forecasting, arXiv preprint,
arXiv:2001.02908.

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J. and Sun, L. (2022), Trans-
formers in Time Series: A Survey, arXiv preprint, arXiv:2202.07125.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H. and Zhang, W. (2021),
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting, In
AAAI 2021.

39

Time Series Forecasting with Transformer models and Application to Asset Management

A Data

Table 4: Descriptive statistics of equity index futures and 10Y bond futures from 2000 to

2022

µ σ SR MDD ξ

Europe equity index 0.55% 18.37% 0.03 -63.91% 3.48

Hong Kong equity index 2.45% 20.32% 0.12 -58.25% 2.87

Japan equity index 2.94% 19.17% 0.15 -60.98% 3.18

UK equity index 1.39% 13.84% 0.10 -49.56% 3.58

US equity index 4.29% 15.41% 0.28 -58.33% 3.79

Australia 10Y 1.76% 6.35% 0.28 -18.24% 2.87

Cananda 10Y 2.77% 5.49% 0.51 -16.69% 3.04

Germany 10Y 3.33% 5.42% 0.62 -15.12% 2.79

UK 10Y 2.44% 6.06% 0.40 -18.96% 3.13

US 10Y 3.34% 5.73% 0.58 -14.48% 2.53

Source: Authors’ calculations.

where µ is the annualized return, σ is the annualized volatility, SR is the Sharpe ratio,
MDD is the maximum drawdown and ξ is the skew measure, which is the ratio between the
maximum drawdown and the volatility.

40

Time Series Forecasting with Transformer models and Application to Asset Management

B Technical appendix

B.1 Recurrent Neural Network

A recurrent neural network is a class of artificial neural networks with recurrent connec-
tions. This type of neural network has a feedback loop in its structure that allows it to
process sequential data, such as time series, speech and language. For instance, handwriting
recognition was the first research result that successfully uses RNNs (Graves et al., 2009).
A simple recurrent neural network is composed of an input xt, a hidden state ht and an
output yt as shown in Figure 19.

Figure 19: Structure of the RNN model

ht−1 ht ht+1=
unfold

htW

V

U

yt−1

xt−1

yt

xt

yt+1

xt+1

yt

xt

W W W W

U U U

V V V

Source: Amundi Institute.

Figure 20: A typical RNN unit

Tanh

ht−1

xt

ht

ht

yt

Source: Amundi Institute.

A typical RNN unit uses a hyperbolic tangent function as the activation function for the
hidden state ht as shown in Figure 20. More precisely, the RNN unit is governed by the

41

Time Series Forecasting with Transformer models and Application to Asset Management

following equations:

it = Uxt +Wht−1 + bi

ht = tanh (it)

yt = V ht + bo

(10)

where U, V,W, bi, bo are common parameter matrices and vectors shared across time t12.

The hidden state ht acts as the “memory” of the network and depends on the current
input xt and the hidden state at the previous time step ht−1. Similarly, the previous hidden
state ht−1 depends on xt−1 and ht−2, and so on. As a result, the hidden state ht has
indirect access to all previous inputs xt, xt−1, xt−2, It is in this way that RNNs retain
the memory of the past in the data, which allows them to predict very accurately what will
happen next.

Different types of RNNs

Figure 21: Different types of RNNs

ht−1 ht ht+1

xt−1 xt xt+1

yt+1

Many to one

ht−1 ht ht+1

xt−1

yt−1 yt yt+1

One to many

ht−1 ht ht+1

xt−1 xt xt+1

yt−1 yt yt+1

Many to many

Source: Amundi Institute.

Usually, we choose a many-to-one model or a many-to-many model to do time series
forecasting. It is worth noting that the many-to-one model can also be used for multi-step
prediction in the two following ways:

• We can set yt as a vector containing all of the time steps to be predicted.

• During the inference, we can predict one next step yt and use them as the new input
to recursively predict other time steps yt+1, yt+2, To do this, yt should contain all
features of xt, so that we can generate xt+1, xt+2, . . . as next inputs. This approach
leads to the accumulation of errors in the prediction.

Training process of RNNs

The goal of the learning process is to find the best weight matrices U , V and W that give
the best prediction of ŷt, starting from the input xt, xt−1, xt−2, . . ., of the real value yt. Like
in a traditional Feedforward neural network, the loss function is minimized using these two
major steps: forward propagation and backward propagation through time. These steps are
iterated many times, and the number of iterations is called the epoch number.

12This means that once the RNNs are trained, these parameters are fixed for each time step during the
inference process.

42

Time Series Forecasting with Transformer models and Application to Asset Management

The vanishing/exploding gradient problem

RNNs will multiply the parameters in the hidden layers during training by the backward
propagation through time (BPTT) algorithm. If the gradient is too huge, the gradient
explodes and becomes NaN; if the gradient is small, the gradient disappears so that the
model stops learning or takes an excessive amount of time to train, both of which have poor
model performance.

As shown in Equation (10), the hidden states and outputs at each time steps can be
rewritten as:

ht = f (xt, ht−1, U,W, bi)

ot = g (ht, V, bo)

When training the RNN, we need to apply the gradient descent method. Let us denote L
the loss function of the RNN model, then we have:

∂L

∂W
=

T∑
t=1

∂Lt
∂W

where Lt is the loss at the time-step t such as L =
∑T
t=1 Lt. According the Backpropagation

Through Time (BPTT) algorithm,

∂L

∂W
=

T∑
t=1

∂Lt
∂W

where
∂Lt
∂W

=

t∑
k=1

∂Lt
∂ik

∂ik
∂W

∂Lt
∂ik

= δt,k =
∂Lt
∂ik+1

∂ik+1

∂hk

∂hk
∂ik

= δtt,k+1W diag
(
f ′ (ik)

)
Thus,

∂L

∂W
=

T∑
t=1

t∑
k=1

δt,kh
>
k−1

As
δtt,k = δtt,k+1W

> diag
(
f ′ (ik)

)
= δtt,k+2W

> diag
(
f ′ (ik+1)

)
W> diag

(
f ′ (ik)

)
= δt,t

t−1∏
τ=k

W> diag
(
f ′ (iτ)

) (11)

According to Pascanu et al. (2013), Equation (11) takes the form of a product of t − k
matrices which may shrink to zero or explode to infinity. So, this will lead to the vanishing
gradient problem or the exploding gradient problem.

Remark 1. Why do we use “tanh” as the activation function in RNNs?
Among the three commonly used activation functions ReLU, sigmoid, tanh, we choose

tanh as the activation function for RNNs units. ReLU may have very large outputs, so
they may cause the exploding gradient problems. Although both sigmoid and tanh may cause
the vanishing gradient problem, the case of sigmoid is much more severe than tanh’s. In
addition, the gradient calculation cost of tanh is much lower:

tanh′ (x) = 1− tanh2 (x)

43

Time Series Forecasting with Transformer models and Application to Asset Management

The advantages and disadvantages of RNNs

As mentioned in the previous section, RNNs have the following advantages compared to
traditional statistical models for time series forecasting:

• Using neural networks, RNNs can find complex patterns in the input time series.

• Using recurrent connections, RNNs can model sequential data so that each sample can
be assumed to be dependent on previous ones.

• Comparing RNNs with traditional statistical models, they may have better results in
multi-step time series forecasting.

The main issue for RNNs’ training is the vanishing gradient or exploding gradient prob-
lem when training on long time series, which means that the parameters in the hidden layers
either do not change much or they lead to numeric instability. This happens because the
gradient of the cost function includes the power of W , which may shrink to zero or explode
to infinity. Another main issue of RNNs is that they can not remember long memory. Since
the inputs xt are processed recursively by RNNs, xt−m has little effect on yt when m is
large. Therefore, the memory of RNNs is weak and cannot take into account the elements
of the long past. However, it’s very crucial in finance to memorize as much history as pos-
sible in order to predict the next steps. In addition, the computational cost of RNNs is
very high because the training process cannot be parallelized. In summary, all these three
problems indicate that RNNs are weak at handling long time sequences. To address this,
Long Short-Term Memory networks were proposed by Hochreiter and Schmidhuber (1997).

B.2 Long Short Term Memory

Long Short-Term Memory (LSTM) network is an extension of Recurrent Neural Networks
(RNNs) proposed by Hochreiter and Schmidhuber (1997). This network is intended to
address the problem that RNNs have in dealing with long temporal dependencies. A common
LSTM unit has three inputs: the new data xt, the hidden state of the cell at the previous
time step ht−1 and the cell state at the previous time step Ct−1 and is composed of a cell
and three gates: a forget gate ft, an input gate it and an output gate ot as shown in Figure
22. The three gates regulate the flow of information into and out of the cell.

The cell in LSTM units keeps information from its precious state in a hidden vector,
which will be combined with the new data in order to incorporate temporal information.
The particularity of LSTM units is the presence of a so called forget gate, which gives the
unit the ability to forget its previous cell state for some values of the input. This enables
the cell to react to sudden changes in the behaviour of the time series without taking into
account information relating to a previous regime. More precisely, the layer is governed by
the following equations:

ft = σ
(
Ufxt +Wfht−1 + bf

)
(forget gate)

it = σ (Uixt +Wiht−1 + bi) (input gate)

ot = σ (Uoxt +Woht−1 + bo) (output gate)

C̃t = tanh (UCxt +WCht−1 + bC)

Ct = ft � Ct−1 + it � C̃t (cell state)

ht = ot � tanh(Ct)

(12)

44

Time Series Forecasting with Transformer models and Application to Asset Management

Figure 22: Structure of the LSTM model

σ σ Tanh σ

⊙ +

⊙ ⊙

Tanh

Ct−1

ht−1

xt

Ct

ht

ht

ft
it

C̃t

ot

Source: Hochreiter and Schmidhuber (1997) & Amundi Institute.

where � is the Hadamard product of two vectors. Since ft, it, ot are all gate structures to
control the propagation of information, we should use the sigmoid function as the activation
function with a return value between 0 and 1. The hidden layers C̃t and ht always use
the tanh function as the activation function for the same reason as explained in Remark
1. The cell state Ct acts like a long-term memory which can be forgotten if xt and ht−1

reach certain values. This would make the signal ft be equal to zero and thus filter Ct−1

out of the formula. it and ot, called the input and output gates respectively, act in a similar
fashion. The input gate weights the signal C̃t, which is a perceptron layer on the input xt
and hidden state ht−1, whereas the output gate weights the cell state Ct before it becomes
the new hidden state ht. ht is generally not used to compare directly with the true value
yt, but requires a feedforward layer like RNNs, as shown in Figure 19.

• A cell state, that represents the long-term memory of the network and goes through
all hidden layers. We only perform some simple linear operations on it, so the infor-
mation is easy to keep constant.

• A forget gate, that determines how much of the cell state from the previous time
step is retained in the current time step.

• An input gate, that decides how much of the input of the current time step is saved
to the cell state.

• An output gate, that controls how much of the cell state of the current time step is
put into the output value.

The advantages and disadvantages of LSTM

As LSTM network is an extension of RNNs, it retains all the advantages of RNNs. Due to
the existence of a cell state in the LSTM unit, the network has the ability to handle long

45

Time Series Forecasting with Transformer models and Application to Asset Management

time sequences. In addition, we design three gates in LSTM units to regulate the flow of
information into and out of the cell so that the network can maintain a long memory while
also responding to sudden changes in the behaviour of the time series.

Due to the existence of the forget gate, LSTM networks are designed to prevent the
vanishing gradient problem, which means that we can always find such a parameter update
at any time step. However, as in the case of RNNs, the computational cost of LSTMs is also
very high because the training process cannot be parallelized.

B.3 Free running and teacher forcing techniques

For a recursive encoder-decoder model shown in n Figure 4b, there are two basic training
process: Free-running and Tearcher forcing.

• Free running technique means that we feed generated observations into the model as
input at each time step of decoder, as shown in Figure 23a.

• Teacher forcing technique means that we force feed ground truth labels into the model
as input at each time step of decoder, as shown in Figure 23b.

Figure 23: Two ways of training recursive encoder decoder models

(a) Free running technique

Encodert−2 Encodert−1 Encodert Decodert+1 Decodert+2 Decodert+3

xt−2 xt−1 xt yt ŷt+1 ŷt+2

ŷt+1 ŷt+2 ŷt+3

Generated observation

(b) Teacher forcing technique

Encodert−2 Encodert−1 Encodert Decodert+1 Decodert+2 Decodert+3

xt−2 xt−1 xt yt yt+1 yt+2

yt+1 yt+2 yt+3

True observation

Source: Amundi Institute.

It can be seen that teacher forcing technique can prevent the model from being adversely
affected by subsequent learning due to erroneous results from the previous time step, thus
making the model more stable in the learning process and speeding up learning. However,
teacher forcing technique has a drawback : the model is trained with only ground truth
labels, and therefore, during testing, the model sometimes performs poorly if the sequence
generated in the previous time step differs too much from the data used during training.

46

Time Series Forecasting with Transformer models and Application to Asset Management

B.4 Batch normalization and Layer normalization

In deep learning, a learning rate that is too low can cause the model to take a lot of time
to converge, and a learning rate that is too high can lead to the vanishing or exploding
gradient problem. In practice, we may use normalization techniques to increase learning
speed and reduce “Internal Covariate Shift”13. These normalization techniques, such as
Batch normalization and Layer normalization, allow for much higher learning rates without
the risk of divergence.

Batch normalization consists of normalizing the mini-batch input with its mean and
standard deviation. We apply a batch normalization layer as follows for a minibatch B:

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)
2

x̂i =
xi − µB√
σ2
B + ε

yi = γx̂i + β = BNγ,β (xi)

where m is the batch size, γ and β are learnable parameters and ε is a small value.

It is worth mentioning that Batch normalization is performed on a small batch of samples
(mini-batch) rather than all training samples and it is the normalization of each dimension
of samples. Batch normalization is suitable for scenarios where each mini-batch is relatively
large and the data distribution is close to each other, but it is not suitable for RNNs.

Layer normalization is the normalization of all dimensions of a single sample which is
suitable for scenarios like small mini-batch and RNNs. We compute the layer normalization
statistics over all the hidden units in the same layer as follows:

µi =
1

m

m∑
j=1

xij

σ2
i =

1

m

m∑
j=1

(
xij − µi

)2
x̂ij =

xij − µi√
σ2
i + ε

where m denotes the number of hidden units in a layer and ε is a small value.

B.5 Residual Network

Residual Network (ResNet) was designed to address the degradation problem in deep learn-
ing, that is, the problem that increasing the number of layers in a neural network will
sometimes lead to higher training errors. In theory, when we increase the depth of the
network in a deep learning model, we can learn more complex structures from the dataset.
However, we have found in practice that this is often not the case. As explained in He et
al. (2016), if we already have a neural network that performs well in training and validation
datasets, increasing its number of layers is equivalent to using these additional layers to

13This is the problem of Covariate Shift – the model is fed data with a very different distribution than
what it was previously trained with – even though that new data still conforms to the same target function.

47

Time Series Forecasting with Transformer models and Application to Asset Management

learn an identity mapping f (x) = x. The degraded accuracy of the deep learning model
is due to the fact that these additional layers do not learn the identity mapping well. So,
through a very clever design, the authors created a shortcut in the neural network to avoid
this problem, which is the basic idea of ResNet.

Figure 24: The illustration of ResNet

layer ⊕
add

x

Indentity

f(x) + xf(x)

Source: He et al. (2016) & Amundi Institute.

B.6 Mean-variance optimization approach

The single-period mean-variance model introduced by Markowitz in 1952 is one of the most
widely used models in finance. This model used the concept: “the investor does (or should)
consider expected return a desirable thing and variance of return an undesirable thing.” and
can build an efficient portfolio that minimizes the risk for a given level of the expected
return. We consider a universe of n assets and Markowitz (1952) formulated the investor’s
financial problem to build a fully invested portfolio as follows:

w? = arg min
w

σ(w)

s.t.

{
µ(w) ≥ µ?

1>nw = 1

where µ(w) and σ2(w) are respectively the expected return and the variance of the portfolio
and µ? is the desired expected return. We can introduce a risk aversion parameter γ ≥ 0
in order to rewrite the Markowitz problem in the form of a quadratic programming (QP)
problem, which is easier to solve:

w?(γ) = arg min
w

1

2
w>Σw − γw>µ

s.t. 1>nw = 1

where µ and Σ are respectively the expected return vector and the covariance matrix of n
assets. As described in Perrin and Roncalli (2020), in practice, we can introduce additional
constraints in the mean-variance optimization framework to build a more realistic portfolio,
such as no short selling, weight bounds, asset class limits, long/short exposure, etc. The
framework can also be extended to other portfolio allocation problems, such as portfolio
optimization with a benchmark, index sampling, turnover management, etc.

B.7 Risk budgeting approach

The fundamental principle of the risk budgeting (RB) approach is to allocate funds based
on risk, rather than capital, as stated in Roncalli (2013). To achieve this, we introduce the
concept of risk contribution, which is characterized as the contribution of each asset in the
portfolio to the portfolio’s overall risk. The portfolio manager defines a set of risk budgets

48

Time Series Forecasting with Transformer models and Application to Asset Management

and then determines the weights of the portfolio such that the risk contributions are in line
with the budgets.

From a mathematical point of view, a risk budgeting portfolio is defined as follows: RCi (x) = biR (x)
bi > 0, xi ≥ 0 for all i∑n
i=1 bi = 1,

∑n
i=1 xi = 1

(13)

where xi is the allocation of Asset i, R (x) is the risk of the portfolio, which is typically the
volatility of the portfolio, RCi (x) and bi are respectively the risk contribution and the risk
budget of Asset i.

A route to solving Problem (13) is to transform the non-linear system into an optimiza-
tion problem:

x? = arg min

n∑
i=1

(
RCi (x)− biR(x)

)2
s.t. xi ≥ 0, bi ≥ 0 for all i

1>x = 1

1>b = 1

(14)

However, Problem (14) is not a convex problem (Feng and Palomar, 2015), and the op-
timization has some numerical issues, particularly in the high-dimensional case, that is,
when the number of assets is large. Roncalli (2013) shows a different approach to solving
Problem (13) with the help of the logarithmic barrier method and the solution is:

xRB =
y?

1>y?

where y?(c) is the solution of the alternative optimization problem:

y? (c) = arg minR (y)

s.t.

n∑
i=1

bi ln yi ≥ c

yi ≥ 0 for all i

where c is an arbitrary scalar. This problem can be solved by the Newton algorithm (Chaves
et al., 2012) and the Cyclical Coordinate Descent (CCD) algorithm (Griveau-Billion et al.,
2013). In the special case of the equal risk contribution (ERC) portfolio, i.e. the risk budgets
are the same (bi = bj , for all i, j), we have:

y? (λ) = arg minR (y)

s.t.

n∑
i=1

ln yi ≥ c

yi ≥ 0 for all i

Finally,

xERC =
y?

1>y?

This portfolio allocation strategy is also known as the risk parity approach, which is the
main alternative method to the traditional mean-variance portfolio optimization.

49

Chief Editor

Monica DEFEND
Head of Amundi Institute

Editors

Marie BRIERE
Head of Investors Intelligence & Academic Partnership

Thierry RONCALLI
Head of Quant Portfolio Strategy

Find out more about
Amundi Institute Publications

research-center.amundi.com

Important Information

This document is solely for informational purposes.

This document does not constitute an offer to sell, a solicitation of an offer to buy, or a recommendation of any security
or any other product or service. Any securities, products, or services referenced may not be registered for sale with the
relevant authority in your jurisdiction and may not be regulated or supervised by any governmental or similar authority in
your jurisdiction.

Any information contained in this document may only be used for your internal use, may not be reproduced or redisseminated
in any form and may not be used as a basis for or a component of any financial instruments or products or indices.

Furthermore, nothing in this document is intended to provide tax, legal, or investment advice.

Unless otherwise stated, all information contained in this document is from Amundi Asset Management SAS. Diversification
does not guarantee a profit or protect against a loss. This document is provided on an “as is” basis and the user of this
information assumes the entire risk of any use made of this information. Historical data and analysis should not be taken
as an indication or guarantee of any future performance analysis, forecast or prediction. The views expressed regarding
market and economic trends are those of the author and not necessarily Amundi Asset Management SAS and are subject to
change at any time based on market and other conditions, and there can be no assurance that countries, markets or sectors
will perform as expected. These views should not be relied upon as investment advice, a security recommendation, or as an
indication of trading for any Amundi product. Investment involves risks, including market, political, liquidity and currency
risks.

Furthermore, in no event shall any person involved in the production of this document have any liability for any direct,
indirect, special, incidental, punitive, consequential (including, without limitation, lost profits) or any other damages.

Date of first use: 28 February 2023.

Document issued by Amundi Asset Management, “société par actions simplifiée”- SAS with a capital of €1,143,615,555 -
Portfolio manager regulated by the AMF under number GP04000036 – Head office: 91-93 boulevard Pasteur – 75015 Paris
– France – 437 574 452 RCS Paris – www.amundi.com

Photo credit: iStock by Getty Images - monsitj

Working Paper
February 2023

	Time Series Forecasting with Transformer Models and Application to Asset Management.pdf
	Introduction
	Multi-step time series forecasting
	Sequence learning problems
	Traditional methods for multi-step time series forecasting
	Seq2seq models

	Transformer model
	Attention mechanism
	Queries, keys and values
	Self-attention
	Multi-head attention
	Positional encoding

	Model architecture
	Encoder
	Decoder

	Advantages of Transformer models
	Applications to time series forecasting

	Quantitative investment and machine learning
	The challenges of applying machine learning in finance
	The balance between model complexity, calibration quality and prediction quality

	Empirical results
	Trend-following investing
	Multi-Period Portfolio Optimization

	Conclusion and Future research
	Data
	Technical appendix
	Recurrent Neural Network
	Long Short Term Memory
	Free running and teacher forcing techniques
	Batch normalization and Layer normalization
	Residual Network
	Mean-variance optimization approach
	Risk budgeting approach

	Page vierge

