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1 Introduction

The cross-section of options holds great promise for identifying the return distribution and

conditional risk premia, because it contains information on many different states of nature.

The option pricing literature has traditionally relied on dynamic models with latent state

variables to model option prices and risk premia.1 However, there is widespread agreement

in the option valuation literature that relatively complex models with stochastic volatility

and multiple volatility factors as well as jumps and tail factors are needed to explain the

data.2 Moreover, long time series are needed to reliably identify the volatility dynamics

(Broadie, Chernov, and Johannes, 2007) and options with different moneyness and maturity

may be needed to identify various model aspects. Finally, to learn about risk premia and

the structure of the stochastic discount factor, we need to estimate using both returns and

options. Given these requirements and the richness of the available option data, even the

estimation of relatively simple dynamic option valuation models is computationally very

demanding.

Existing studies have addressed these computational challenges in two ways. First, they

reduce the dimension of the option data.3 In the time-series dimension, rather than using

a short time series, often only one day per week is used (e.g., Bates, 2000). In the cross-

sectional dimension, the sample is often restricted to a (small) subset of the available option

1More recently, Jones (2006), Israelov and Kelly (2017), and Buchner and Kelly (2022) use cross-sectional
techniques that are more akin to the factor models used to study the cross-section of stock returns.

2See Bates (2000) for evidence on multiple volatility factors. See Eraker (2004), Broadie, Chernov,
and Johannes (2007), Pan (2002), Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015), Fulop, Li, and Yu (2015),
Andersen, Fusari, and Todorov (2017), and Bates (2012) for evidence on jumps in returns and volatility. See
Andersen, Fusari, and Todorov (2015b) for evidence on a tail factor in option prices.

3Option samples may also be restricted for other reasons. For example, illiquid option contracts should
be excluded from the sample. But regardless of these other reasons, it is well known and appreciated in the
literature that computational constraints often necessitate restricting the sample size. For instance, Broadie,
Chernov, and Johannes (2007, p.1461) state that “computational burdens severely constrain how much and
what type of data can be used”. See also Hurn, Lindsay, and McClelland (2015), Calvet, Fearnley, Fisher,
and Leippold (2015), Israelov and Kelly (2017), and Andersen, Fusari, and Todorov (2015a) for discussions
of computational constraints and cost.
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contracts, for example short-maturity at-the-money options. Second, by treating the latent

states as independent model parameters, one can reduce the model objective function to a

nonlinear least squares problem (Bates, 2000; Christoffersen, Heston, and Jacobs, 2009).4

One major disadvantage of this approach is that the consistency between the physical and

the risk-neutral spot variances is not guaranteed.

This paper is more closely related to studies that sample or filter the latent states, see

for instance Eraker (2004), Johannes, Polson, and Stroud (2009) and Johannes and Polson

(2009b). It is well-known that studies filtering the latent states and using both returns and

options in estimation face a prohibitive computational cost, especially given the fact that the

cross-section of available option data continues to grow. The only known way to somewhat

temper this cost is parallellization through the use of Graphics Processing Units (GPUs), see

for instance Hurn, Lindsay, and McClelland (2015) and Amaya, Bégin, and Gauthier (2022).

The first contribution of this paper is to adapt the estimation problem with filtering of the

latent states to overcome these computational constraints. The advantages of our approach

are independent of the use of additional GPUs. We propose a particle filter that enables

the evaluation of dynamic option models using long time series and larger panels of option

data than currently explored in the literature.5 Particle filtering is subject to significant

computational constraints when assigning weights based on the model option price. We

address this with a novel filtering approach, featuring particle weights based on the quantiles

of the filtered distribution. This innovation enables us to estimate models using large option

panels and returns, which facilitates inference on model parameters characterizing tail events

and risk premia. Our particle filter can be used as a tool in various applications: 1) In

maximum likelihood estimation of dynamic option pricing models as in Bardgett, Gourier,

4An additional computational advantage of this approach is that parts of it can be parallelized. Bates’
approach can be seen as a generalization of the approach of Bakshi, Cao, and Chen (1997), who estimate
different model parameters on every day in the sample, but also estimate the daily spot volatility as a
parameter.

5Our sample includes 123,399 option contracts, compared to 55,396 in Hurn, Lindsay, and McClelland
(2015) and 21,400 in Amaya, Bégin, and Gauthier (2022).
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and Leippold (2019); 2) As part of the two-step iterative procedure in Bates (2000), by

filtering the state variables rather than parameterizing them; 3) For estimation of option

pricing models by sampling from a posterior distribution as in Eraker (2004). We implement

the latter exercise, and we further speed up the estimation by integrating the particle filter

in an orthogonal particle Markov Chain Monte Carlo (MCMC) framework. We conduct a

Monte Carlo experiment to demonstrate that the method is reliable.

Our approach can in principle be applied to any option pricing model with stochastic

volatility.6 While it can therefore be used to estimate models with multiple stochastic volatil-

ity factors, we limit our implementation to models with one volatility factor. Rather than

finding the model with the best possible fit, we want to instead emphasize the role of the

time-series and cross-sectional dimension of the sample. We therefore keep those as large

as possible, while using a model that captures some of the most important features of the

data. Specifically, we implement our estimation method on a well-known class of models,

the Heston (1993) square root and Duffie, Pan, and Singleton (2000) double-jump models.

These models have some well-known shortcomings, but they provide an adequate fit and

are very useful to illustrate the benefits of our approach because they have been extensively

studied in the existing literature.7 We use these existing estimates to highlight how results

may differ when including larger option panels in estimation, and how restricting the sample

can affect inference.8

In our empirical analysis, we use daily data for 1996-2015 and a large benchmark option

sample that is balanced cross-sectionally and over time. The main differences and similarities

6With minor modifications, it can also be applied to the estimation of other dynamic models with latent
state variables.

7Several authors have suggested model improvements such as multiple volatility components, tail factors
and alternative specifications of the jump process such as time-varying jump intensities. Moreover, Bates
(2019) shows that modeling of intraday returns may improve model fit. Andersen, Fusari, and Todorov
(2015b) use estimates of diffusive intraday volatility obtained using high-frequency data and Bandi and
Reno (2016) use high-frequency data to estimate models with jumps in returns and volatility.

8The problems in the literature are illustrated by the fact that even this relatively simple model is typically
not estimated in its full generality using large option panels. Andersen, Fusari, and Todorov (2015a, p.1088)
also note this and proceed using a different approach, which is discussed below.
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between our parameter estimates and those in the available literature are as follows. We

confirm the findings of Broadie, Chernov, and Johannes (2007), Eraker (2004) and Eraker,

Johannes, and Polson (2003) that both jumps in variance and jumps in returns, and co-

jumps in particular, matter. Estimates of the correlation between returns and variance are

more negative than the existing literature, with the notable exception of Andersen, Fusari,

and Todorov (2015a,b, 2020). The estimate of the variance of variance parameter based

on options is smaller than the estimate based on returns, which means that the option-

implied variance path is smoother than the return-implied variance path. Our estimates

of the price of diffusive variance risk are highly statistically significant and smaller than

existing estimates. A related finding is that estimates of variance persistence exceed existing

estimates.

The second contribution of this paper is to relate some of the differences between our

estimates of these models and existing estimates to the composition of the option sample.

We document the implications of restricting the option panels used in estimation, and the

role of the composition of the option sample in general. To the best of our knowledge we

are the first to explicitly explore this topic. The majority of existing studies impose some

restrictions, but the literature does not contain evidence on how these restrictions affect

inference. This complicates comparisons across studies, as well as parameter and model

inference. Note that we are able to investigate this issue because our approach significantly

reduces the computational burden, which allows us to obtain estimates from large option

samples that serve as benchmarks and to compare them with estimates based on smaller

samples.

Broadly speaking, in the face of computational constraints, the sample can be restricted in

three different dimensions. First, one can restrict the length of the time series. This may be

problematic because long time series may be required to reliably identify the dynamics of the

state variables (Broadie, Chernov, and Johannes, 2007). The second and third dimensions
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are the moneyness and maturity dimensions. Many existing studies restrict both, focusing

exclusively on at-the-money short-maturity options. Intuition suggests that these two types

of cross-sectional restrictions will affect different parameters. Presumably different maturities

are needed to identify persistence, while options with different moneyness are required to

identify the parameters characterizing the higher moments. However, the existing literature

does not contain any evidence on this.

We investigate the implications of data restrictions by comparing the results from the

large benchmark sample with those of restricted samples.9 Some of our findings are consistent

with our prior intuition, but others are sharply different. The most important finding is that

maturity restrictions have the most serious implications for parameter estimates and model

fit. For the models we study, maturity restrictions result in very different estimates not

only for variance persistence, but also for kurtosis and risk premia. Somewhat unexpectedly,

restricting the moneyness dimension does not greatly affect the estimates of parameters

characterizing the higher moments, at least in our sample. Finally, and surprisingly, we find

that parameters are relatively similar when estimating on different samples, even when these

samples are much shorter than the benchmark 1996-2015 sample. Based on these findings,

we discuss how data restrictions may have impacted parameter estimates in existing studies.

We also show that the composition of the option sample is critically important for the

relative weighting of returns and options in joint estimation. Some parameter estimates in

the existing literature, such as the correlation between returns and variance, may largely

reflect information from the underlying return series rather than from options, due to the

composition of the option sample.

We conclude that when faced with computational constraints, it is critical to include

options with different maturities in the sample to estimate these workhorse models. Which

maturities to include in the sample, and the optimal sample composition more in general,

9Alternatively these issues can be studied using Monte Carlo simulation. However, even with the com-
putational gains provided by our approach, a large-scale Monte-Carlo experiment is not feasible.
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are questions that we keep for future research. Another limitation of our empirical exercise

is that these results are by design specific to the models, loss function, and sample under

consideration. Specifically, for other models and/or purposes, the maturity dimension may

be far less important and one can exclusively rely on short-maturity options.

Our results are relevant for an extensive literature that estimates parametric dynamic

option valuation models using return and/or option data; see Singleton (2006) for a discussion

of this literature. Several seminal studies combine return and option data using different

econometric techniques, which are all computationally demanding. Aı̈t-Sahalia and Kimmel

(2007) estimate the model using returns and option information using approximate maximum

likelihood, but the information on options is exclusively based on the VIX. Pan (2002) uses

implied-state Generalized Method of Moments (GMM) but uses one short-maturity at-the-

money option per day in estimation. Chernov and Ghysels (2000) use Efficient Method

of Moments (EMM) and use implied volatilities for the closest-to-maturity at-the-money

calls. Eraker (2004) estimates the model in its full generality and samples the state variables

using an MCMC technique. He incorporates cross-sectional information by using on average

approximately three options per day. Despite the enormous advances in computing power

following the publication of these studies, there is still a dearth of studies that estimate

dynamic option pricing models with latent state variables using large cross sections and

long time series. The computational cost is simply too high. The development of methods

to overcome these constraints should therefore be a priority in option valuation and asset

pricing, because such methods will expand our knowledge about option prices and returns

but also more generally about risk premia in the underlying markets.

In a series of papers, Andersen, Fusari, and Todorov (2015a,b, 2017, 2020) and Andersen,

Fusari, Todorov, and Varneskov (2019, 2021) extend the Bates (2000) approach by penalizing

the gap between the spot volatility implied from options and a high-frequency volatility

estimate from returns. The advantage of this approach compared to ours is that the extension
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to multifactor models is relatively more straightforward. The disadvantage is that it does not

explicitly take into account the filtering problem or the parameterization and the historical

dynamics of the return equation. Consequently this approach is not directly informative

about risk premia.10 We therefore regard our approach as complementary, more closely

related to the methods used by Eraker (2004) and Bates (2006, 2019), for instance.

Finally, several other recent papers also address the need to include information from

the entire cross-section of options in estimation and propose computational improvements

that make the resulting estimation problems feasible. Feunou and Okou (2018) propose the

use of option-implied moments to capture the cross-sectional information. Aı̈t-Sahalia, Li,

and Li (2020, 2021) characterize a first order approximation to the impact of multivariate

stochastic volatility models with jumps on the implied volatility surface, which allows for

model identification as well as estimation.

The paper proceeds as follows. Section 2 presents the option valuation model used in our

empirical work and the return and option data used in estimation. Section 3 discusses the

estimation of the model dynamics from returns and options. Section 4 presents the empirical

results and Section 5 discusses the implications of restricting the option sample and the

relative importance of returns and options for parameter estimates. Section 6 concludes.

2 Model and Data

We first discuss the return dynamic and the option valuation formula. Subsequently we

discuss the return and option data.

10The approach also requires a large option panel setting. Andersen, Fusari, and Todorov (2015a) and
Andersen, Fusari, Todorov, and Varneskov (2021) prove consistency of their estimators for fixed and large
time spans. The rate of convergence for the latent factors is

√
N , in which N denotes the number of option

contracts per day.
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2.1 The Model

Our approach can in principle be applied to any parametric option pricing model. To

illustrate the advantages of our approach and the implications of restrictions on the option

sample, we report on models that are well-known and that have been extensively studied.

This allows us to demonstrate that our methods produce reliable estimation results, while

we can also relate differences in estimation results with the existing literature to the (larger)

option data sets used in our analysis. We therefore base our empirical work on the SVCJ

model with contemporaneous jump arrivals in return and variance (Duffie, Pan, and Single-

ton, 2000):

dSt
St

= (rt − δt + ηsVt − λµ̄s)dt+
√
VtdZt + (eJ

s
t − 1)dNt, (1)

dVt = κ(θ − Vt)dt+ σ
√
VtdWt + Jvt dNt, (2)

where St is the index level, rt is the risk-free rate, δt is the dividend yield, κ denotes the

speed of mean reversion, θ is the unconditional mean variance, and σ determines the variance

of variance. dZt and dWt are Brownian motions with corr(dZt, dWt) = ρ, and ηsVt is the

diffusive equity risk premium, which is assumed to be linear in Vt. Nt stands for a Poisson

process with constant jump intensity λ, and Jst and Jvt are the jump size parameters related

to returns and variance, with correlation ρJ . We assume Jvt ∼ Exp(µv) and Jst |Jvt ∼ N(µs +

ρJJ
v
t , σ

2
s). The term λµ̄s is the compensation of the jump component, with µ̄s = e(µs+σ

2
s/2)

1−ρJµv
−1.

We assume that the risk neutral dynamic is given by:

dSt
St

= (rt − δt − λµ̄Qs )dt+
√
VtdZ

Q
t + (eJ

sQ
t − 1)dNQ

t , (3)

dVt = κQ(θQ − Vt)dt+ σ
√
VtdW

Q
t + JvQt dNQ

t , (4)

where we assume that the diffusive variance risk premium is equal to ηvVt, and thus κQ =

8



κ − ηv and θQ = (κθ)/κQ. We assume that the jump risk premia are entirely attributable

to the mean jump sizes of return and variance: ηJs = µs − µQs and ηJv = µv − µQv .11 The

jump intensity λ and the standard deviation of the return jump size σs do not change across

measures. The total equity risk premium is therefore equal to ηsVt + λ(µ̄s − µ̄Qs ).

The SVCJ specification nests several models in the existing literature. See Singleton

(2006) for a detailed discussion. If we set λ = 0, it reduces to the SV model of Heston

(1993). If we shut down the jump in variance, it becomes the SVJR model of Bates (1996).

It also nests a model with variance jumps only (SVJV) if we shut down the jumps in returns.

Note that we do not estimate the more general SVSCJ model studied in Eraker, Johannes,

and Polson (2003) and Pan (2002), which makes the jump intensity a function of variance.

Given the computational burden of estimating the models under consideration using option

data, we leave the study of this model for future work.

The model price of a European call option CM(Vt|Θ) with maturity τ and strike price K

is given by:

CM(Vt|Θ) = e−rtτEQ[max(St+τ −K, 0)]. (5)

In our application, we need to repeatedly calculate prices of options with different spot

variances and the ability to vectorize the formula is important for computational reasons.

We use an approach based on the formula of Carr and Madan (1998) to compute option

prices. Because of the affine structure of the models, quasi closed-form solutions for option

prices are available. See Appendix A for a detailed discussion. We denote the model price

by CM as opposed to the option’s market price C. The model price is computed given the

current state Vt and model parameters Θ(κ, θ, σ, ρ, ηs, ηQ, λ, µJs , σJs , ηJs , µv, ηJv , ρJ , σc).

11We use a simple structure of the jump risk premium because of identification concerns, following Eraker
(2004) and Pan (2002), for example. Broadie, Chernov, and Johannes (2007) investigate more general
entertain assumptions regarding the return jumps risk premium, but they use a very different empirical
design.
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2.2 Return and Option Data

We use S&P500 returns and option prices for the period January 1, 1996 to December

31, 2015, a total of 5031 trading days. The need to use a long sample to identify return

dynamics for option valuation is emphasized by Eraker, Johannes, and Polson (2003), Eraker

(2004) and Broadie, Chernov, and Johannes (2007), for example. We obtain index returns

and risk-free rates from CRSP, and option prices, zero coupon yields, and dividend yields

from OptionMetrics. The top panel of Figure 1 plots the time series of the daily returns.

The financial crisis is readily apparent, and it is characterized by large negative as well as

positive returns. The bottom panel of Figure 1 plots the squared returns. This figure clearly

demonstrates the challenges in modeling the twenty-year sample period. In the financial

crisis the variance spikes up, but mean reverts rather quickly. The same observation applies

to other periods with large variance spikes. Panel A of Table 1 provides descriptive statistics

on the index returns. They exhibit negative skewness and excess kurtosis.

We use both put and call index options and impose the following standard filters on the

option data:

1. Discard options with fewer than 5 days and more than 365 days to maturity.

2. Discard options with implied volatility less than 5% and greater than 150%.

3. Discard options with volume or open interest less than 5 contracts.

4. Discard options with quotes that suggest data errors. We discard options for which the

best bid exceeds the best offer, options with a zero bid price, and options with negative

put-call parity implied price.

5. Discard options with price less than 50 cents.

After imposing these filters, the resulting data set contains 945,110 option contracts. The

sample contains more puts than calls, as expected. Moreover, the option data set obtained

after imposing these filters is not balanced over time. This imbalance is substantial: we have
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almost eight times more options in 2015 than in 1996. In principle, this is not a problem for

our estimation approach, because we can accommodate any type of balanced or unbalanced

option panel. However, the results from a more balanced data set are easier to interpret.

We therefore create a more balanced panel. Put prices are converted into call prices

based on put-call parity. We use a relatively large number of moneyness-maturity bins to

adequately represent the observed daily option surfaces. We use six moneyness bins and five

maturity bins. Moneyness is defined as strike price divided by index price (K/S). For each

moneyness-maturity bin, we include only the most liquid option, defined as the option with

the highest trading volume. The data set thus has thirty options per day unless options are

not available for certain bins. This procedure yields a data set with 123,399 option contracts.

Panel B of Table 1 provides sample sizes for these moneyness-maturity bins. Our analysis

is based on this more balanced data set.12 Panel B of Table 1 also reports average option

prices and implied volatilities for these moneyness-maturity bins.

3 Estimation

Our methodology relies on the particle MCMC framework developed in Andrieu, Doucet,

and Holenstein (2010). This approach reduces the dimensionality of the MCMC algorithm

by using MCMC for parameter inference, while applying the particle filter to filter the latent

states.

We first set up our notation and provide a generic characterization of the estimation

method. Subsequently we discuss the details of our implementation of the particle filter. We

briefly explain how the particle filter can be applied on return data to estimate stochastic

volatility models with jumps. We then highlight the computational problems that arise when

estimating these models from option data and how we address them. Next, we discuss how

12Note that the data are still unbalanced because in the early years of the sample we do not have many
observations for short-maturity out-of-the-money calls and/or in-the-money puts.
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we combine return and option data in estimation. Finally, we use a Monte Carlo study to

illustrate that our method performs well.

3.1 Notation

The implementation of the particle filter depends on the observables: returns, options,

or both. However, conceptually the algorithm is similar. We therefore introduce notation

that can be used regardless of the observables.

We first need to time-discretize the continuous-time model. Several discretization meth-

ods are available and every scheme has certain advantages and drawbacks. We use the

Euler scheme, which is easy to implement and has been found to work well for this type of

applications (Eraker, 2004).13 Applying Ito’s lemma and discretizing (1)-(2) gives:

Rt+1 = ln(
St+1

St
) = rt − δt − Vt/2 + ηsVt − λµ̄s +

√
Vtzt+1 + Jst+1Bt+1, (6)

Vt+1 − Vt = κ(θ − Vt) + σ
√
Vtwt+1 + Jvt+1Bt+1, (7)

where zt+1 and wt+1 are distributed standard normal. The discrete jump frequency Bt+1

follows the Bernoulli distribution. For each time period, there is either no jump or one

jump. The corresponding discretized risk-neutral dynamics are identical but use the risk-

neutral parameters. We implement the discretized model using daily returns, but we report

annualized parameter estimates below.

We assume that observed option prices are equal to the model price plus error:14

Ct,h = CM
t,h(Vt|Θ) + εt,h, (8)

13For alternative simulation schemes, see for instance Broadie and Kaya (2006), Andersen (2007), and
Glasserman and Kim (2011).

14Prices greatly vary in the cross-section of options, as can be seen from Table 1, and loss functions based
on relative prices or implied volatilities may offer different insights (Hurn, Lindsay, and McClelland, 2015).
We plan to address this issue in more detail in future work. However, we repeated our analysis using a sample
of out-of-the money put options, which contains much less price variation, and the parameter estimates are
relatively similar.
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where h = 1, 2, .., Ht and Ht is the total number of options at date t = 1, . . . , T . We assume

εt,h is normally distributed εt,h ∼ N(0, σ2
c ).

15 Note that while the spot variance Vt depends

on past jumps, it is sufficient to compute the model option price at time t.

It is helpful to formulate these dynamics in a state-space representation. Denote Lt+1 as

the latent states that are used to generate the observables Yt+1. Based on the discretization,

Lt+1 = (Vt, Bt+1, J
s
t+1, J

v
t+1) and Yt+1 = ({Ct}, Rt+1) where {Ct} = (Ct,1, ..., Ct,Ht). Note the

timing convention in the notation: Given Rt, we simulate Vt and the cross-section of option

prices {Ct}; and Vt, together with Bt+1 and Jst+1, produces the next period return Rt+1.

Define the measurement density by f1(Yt+1|Lt+1) and the transition density by f2(Lt+1|Lt).

The latent states evolve through the transition density function, while the observables are

realizations conditional on the latent states and the measurement density. The state-space

representation applies regardless of whether we observe returns, options, or both. When

returns are the observables, f1 refers to equation (6); when options are the observables, f1

is given by equation (8).16 For the persistent latent variance Vt, f2 represents equation (7);

for the non-persistent jump variable, f2 is simply a random draw from the corresponding

distribution.

This gives the following state-space representation:

(Lt+1)
f2−→ (Lt+2)

f2−→ (Lt+3)
f2−→ ...

↓ f1 ↓ f1 ↓ f1

Yt+1({Ct}, Rt+1) Yt+2({Ct+1}, Rt+2) Yt+3({Ct+2}, Rt+3) ...

(9)

Although we do not directly observe the latent states Lt+1, Lt+2, ..., we do observe the option

15We also investigated a time-varying σc, but this did not lead to significant improvements in option fit.
16Since the option price depends only on the current spot variance and the risk-neutral expected jumps

rather than the realized jumps, f1({Ct}|Lt+1) reduces to f1({Ct}|Vt), which explains the timing convention
in equation (8).
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prices and/or returns in each period. Equation (9) highlights that the jumps and the spot

variances are latent variables. Similar to Eraker (2004), our estimation procedure thus

accounts for both the measurement and transition densities, unlike the approach pioneered

by Bates (2000), which treats the latent variables as parameters to be estimated.

In the next two sections we discuss the estimation method in general, which can ap-

ply to the case where we observe returns, options, or both. We have two sets of un-

knowns: 1) parameters Θ(κ, θ, σ, ρ, ηs, ηQ, λ, µJs , σJs , ηJs , µv, ηJv , ρJ , σc) and 2) latent states

{Lt+1(Vt, Bt+1, J
s
t+1, J

v
t+1)}. We use an orthogonal MCMC sampler to explore the parameter

space and a particle filter to integrate the latent states.

3.2 Sampling the Parameters via Orthogonal MCMC

We use the Adaptive Metropolis-Hastings MCMC (AMH-MCMC) algorithm within the

orthogonal MCMC framework to explore the parameter space. The AMH-MCMC technique

is originally based on Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and

Hastings (1970) and is widely used in the existing literature due to its flexibility, especially

when dealing with high-dimensional distributions. See Johannes and Polson (2009a) for

a detailed discussion. In general, at the jth iteration, AMH-MCMC randomly samples a

parameter set from a proposal distribution qj(Θ
p
j |Θj−1) and subsequently accepts a new

parameter vector Θp
j with probability:

α(Θp
j ,Θj−1) = min(1,

f(Y1:T |Θp
j)p(Θ

p
j)/qj(Θ

p
j |Θj−1)

f(Y1:T |Θj−1)p(Θj−1)/qj(Θj−1|Θp
j)

), (10)

where f denotes the total likelihood (i.e., in which the latent variables have been integrated

out) and p(Θ) is the prior for Θ, which can be uninformative. We assume flat or diffuse

priors for the model parameters, except for the jump frequency.17

17We found it difficult to distinguish between frequent small return jumps and more infrequent large return
jumps, especially when estimating using returns only. Following Eraker, Johannes, and Polson (2003), we
therefore impose an informative prior on jump frequency to favor infrequent but large return jumps when
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We set the proposal distribution qj(Θ
p
j |Θj−1) to be multivariate normal with mean Θj−1.

Tuning the parameter variances in this proposal distribution is crucial to achieve estimation

efficiency. Roberts and Rosenthal (2009) and Vihola (2012) propose adaptive random walk

schemes, where qj is estimated from previous iterations (Θ1, ...,Θj−1). To initiate the sam-

pler, we start from some pre-specified covariance matrix for the model parameters. Then,

we adjust the covariance matrix at each MCMC iteration to obtain an acceptance rate of

about 30%.18 Note that if qj is set to be a fixed distribution q, this implementation reduces

to the standard MH algorithm.

In short, the idea behind AMH-MCMC is to move to a new parameter set with probability

one if it generates a higher likelihood than the previous parameter set. Note that the

algorithm moves to a new parameter set with a non-zero probability even if the new likelihood

is lower than the previous one.

While the AMH-MCMC sampler is in principle sufficient to estimate the model param-

eters, we increase computational efficiency by using the Orthogonal MCMC (O-MCMC)

sampler of Martino, Elvira, Luengo, Corander, and Louzada (2016). This interacting par-

allel MCMC scheme consists of running Z MCMCs that switch between MV independent

moves and MH interacting steps. The independent moves, or vertical moves, use the AMH-

MCMC. The MH interacting iterations, or horizontal moves, update the current state of each

MCMC using a sample Metropolis-Hastings algorithm (see Table 2 of Martino et al., 2016).

The horizontal moves improve the overall mixing by exchanging information across the dif-

ferent MCMCs. Although the O-MCMC sampler consists of running Z MCMC samplers

in parallel, it effectively implies a single ergodic MCMC algorithm in which the stationary

distribution is the product of Z posterior distributions. Therefore, once the O-MCMC al-

index returns are the observables, as follows: ln λ−0.5
252−λ ∼ N(−6, 1). We use the following diffuse priors:

ln ρ+1
1−ρ ∼ N(−1.5, 0.5), and ln ρJ+1

1−ρJ ∼ N(−0.5, 0.5). The other priors are flat, i.e. the density function is
proportional to 1.

18This acceptance rate lies in the standard optimal rate interval given by [23.4%, 44%, ]. These acceptance
rates lead to an efficient balance between exploring and exploiting the posterior distribution, see e.g. Roberts
and Rosenthal (2001) for more details.
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gorithm has converged, both the horizontal and the vertical moves can be used to obtain Z

draws from the posterior distribution.

We rely on the O-MCMC scheme for two computational reasons. First, we do not know

ex-ante the best way to initialize the AMH-MCMC samplers, so we can choose after some

MCMC iterations which of the methods produce an acceptance rate close to our 30% target.

In our implementation, half of the MCMC algorithms are initialized with the method of

Roberts and Rosenthal (2009) and the other half follows Vihola (2012). Then, during the

burn-in period, after each vertical move we replace the sample method and the current

state of the least performing chain in terms of acceptance rate by the attributes of the

chain exhibiting the closest target acceptance rate. This ensures that the two AMH-MCMC

approaches are competing and that the best method is selected according to its posterior

exploration performance. Second, the O-MCMC allows running Z MCMC in parallel which

leads to large computational gains. In our empirical implementation, we set Z = 10, MV =

10 and MH = 1. In words, every 10th iteration, we update the 10 parallel MCMC chains

using one horizontal move.

3.3 Integrating the Latent Variables Using the Particle Filter

Sampling the parameters Θ requires the total likelihood (see equation (10)). We imple-

ment a standard sampling-importance-resampling (SIR) particle filter at each time t from 1

to T using the following steps:

Step 1. Simulate the particles forward. Using the time t resampled particles Lit, i =

1, . . . , N , where N is the total number of particles, for each particle i simulate L̃it+1 from Lit

according to L̃it+1 = f2(Lt+1|Lit).

Step 2. Compute the weight for each particle and normalize:

ωit+1 = f1(Yt+1|L̃it+1) (11)
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πit+1 = ωit+1/

N∑
j=1

ωjt+1 (12)

Step 3. Resample the particles L̃it+1 according to the normalized weights {πit+1}, which

gives Lit+1, i = 1, . . . , N .

Following Malik and Pitt (2011), the total likelihood required for sampling the parameters

Θ can be expressed as a function of the unnormalized weights.19 For the SIR, this gives:

f1(Y1:T |Θ) =
T∏
t=1

{
1

N

N∑
i=1

ωit+1

}
. (13)

In the SIR algorithm, we can think of the weights πit+1 as constituting a discrete proba-

bility distribution for Lt+1. After resampling, the weight for each particle changes back to

1/N . The SIR is extremely intuitive and simple to implement. However, since new particles

are simulated blindly in step 1, it may lead to the well known sample impoverishment prob-

lem (Johannes, Polson, and Stroud, 2009), especially when N is not very large. Consider

a scenario where we have an extremely large negative return at t + 1. Particles with large

Vt or large negative return jump occurrence will receive large weights, while other particles

will be assigned weights close to zero. As a result, the resampling might consist of repeated

values of these few particles.

Pitt and Shephard (1999) introduce the Auxiliary Particle Filter (APF) to solve this

problem by resampling before propagation.20 In our applications, it turns out that the APF

underperforms compared to the SIR due to a more volatile likelihood function. As discussed

by Liu, Wang, and Ma (2011), the APF performs poorly when the measurement density

f1(Yt+1|Lt+1) is highly informative and the transition density f2(Lt+1|Lt) is diffuse. In such

cases, the APF will first select repeatedly the same few particles in its resampling step,

19Note that the total likelihood is a random variable as it depends on the particle weights. However, Malik
and Pitt (2011) show that the SIR and the APF provide unbiased estimates of the (true) likelihood.

20See Carvalho, Johannes, Lopes, and Polson (2010) for an alternative approach.
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and the propagation step will be highly sensitive to the proposal outliers of the transition

density. Due to the large option panels we use to estimate the models, the measurement

density becomes highly informative and the APF becomes less reliable. We therefore use the

SIR, and we implement it with a large number of particles to ensure good performance.

3.4 The Return Likelihood

As mentioned above, the algorithm can be applied to different sources of information,

which corresponds to different likelihoods f1(Yt+1|Lit+1). First consider estimation based on

returns, where we exclusively use returns as the observables. Using equations (6) and (7)

this gives:

f1(Rt+1|Lit+1) =
1√

2πV i
t

exp

−1

2

[
Rt+1 − (rt − δt − 1

2
V i
t + ηsV

i
t − λµ̄s + J

s(i)
t+1B

i
t+1)
]2

V i
t

,
(14)

Appendix B provides additional details on particle filtering based on returns data. See also

Christoffersen, Jacobs, and Mimouni (2010) for a related implementation on the SV model.

3.5 The Option Likelihood

We now consider the likelihood based on option data only, without considering the un-

derlying returns. The existing literature that estimates option pricing models using large

panels of options deals with latent states such as the spot variance broadly in two ways.

The first approach is to extract the state variables from return data, either by filtering from

daily returns or by calibrating from intra-day data. See for example Andersen, Fusari, and

Todorov (2015a) and Christoffersen, Jacobs, and Mimouni (2010). The other approach is to

treat the spot variance as a parameter to be estimated along with other parameters (Bates,

2000). Both estimation approaches are viable, but the resulting parameter estimates will
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either reflect return-based information or ignore the dynamic of the spot variance. We now

discuss an alternative approach that uses the particle filter to estimate model parameters

exclusively based on option data. We first illustrate the computational challenges inherent

in this exercise, and then we discuss how we alleviate these computational constraints.

3.5.1 Computational Constraints

The instantaneous variance follows the transition equation (7), but now the observables

consist of a cross-section of Ht option prices for each day, denoted by {Ct}. The filtering

problem therefore consists of evaluating the likelihood of observing the market option prices

conditional on the latent states.

Conceptually this filtering procedure is as straightforward as the one using returns; how-

ever, it encounters significant computational constraints. The measurement density now

corresponds to equation (8). Rather than one return for each time period t, we now have (in

our sample) up to thirty option prices available at time t. The likelihood for the ith particle

at time t can be calculated as:

f1(Yt+1|Lit+1) =

(
Ht∏
h=1

f1(Ct,h|CM
t,h(V

i
t |Θ))

)1/Ht

,

=

(
1√

2πσc

)
exp

(
−
∑Ht

h=1(Ct,h − CM
t,h(V

i
t |Θ))2

2σ2
cHt

)
.

(15)

We take the square root of Ht in order to normalize the likelihood with respect to the different

numbers of options on each day.21 The total likelihood for the entire sample, summing over

21In joint estimation based on returns and options, the optimal relative weighting of returns and options
in the likelihood is an important concern, because the abundance of option data may cause the weight of the
returns in the likelihood to become negligible. See for example Bates (2003) for a discussion of this issue.
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all particles, is:

f(Y1:T |Θ) =
T∏
t=1

{
1

N

N∑
i=1

[(
1√

2πσc

)
exp

(
−
∑Ht

h=1(Ct,h − CM
t,h(V

i
t |Θ))2

2σ2
cHt

)]}
. (16)

When computing this likelihood, a quasi closed-form solution for the option price is available

in the affine models we consider, and each option price takes less than 0.01 seconds to eval-

uate. Nonetheless, this computation encounters significant computational constraints. For

each function evaluation we have to evaluate option prices along three dimensions: for each

option, for each particle, and for each day. Our sample period consists of 5031 trading days

and up to 30 options per day. Assuming 10,000 particles (the minimum we use) then leads to

approximately 1,500,000,000 computations of the option price in each function evaluation,

which is computationally infeasible.

3.5.2 The State Variable Quantile Method

Given this computational burden, we propose a more efficient filtering algorithm based

on the quantiles of the state variable(s), which we refer to as the state variable quantile

(SVQ) method. Recall that for the models we consider, the spot variance is sufficient for

option valuation, even in models with jumps. The motivating idea can loosely be thought

of as reducing the three-dimensional option evaluation computation (i.e., N × T ×H) into

a (pseudo) two-dimensional computation (i.e., T × H), where H = 1
T

T∑
t=1

Ht. Specifically,

the particle filter implies the computation of N option prices at each time t and for each

option h ∈ [1, Ht]. The SVQ method reduces this computational burden to Q computations

where Q does not depend on N . To do so, it approximates each option price CM
t,h(V

i
t |Θ) as a

function of the particles using a polynomial regression calibrated on Q option prices.22 For

each option price Ct,h, our approach proceeds as follows.

22 Ferriani and Pastorello (2012) approximate model-implied option prices using flexible parametric models.
Our approach is entirely different as we use the polynomial to approximate the dependence on the state
variable, while relying on closed-form option pricing formulas.
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1. Take Q quantiles {V 1
t , ..., V

Q
t } evenly spaced over the interval [0,100] based on the

predictive filtered spot variance distribution, i.e. Vt|Y1:t−1.

2. Evaluate the option prices {CM
t,h(V

1
t |Θ), ..., CM

t,h(V
Q
t |Θ)}.

3. Minimize the sum of squared pricing errors using a polynomial function of order p:

(β̂1, . . . , β̂p+1) = arg min
(β1,...,βp+1)

Q∑
q=1

(CM
t,h(V

q
t |Θ)− β1 − β2V

q
t − . . .− βp+1(V q

t )p)2. (17)

4. For each particle i ∈ [1, N ], set the option price to:

CM
t,h(V

i
t |Θ) = β̂1 + β̂2V

i
t + . . .+ β̂p+1(V i

t )p. (18)

The implementation of the SVQ method requires a choice regarding the number Q of quan-

tiles and the order p of the polynomial regression. We extensively experimented with these

tuning parameters and we found that the approximation turns out to be extremely good for

any Q > 3p with p ≥ 2. The reason is that we maximize the variance of the spot variance

variable in the polynomial regression by taking the quantiles of the spot variance distribu-

tion, which ensures that we minimize the variance of the polynomial regression estimators.

We set p = 3 and Q = 12 in our empirical implementation. Figure 2 shows that the root

mean squared relative pricing errors for the estimates of the Heston SV model are smaller

than 0.03 over the 1996-2015 sample. To compare the estimates from direct implementation

of the particle filter with the ones obtained using the SVQ method, we estimate the Heston

model on a shorter period and using one option per day. The differences are very small; the

largest difference is 4.9%, for the variance risk premium parameter ηv.

To justify the use of a polynomial regression, denote the derivative of an option price

with respect to the spot variance evaluated at V̄t by
CMt,h(Vt|Θ)

dVt
|Vt=V̄t = C

′
(V̄t). Using a Taylor

approximation of order 3 without loss of generality, an option price can be approximated
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around a spot variance V̄t as follows:

CM
t,h(Vt|Θ) ≈ CM

t,h(V̄t|Θ) + (Vt − V̄t)C
′
(V̄t) +

1

2
(Vt − V̄t)2C

′′
(V̄t) +

1

6
(Vt − V̄t)3C

′′′
(V̄t),

= CM
t,h(V̄t|Θ)− V̄tC

′
(V̄t) +

V̄ 2
t C

′′
(V̄t)

2
− V̄ 3

t C
′′′

(V̄t)

6
+ . . .

[C
′
(V̄t)− V̄tC

′′
(V̄t) +

V̄ 2
t C

′′′
(V̄t)

2
]Vt + [

C
′′
(V̄t)

2
− V̄tC

′′′
(V̄t)

2
]V 2
t +

C
′′′

(V̄t)

6
V 3
t ,

= β1 + β2Vt + β3V
2
t + β4V

3
t .

Consequently, equation (17) can be understood as a Taylor approximation around a spot

variance V̄t that is estimated by minimizing the error terms.

Rather than computing option prices N times, once for each particle, our approach

computes the price Q times. In other words, we largely get rid of one dimension (the number

of particles N) when computing option prices, thus saving more than 99% of computation

time. Note also that while the option prices in equation (18) can be written in terms of

the latent variable Vt, the filtered variance jumps are required in order to obtain the filtered

variance path.

Thanks to this quantile spot variance method, the computational cost of our implementa-

tion of the particle filter is only mildly impacted by the number N of particles. We therefore

use a large number of particles to estimate the models. In our implementation, we use

N = 10, 000 particles for the SV model and N = 40, 000 particles for models with jumps.

Potential concerns with generalizing the quantile method to multiple factors are the

curse of dimensionality and the difficulties with implementing joint quantiles. These issues

can be addressed in several ways. For instance, we can rely on a Particle Gibbs approach

(Andrieu, Doucet, and Holenstein, 2010). Specifically, we can sample each factor conditional

on the others using a conditional particle filter and apply the quantile spot variance method.

Sampling the factors one at a time reduces the mixing of the Markov chain, but it remains
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more efficient compared to a single-move method as in Eraker (2004).23

3.6 The Joint Likelihood

To estimate the models using returns and options, we need to combine the two likelihoods.

This seems straightforward, but it is well known that this may create a problem with the

relative weights of returns and options in the likelihood. On a given day, we have a single

return but a large cross-section of options. The weights affect both the likelihood of a particle

in the filtering step, as well as the total likelihood of a parameter set in the AMH-MCMC.

Recall though that in our option likelihood, we normalize the likelihood with respect to the

number of options on each day. Therefore we effectively give equal weight to options and

returns in the joint likelihood. This allows us to abstract from the size of the cross-section of

options and focus on the composition of the option data. This implementation is somewhat

ad-hoc, but the specification of any joint likelihood of options and returns is not entirely

guided by theory and therefore to some extent ad-hoc.

Using this approach, the resulting total likelihood for each particle on date t can be

expressed as:

f1(Yt+1|Lit+1) = f1(Rt+1|Lit+1)(
Ht∏
h=1

f1(Ct,h|CM
t,h(V

i
t |Θ)))1/Ht , (19)

where the two components can be computed according to equations (14) and (15) respec-

tively. The relative weights are equal in the sense that we constrain the information from

returns to be equally important to the information from options, no matter how many op-

tions we have available on a given day. Given this likelihood function for each particle, the

total likelihood can be calculated following the implementation discussed in Sections 3.4 and

3.5.

23See Kim, Shephard, and Chib (1998) for a comparison of MCMC mixing between single-moves and block
sampling.
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3.7 A Monte Carlo Experiment

In contrast to standard particle filter methods, the quantile spot variance method makes

it possible to estimate the models we consider in this paper with both returns and large

panels of option data. Because of the improvement in computational efficiency, it is also

possible to study the sampling properties of the estimator in a (small-scale) Monte Carlo

exercise.

Table 2 presents the results of the Monte Carlo study. We simulate fifty samples of

return time series and option panels for two parameterizations of the SV model. The length

of the samples is one year and the sample frequency is daily. Column 2 in Table 2 shows the

two sets of parameters. They are chosen based on the empirical results below. The main

difference between them is that the ρ parameters are set at −0.90 and −0.70 respectively, and

we modify the σ to keep the unconditional return kurtosis constant (see Das and Sundaram

(1999) for the model-implied moments). The simulated option samples are similar to the

sample used in the empirical analysis and summarized in Table 1. For a one-year sample,

we thus end up with 6731 options.

Table 2 shows that for both parameterizations, the medians of the parameter estimates

based on the 50 replications are close to the true values, with good precision as indicated

by the first and third quartiles. The estimates of the ρ and σ parameters are slightly biased

downward. The price of risk parameters ηs and ηv are precisely estimated.

4 Empirical Results

Our empirical implementation focuses on joint estimation with returns and option data,

following the approach in Section 3.6.24 Our MCMC setup uses 15,000 iterations. We set

the first one third of the iterations as burn-in, and report the posterior mean and standard

24We occasionally refer to the estimates based on return data in Table A1 in this Section. We discuss
these estimates in more detail in Section 5.
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deviation for each parameter from the subsequent iterations.

We discuss our results on a model-by-model basis. We start with the simplest model, the

Heston (1993) stochastic volatility model (SV). We then discuss the model with return jumps

(SVJR), the model with variance jumps (SVJV), and the model with correlated return and

variance jumps (SVCJ). We compare our results with estimates from the existing literature.

See also Singleton (2006, chapter 15) for a discussion of existing results. Subsequently we

discuss and compare model fit and model-implied higher moments.

4.1 Inference on Stochastic Volatility

The first column of Table 3 presents estimates for the Heston (1993) square root stochastic

volatility (SV) model. These estimates can be compared with the existing literature in Panel

C of Table 4, with the obvious caveat that those estimates are obtained using different option

samples and sample periods.25

To motivate our empirical exercise, consider the summary of existing results in Table 4.

Panel A indicates that a large number of studies report results for the Heston model under

the physical measure based on index return data. However, despite the popularity of this

model and its central place in the literature, relatively few papers present estimates under

the risk-neutral measure based on option data, listed in Panel B, or joint estimates using

both return and option data, listed in Panel C. Many of the studies in Panel C typically

impose constraints due to computational complexity. For example, Aı̈t-Sahalia and Kimmel

(2007) use daily data for 1990-2004, but on every day they only use the index return and

the VIX, which effectively amounts to using one short-maturity at-the-money option every

day. Pan (2002) estimates the model using return and option data for 1989-1996, but the

25To facilitate comparisons, the estimates in Table 4 are all reported in annual units. This is similar to Pan
(2002) but different from other studies such as Eraker (2004) and Broadie, Chernov, and Johannes (2007),
for example. Compared to the estimates reported in Eraker (2004) and Broadie, Chernov, and Johannes
(2007), the estimates of κ and σ in Table 4 are multiplied by 2.52 (multiplied by 252 and divided by 100).
The estimate of θ in Table 4 is multiplied by 0.0252 (multiplied by 252 and divided by 10,000).
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option cross-section is very limited.26 The joint estimation in Eraker (2004) uses 3270 call

options over 1006 trading days, averaging approximately three options per day. Chernov and

Ghysels (2000) is based on the period 1985-1994, and focuses on short-maturity at-the-money

calls. Bates (2000) uses large cross-sections of options but does not filter the latent state

variables from options. The more recent contribution by Hurn, Lindsay, and McClelland

(2015) is closer to our approach and uses large option panels and filtering. In summary,

many existing estimates of the Heston model reduce the cross-sectional dimension of the

option data set, at least partly due to computational constraints. See Hurn, Lindsay, and

McClelland (2015) and Broadie, Chernov, and Johannes (2007) for related discussions on

the importance of computational constraints in this literature. Some of these constraints can

be overcome with additional computational resources, but in itself this is not sufficient. We

propose methods that help overcome these constraints and allow us to keep the time-series

and cross-sectional dimension of the option data as large as possible.

We now discuss the implications of the larger option cross-sections on model estimates.

First, the posterior mean of the diffusive variance risk premium parameter ηv in Table 3 is

equal to 1.1156. This estimate has the expected sign. It is similar to the values implied

by nonparametric or semiparametric estimates (see for instance Bollerslev, Tauchen, and

Zhou (2009)), but different (smaller and statistically more significant) from most existing

estimates based on parametric models estimated with options and returns jointly. The

estimate in Pan (2002) is statistically significant but much larger. The estimates in Eraker

(2004) and Broadie, Chernov, and Johannes (2007) are not statistically significant.27 Our

estimate of ηv is also smaller than the estimate in Bates (2000), which is obtained using

options only, but additionally imposes a dynamic constraint on the spot variance. The

26Pan (2002) also evaluates model fit using a wider cross-section based on the estimates from the smaller
sample.

27Broadie, Chernov, and Johannes (2007) argue that insignificant estimates in the existing literature may
be due to a flat volatility term structure of volatility and/or the absence of options with longer maturities
in the data. Panel B of Table 1 indicates that the term structure of implied volatility in our sample varies
by moneyness.
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estimate in Hurn, Lindsay, and McClelland (2015) is most similar to ours. Recall that their

sample also includes options with widely different moneyness and maturity.

The estimate of ηv has important implications because it defines the relation between

the physical and risk neutral mean reversion and long-run variance. The estimate of the

long-run physical variance of returns θ in Table 3 is 0.0334. This gives a risk-neutral long-

run variance of θQ = κθ/κQ = κθ/(κ − ηv) = 0.09717. Consistent with the literature, the

risk-neutral variance considerably exceeds the physical variance due to a positive ηv estimate.

As mentioned above, this finding is consistent with nonparametric evidence, see for example

Bollerslev, Tauchen, and Zhou (2009). The estimate of the mean reversion κ in Table 3

is 1.6999. The risk-neutral mean reversion parameter κQ = κ − ηv from Table 3 is thus

equal to 1.6999-1.1156=0.5843. Our finding that the mean reversion estimated from options

is smaller than the physical mean reversion from returns (in Table A1) confirms existing

findings. However, our estimate of mean reversion is much smaller than existing estimates

in Panel C of Table 4, again with the exception of Hurn, Lindsay, and McClelland (2015).28

Note that the return-based estimate of κ in the first column of Table A1 is consistent with

existing estimates.

Our estimates of the parameters characterizing the tails of the distribution also differ

from existing results. In Table 3, the estimate of ρ, the correlation between the return and

variance innovations, is -0.9085, much more negative than estimates in existing studies in

Panels B and C of Table 4. Our estimate of ρ based on returns in Table A1 is -0.7886,

suggesting that our findings are driven by (the composition of) the option sample. The

estimate in Hurn, Lindsay, and McClelland (2015) is -0.741, but Andersen, Fusari, and

Todorov (2015a) report an estimate of ρ of -0.934 when estimating the SVCJ model. Our

findings are thus consistent with estimates from a study that relies on large cross-sections of

option contracts.

28Note that κQ is negative in Hurn, Lindsay, and McClelland (2015) as well as other studies, which implies
a negative long-run variance θQ.
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The estimate of σ in column 1 of Table 3 is 0.3715. Note from Table A1 that the estimate

from returns is larger (0.5121). Figure 3 plots the filtered variance paths based on returns

and joint estimation and clearly shows that the filtered variance path from joint estimation

is smoother than that from returns. In contrast, the option-based and joint estimates of σ

in Panels B and C of Table 4 are generally larger than the return-based estimates in Panel

A , and studies that allow for a direct comparison, such as Eraker (2004) and Christoffersen,

Jacobs, and Mimouni (2010), confirm this finding. However, our finding is consistent with

the results in Andersen, Fusari, and Todorov (2015a), who find that the option-implied

variance path is less variable than the physical variance path estimated nonparametrically

using high-frequency returns data.29 The correlation between the two variance paths in

Figure 3 is 0.896, which is of course high but generally lower than in existing studies.

We conclude that our estimates of the parameters characterizing the tails of the distribu-

tion in the Heston model, σ and ρ, as well as the mean reversion parameter κ, significantly

differ from much of the existing literature. This may be due to the sample period. Table 5

therefore compares the results for the 1996-2015 sample (column 1) with those for 1996-2000

(column 2), 1996-2006 (column 3) and 2011-2015 (column 4). These results strongly suggest

that the sample period does not explain why our results differ from the existing literature.

While there are some differences between the posterior means and variances across the sample

periods, the estimates (other than the long-run variance) are similar across sample periods,

even though the two alternative samples do not contain the financial crisis and the sample

in column 2 is relatively short (1996-2000). One notable difference is the ρ parameter, which

is more negative for the most recent sample (2011-2015).

Finally, note from Table 3 that the posterior standard deviations are rather small com-

pared to the posterior means. Table A1 indicates that the posterior standard deviations are

higher when using returns only in estimation. Figures A1 and A2 in the Appendix plot the

29Note that our findings on σ may be related to our findings on ρ. Skewness is determined by ρ but
kurtosis is increasing in |ρ| and σ (Das and Sundaram, 1999).
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trace for the return-based and joint estimation. The figures clearly indicate convergence of

the MCMC for both estimation exercises and for all parameters.

4.2 Inference on Jumps in Returns

We now discuss our estimates of the stochastic volatility model with return jumps (SVJR)

model in column 2 of Table 3. Table A2 in the Appendix summarizes parameter estimates

for this model from the existing literature. The parameters in both tables are annualized.30

First consider the SV parameters κ, θ, ρ, and σ. Note that jumps in returns capture

higher moments in the return distribution, and it would therefore not be surprising if the tail

parameters ρ and σ were different from the SV model in column 1. However, the estimates of

these parameters are similar to those for the SV model. Our estimates indicate the presence

of relatively large, but infrequent jumps, which are negative on average, with risk-neutral

average jump sizes that are more negative than physical jump sizes. The physical jump size

µs is equal to −0.0064, the jump risk premium ηJs is equal to 0.0300, and the risk-neutral

average jump size µQs = µs−ηJs is therefore equal to −0.0364. These jumps occur on average

twice every three years (λ=0.638). The standard deviation of the jumps σs is 9.37%.

Table A2 summarizes estimates of the SVJR model from the existing literature. The

literature contains several estimation results for this model, but in most cases they use

different information. First, as with existing estimates of the SV model, many of the existing

estimates are obtained from returns. Panel A of Table A2 indicates that when estimating

based on returns, some studies find jumps that occur more frequently, while others document

larger but more infrequent jumps. Our results are closer to the latter studies.

Relatively few studies offer evidence based on options or options and returns jointly.

30As in the SV model, parameters are often expressed differently in the papers referenced in these tables.
For the SV parameters, see the discussion in the previous subsection. For the jump parameters, many studies
express the mean and standard deviation of the jump in percentages, which means they are equal to the
parameters in Table A2 multiplied by 100. In the case of the jump intensity, some papers, such as Pan
(2002) express it as in Table A2; others, such as Eraker, Johannes, and Polson (2003) express the intensity
in daily units and need to be multiplied by 252 to obtain the estimates in Table A2.
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Pan (2002) finds evidence for relatively frequent jumps with a large risk-neutral mean and

large standard deviation. Eraker (2004) finds a risk-neutral average jump size of -5% with a

standard deviation of 16.7%, and these jumps occur on average once every two years. Our

jump results are close to those of Eraker (2004), but the estimated standard deviation of

the jump size is smaller. Broadie, Chernov, and Johannes (2007) proceed differently: They

estimate the jump parameters from (futures) options but keep the SV parameter constrained

by theory at their values estimated from returns. Despite these differences in implementation,

our findings on return jumps are rather similar to those of Broadie, Chernov, and Johannes

(2007).

Table 3 also presents the average equity risk premium for the different models. Recall

that the total equity risk premium is given by ηsVt+λ(µ̄s−µ̄Qs ), where ηsVt is due to diffusive

risk and λ(µ̄s − µ̄Qs ) is due to jump risk. The average risk premium in the SVJR model is

larger than in the SV model. In the SVJR model, approximately 4.5% of the equity risk

premium is due to jump risk, with the remaining 6% due to diffusive risk. Broadie, Chernov,

and Johannes (2007) report that in their sample, price jump risk premia contribute about

3% per year to an overall equity premium of 8%. These results are obtained using futures

data, a different sample and an entirely different approach. Our overall risk premium is a

bit higher but the relative contributions of diffusive and jump risk are similar. Pan (2002)

also reports comparable estimates, with price jump risk premia that contribute about 3.5%

per year to an overall equity premium of 9%.

A variance decomposition shows that in the SVJR model, approximately 13.60% of the

variation in returns is due to jumps. Consistent with the existing literature, our results

therefore indicate that return jumps are relatively more important for risk premia than for

explaining overall return variation.
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4.3 Inference on Jumps in Variance

The third and fourth columns of Table 3 present estimates of the SVJV and SVCJ models,

respectively. The SVCJ model in column 4 contains jumps in returns and variance that are

correlated. Table A3 summarizes the results of several existing studies that report on this

model.31 Column 3 reports on the SVJV model, which is nested by the SVCJ model: it

contains jumps in variance but not in returns, and as a result it has three fewer parameters.

For the SVJV model, the estimate of the risk neutral average jump size µQv = µv − ηJv is

equal to 3.71%. The estimate of the risk premium parameter ηJv is small and negative, and

the estimate of the frequency of the jumps λ is equal to 0.6716, implying these jumps occur

approximately twice every three years. When adding jumps in returns in the SVCJ model

in column 4, the frequency of the jumps slightly increases. The physical jump sizes differ

from the magnitudes in the SVJV and SVJR models, but the risk-neutral jump sizes are

similar. The estimate of the correlation between the return and variance jump is negative,

as expected, at -0.7382. Not surprisingly the posterior mean of ηv is smaller when adding

variance jumps. Table A3 indicates that our estimates of µQv and the jump correlation are

within the range of existing studies.

We conclude that our results are consistent with the existing literature (Eraker, Johannes,

and Polson, 2003; Eraker, 2004), which finds evidence for jumps in volatility as well as jumps

in returns and co-jumps in returns and volatility. Our estimates of variance jump parameters

are also for the most part consistent with existing estimates.

4.4 Model Fit

The log likelihoods in Table 3 can be used to assess the importance of return and variance

jumps for modeling returns and options, and indicate that the more complex models are

31See, among others, Eraker, Johannes, and Polson (2003), Eraker (2004), Broadie, Chernov, and Johannes
(2007), and Andersen, Fusari, and Todorov (2015a).
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supported by the data. The results from returns in Table A1 also confirm the importance of

accounting for jumps in returns as well as jumps in variance. These findings are consistent

with existing findings on the importance of jumps in returns (Pan, 2002; Bates, 2000) and

jumps in variance (Eraker, Johannes, and Polson, 2003).

Table 3 indicates that jumps in returns and co-jumps in returns and variance result in

improvements in the log likelihood. A comparison with Table A1 indicates that jumps are

much more important when jointly modeling returns and options. This suggests that these

jumps are especially useful to model risk premia, consistent with the findings in Pan (2002).

Finally, it is worth noting that despite the improvements in log likelihood, Table 3 in-

dicates that the richer models with jumps do not substantially outperform the simple SV

model in terms of RMSE. The RMSE for the SV model is $3.134, and the jump models only

improve the fit by 4-10 cents, dependent on the model. This confirms the results of Eraker

(2004). Singleton (2006) notes that these findings may be due to the fact that we optimize

the likelihood rather than minimizing root mean squared error.

Figure 4 provides additional insight into these different measures of model performance

by providing scatterplots of the realized pricing kernels. We obtain a time series of the

realized pricing kernel for each model by inserting the realized returns and posterior means

of the state variables on each day into the pricing kernels, defined as the ratio of the risk-

neutral to the physical density implied by the respective model discounted by the risk-free

rate. The resulting paths look similar for the four models we study for most of the sample,

but there are significant outliers in crisis periods. Figure 4 shows how these outliers vary

across models. Panel (a) scatter plots the realized kernel for the SVJR model against the

realized kernel for the SV model, and Panel (b) plots the SVCJ kernel against the SV model.

It is clear that the paths of the realized kernels for the SVJR and especially the SVCJ models

contain many fewer outliers than the path of the SV model. This illustrates the value of

the jump models, but because the realized kernels are similar across models on most days,
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average fit is very similar across models. We leave a more detailed investigation of this issue

for future research.

4.5 Conditional Moments

A useful way to highlight the differences between the estimated models is to study the

conditional moments. We present results for the conditional variance of returns, the con-

ditional covariance between returns and variance, and the conditional variance of variance.

Panel A of Table 6 provides the analytical expressions for these moments.

Panel B of Table 6 presents the averages over our sample for the daily moments for the

SV, SVJR, SVJV and SVCJ models. The differences between the models are small for the

conditional variance and conditional covariance between returns and variance. However, the

models with jumps in variance, especially the SVCJ model, are characterized by a much

higher variance of variance. Despite these unconditional differences in the variance of vari-

ance across models, the paths of the variance of variance in these models are by construction

highly correlated.

5 The Information in Returns and the Cross-Section

of Options

We have used the particle MCMC framework and the quantile spot variance method

to estimate the option valuation models using the underlying returns and large panels of

options. We now report on estimation exercises for different samples. We first compare the

posterior density for the dataset that contains options and returns with the posterior density

from returns only. Then we investigate how restricting the option sample in the moneyness

and/or maturity dimension affects the posterior density and option fit. For brevity we limit

our discussion to the SV model.
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5.1 Posterior Densities from Returns and Options

Figure 5 compares the posterior density for the parameters of the stochastic volatility

estimated on returns only and returns and options jointly. We discuss the posterior densities

of the five parameters in the SV model that can be identified from returns as well as options:

κ, θ, σ, ρ, and the price of diffusive equity risk ηs. The posterior means and standard

deviations are listed in Tables 3 and A1 respectively. The blue solid line labeled “P” in

Figure 5 shows the posterior density estimated from returns and the black dashed line labeled

“P&Q - all” shows the posterior density for the joint estimation.

Figure 5 and Tables 3 and A1 illustrate that while the posterior means for the two

samples are similar for the θ and ηs parameters, they are significantly different for κ, σ,

and ρ. Including options in estimation yields a more persistent variance, a more negative

skewness parameter ρ, and a lower kurtosis parameter σ. The posterior densities in Figure

5 also suggest that the option data are more informative about κ, σ, and ρ than the return

data. This is confirmed by the posterior standard deviations in Tables 3 and A1. For

ηs, the posterior standard deviations are very similar. This finding is not surprising as the

option data do not contain additional information on this parameter. For θ, the return-based

posterior standard deviation is actually a bit lower.

5.2 The Composition of the Option Sample and the Posterior

Density

The motivation for our estimation method is that while cross-sectional information is

helpful for identification of certain model parameters, conventional implementations of the

particle filter, as well as other existing estimation methods, are computationally very ex-

pensive when using long time series and large option panels. As previously discussed, this

is one of the reasons why many existing studies have restricted the time-series and cross-
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sectional dimension of the data. A natural question is therefore if these data restrictions

affect inference.

We focus on the five parameters in the SV model discussed above (κ, θ, σ, ρ, ηs) and the

price of diffusive variance risk ηv. Figure 5 presents the posterior densities for three option

samples. The black dashed line labeled “P&Q - all” represents the posterior density for the

joint return and option sample discussed in the previous section. We also plot the posterior

densities for two restricted option samples. Following the existing literature, we restrict

either the moneyness dimension or the maturity dimension. The green solid line labeled

“ATM” plots the posterior density for the sample with ATM options but all maturities,

and the red dotted line labeled “SM” is based on the sample with short maturity options

but all moneyness.32 Panel C of Table 1 presents the sample sizes as well as descriptive

statistics for these restricted samples. Columns 5 and 6 in Table 5 present the posterior

means and standard deviations. The ATM and SM datasets are smaller than the one used

in our benchmark analysis (“ALL”), but because the likelihood is scaled back by the number

of options in the dataset, this does not affect the relative weight of returns and options in the

posterior density. The critical difference between the datasets that determines the relative

weight of returns and options is the cross-sectional composition of the option sample.

The top two panels of Figure 5 show that the posterior densities of the κ and θ parameters

are very similar for the ATM and ALL samples. However, the posterior density for κ based

on the SM sample is very different and more similar to the posterior density based on returns.

The two panels in the middle row of Figure 5 show the posterior density for the σ and ρ

parameters. The posterior mean of ρ is more negative for all three option samples compared

to the return sample, and the posterior standard deviation is smaller in the option samples.

For the σ parameter on the other hand, the SM sample leads to a larger posterior mean

32For the ATM sample, we exclude options with moneyness outside the 0.98-1.02 range. We select up
to six options for each of the five maturity bins in Table 1. For the SM sample, we rely on a sample with
options with maturity less than 30 days in Panel B of Table 1. If options with maturity less than 30 days
are not available we include the options for the shortest maturity longer than 30 days.
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than the return sample, while for the two other samples the posterior mean of σ is smaller

than the one from returns. These findings regarding σ are not entirely surprising, because

we know that the implied volatility surface changes a lot more over time at short maturities.

Finally, the bottom panel presents the results for the prices of risk ηs and ηv. For ηs, the

SM sample yields very different posterior means compared to the other two option samples

(ALL and ATM). Surprisingly, the posterior density for the SM sample also differs from the

one obtained from returns. For ηv, the posterior density for the SM sample is once again

the outlier. Note that we do not have a posterior density for ηv when estimating on returns

only.

5.3 Discussion

As mentioned above, many existing studies use samples that consist exclusively of short-

maturity and/or at-the money options because of computational constraints. Our findings

show that those constraints affect parameter inference. This may explain some of the differ-

ences between model parameter estimates in the existing literature (See Tables 4, A2, and

A3).

Our most important finding is that option samples that exclusively contain short-maturity

options result in very different inference. Recall from our discussion of Table 5 that parameter

estimates were fairly similar for different sample periods, even when the sample period is

short. Taken together, these findings strongly suggest that when restricting the sample to

address computational constraints, priority should be given to including a large cross-section

of different option maturities.

A second important conclusion is that the composition of the option sample seems to

affect inference on some parameters more than others. Specifically, the posterior mean for κ

and σ is more sensitive to the option sample than the posterior mean for θ and ρ. Also, while

the posterior mean for θ based on joint estimation is similar to the one based on returns,
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this is not the case for κ, σ, and ρ.

While some of these findings are perhaps not surprising, others are very different from

what we expected. Most notably, we expected data restrictions in the moneyness dimension

to have more serious consequences for inference on σ and ρ, and data restrictions in the

maturity dimension to affect inference on κ and θ. Instead, inference on θ and ρ is simi-

lar across the three options samples, and the implications of restricting the sample in the

maturity dimension have implications for many model parameters.

Table 7 provides additional evidence on the implications of these different sample restric-

tions. It documents the implications of the sample composition for option fit by maturity and

moneyness. The RMSEs are computed based on the model parameters and 5000 simulations

of the posterior spot variance. The first column documents (in-sample) fit, using estimates

based on the 1996-2015 sample period with all options.33 The other columns report RMSEs

for the same option sample, but they use the parameters from the subsamples in Table 5.

Table 7 confirms that the strongest implications result from restricting the maturity dimen-

sion of the option sample used in estimation (the column labeled “SM”). This results in a

much higher average pricing error ($5.091), which is largely due to the very large pricing

errors for long-maturity options. Restricting the sample to short-maturity options also leads

to higher average pricing errors, but the deterioration in fit is modest. Table 7 also reports

on the option fit for the 1996-2015 sample period when using the parameter estimates from

the shorter samples in Table 5. The deterioration in fit when estimating on shorter time

periods is surprisingly small, confirming that the model parameters can be estimated rather

precisely using shorter sample periods.

An important caveat to our findings on the relative importance of the moneyness and

maturity dimension for inference and option fit is that these results may depend on the choice

33Note that the overall average RMSE σc in the first column of Table 7 is $2.997, whereas it is $3.134 in
Table 3. Table 3 reports the posterior mean, whereas the fit in Table 7 is based on simulations of the spot
variance, similar to the method used for the other columns.
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of loss function. Another caveat is that our restricted samples still include a large number of

options and several options on a given day. Our conclusion regarding the implications of data

restrictions used in the existing literature may therefore be conservative, because existing

studies sometimes use smaller samples. This has important implications. For example, Panel

(d) of Figure 5 indicates that the posterior mean for ρ is very similar for the three option

samples, close to -0.9. This contrasts with the estimates from the existing literature in Table

4, which indicates that many option-based estimates of ρ are close to the posterior mean

from returns data. We verified that the results in Panel (d) are contingent on sufficiently

large option samples. For very small option samples, we obtain posterior means of ρ that

are similar to the return-based estimates.

6 Conclusion

The use of option panels holds great promise for identifying the return distribution and

conditional risk premia, because the cross-section of options contains information on different

states of nature. However, the estimation of dynamic option valuation models with latent

state variables is challenging due to the complexity of the models and the richness of the

available option data. To overcome these computational challenges, we propose an orthogonal

particle MCMC framework with a novel filtering approach, featuring particle weights based

on the quantiles of the filtered distribution. We use a Monte Carlo study to demonstrate

that our approach is reliable.

We illustrate our approach by estimating a class of models with jumps in returns and

variance (Duffie, Pan, and Singleton, 2000) using twenty years of daily data, and almost

thirty option contracts per day with a wide cross-section of maturities and moneyness. It

was previously impossible to estimate these models using large option panels in full generality,

while solving the filtering problem. We confirm that both return and variance jumps, and

co-jumps in particular, are important. We obtain more precise estimates of the parameter
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that determines the diffusive price of variance risk. These estimates are smaller compared to

existing parametric studies, but more consistent with existing nonparametric evidence. Our

estimates of the diffusive parameters characterizing skewness, kurtosis, and the persistence

of the variance process also differ from most existing studies.

We next use our approach to show that the composition of the option sample affects

estimation results, and that this explains the differences between our estimates and the

existing literature. In the face of computational constraints, the sample can be restricted in

several ways. One can restrict the length of the time series, or one can restrict the moneyness

and/or maturity dimensions of the option samples. Little is known about the implications

of these data restrictions for parameter inference and option fit. We find that to identify

the models we consider in this paper, it is most critical to include options with different

maturities in the sample. Somewhat surprisingly, restricting the moneyness dimension of

the option sample affects inference much less. Parameter estimates are similar when shorter

samples are used in estimation, suggesting that the length of the sample period may also be

less critical for inference than commonly thought. Restricting the maturities of the options

used in estimation also has the largest impact on model fit, at least for the loss function we

use in estimation. We leave a more detailed study of the optimal composition of the option

sample and the trade-off between the length of the sample period and the size of the option

cross-sections for future research.

In future work we intend to use the computational advantage of our approach, combined

with a Particle Gibbs approach as discussed in Section 3.5.2, to study richer models with

multiple volatility factors (Bates, 2000), time varying jump intensities (Pan, 2002; Bates,

2006; Christoffersen, Feunou, Jeon, and Ornthanalai, 2021), tail factors (Andersen, Fusari,

and Todorov, 2015a), and different parametric specifications of the jump processes (Bates,

2012; Andersen, Fusari, and Todorov, 2017). Our approach can also be combined with the

use of high-frequency returns (Bates, 2019) or volatility estimates based on high-frequency
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data (Andersen, Fusari, and Todorov, 2015b). We also plan to investigate in more detail

the implications of the choice of error specification (Andersen, Fusari, Todorov, and Var-

neskov, 2021) and loss function (Hurn, Lindsay, and McClelland, 2015). Finally, a detailed

comparison between the computational efficiency and properties of our approach and that of

existing methods in Eraker (2004), Bates (2000), Andersen, Fusari, and Todorov (2015a,b,

2017, 2020) and Andersen, Fusari, Todorov, and Varneskov (2019) is needed.
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Figure 1: Daily S&P500 Returns and Squared Returns 1996-2015
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Notes: We plot daily log returns in the top panel. In the bottom panel, we plot squared daily log returns.
The sample period is from January 1, 1996 until December 31, 2015.
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Figure 2: SVQ Pricing Errors for the SV Model.

Notes: We compute Root Mean Squared relative option pricing errors for the SVQ method computed over
the twelve quantiles, based on the implementation of the SV model. The model parameters are fixed at the
posterior parameter means of the SV model in Table 3.

47



Figure 3: Filtered Variance Paths. SV Model

(a) Returns-based

(b) Joint

(c) Difference Joint - Returns-based

Notes: We plot the filtered variance path estimated from returns in the top panel, and the variance path
from joint estimation in the second panel. The bottom panel plots the difference between the variance
estimated from returns and the variance from joint estimation.
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Figure 4: Scatter Plots of Realized Pricing Kernels

(a) SV versus SVJR

(b) SV versus SVCJ

Notes: We scatter plot the realized pricing kernel for the SV model versus the SVJR (top) and SVCJ
(bottom) models respectively. The sample period is from January 1, 1996 until December 31, 2015. We
highlight outliers according to different crisis periods: yellow triangles for the Dotcom crisis (2000 - 2002),
red diamonds for the Global Financial Crisis (2007-2008), and a green star for July 20, 1998, which is in
the period following the Russian crisis and during the LTCM meltdown. The other sample days are
indicated using black circles.
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Figure 5: Posterior Densities from Returns and Various Option Samples

(a) κ (b) θ

(c) σ (d) ρ

(e) ηs (f) ηv

Notes: Posterior density functions for the SV model parameters based on joint estimation with returns and
either the full or a restricted option dataset. The posterior density functions from return-based estimation
are given in plain blue. The joint estimation is represented in black dashed. The densities with ATM
options but all maturities and the sample with short maturity options but all moneyness are displayed in
green solid and red dotted, respectively.
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Table 1: Return and Option Data

Panel A: Return Data

Mean StdDev Skewness Kurtosis Max Min
Index Returns 0.0797 0.1958 -0.0535 10.7980 0.1158 -0.0904

Panel B: Option Data

Maturity (days)
Moneyness (K/S) 5-30 30-60 60-90 90-180 180-365 All

Number of Option Contracts
0.85-0.90 2941 4837 4271 4490 4177 20716
0.90-0.95 3828 4942 4615 4753 4542 22680
0.95-1.00 3986 4949 4717 4837 4831 23320
1.00-1.05 3984 4971 4687 4839 4780 23261
1.05-1.10 2450 4758 4441 4575 4416 20640
1.10-1.15 694 2098 2479 3646 3865 12782

All 17883 26555 25210 27140 26611 123399
Average Call Prices

0.85-0.90 157.35 160.47 168.64 175.77 194.47 171.34
0.90-0.95 93.06 101.65 112.06 123.90 146.15 115.36
0.95-1.00 37.51 48.84 59.14 75.61 100.70 64.36
1.00-1.05 9.87 20.12 30.37 44.57 71.46 35.28
1.05-1.10 2.17 4.91 9.73 19.64 40.54 15.40
1.10-1.15 1.81 2.75 4.91 9.46 24.00 8.59

All 50.30 56.46 64.14 74.83 96.22 68.39
Average Implied Volatilities

0.85-0.90 0.34 0.28 0.26 0.25 0.24 0.28
0.90-0.95 0.27 0.24 0.23 0.23 0.22 0.24
0.95-1.00 0.21 0.20 0.20 0.21 0.21 0.21
1.00-1.05 0.18 0.18 0.18 0.19 0.19 0.18
1.05-1.10 0.20 0.16 0.16 0.17 0.18 0.17
1.10-1.15 0.32 0.21 0.18 0.17 0.17 0.21

All 0.25 0.21 0.20 0.20 0.20 0.22

Panel C: Restricted Samples. Descriptive Statistics

Total No. of Options Avg.Maturity(days) Avg.Moneyness(K/S)
ALL 123399 111.58 0.9899
ATM 25670 104.9550 1.0002
SM 19099 19.1151 0.9779

Notes: Panel A reports descriptive statistics for the sample of index returns. The mean and standard
deviation are annualized. Panel B reports the number of contracts, average call price, and average implied
volatility in the option data set where we choose the most liquid (highest trading volume) option within
each moneyness-maturity range. Moneyness is defined as K/S. Due to the fact that OTM options are more
heavily traded, this data set mainly consists of OTM call and OTM put options. Panel C presents the
sample size for the restricted samples used in Figures 5 and Table 5. ALL represents the sample with all
options. ATM represents the sample with ATM options but all maturities and SM represents the sample
with short maturity options but all moneyness.
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Table 2: Monte Carlo Results

Parameter True value Median Q25 Q75
κ 2.0000 2.0144 1.9089 2.1613
θ 0.0350 0.0361 0.0333 0.0378
σ 0.3800 0.3669 0.3647 0.3693
ρ -0.9000 -0.9277 -0.9324 -0.9226
ηs 2.5000 2.5302 2.3948 2.6702
ηv 1.0000 0.9956 0.8855 1.1384

Parameter True value Median Q25 Q75
κ 2.0000 2.0537 1.9047 2.1757
θ 0.0350 0.0358 0.0341 0.0385
σ 0.4900 0.4642 0.4551 0.4682
ρ -0.7000 -0.7288 -0.7397 -0.7233
ηs 2.5000 2.5074 2.3946 2.5709
ηv 1.0000 0.9911 0.8603 1.0759

Notes: We report Monte Carlo results based on two configurations of the SV model. For each of the two
parameter settings, we simulate 50 samples of returns and option panels samples for a one-year period.
The maturity and moneyness structure of the simulated option panels are based on the 2015 option
sample, implying 6731 options used for estimation of each SV model.
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Table 3: Parameter Estimates Based on Joint Estimation Using Returns and Options

SV SVJR SVJV SVCJ
κ 1.6999 1.5382 1.1777 0.9613

(0.2010) (0.1096) (0.1421) (0.0596)
θ 0.0334 0.0236 0.0310 0.0282

(0.0040) (0.0015) (0.0041) (0.0032 )
σ 0.3715 0.3682 0.3651 0.3586

(0.0047) (0.0046) (0.0038) (0.0075)
ρ -0.9085 -0.9187 -0.9242 -0.9191

(0.0045) (0.0039) (0.0047) (0.0026)
ηs 2.6623 2.5562 2.3032 2.7095

(0.5168) (0.4504) (0.3659) (0.4556)
ηv 1.1156 1.2466 0.5569 0.6239

(0.2017) (0.1123) (0.1425) (0.0895)
λ 0.6380 0.6716 0.7249

(0.0347) (0.0941) (0.0316)
µs -0.0064 0.0320

(0.0106) (0.0094)
σs 0.0937 0.0872

(0.0053) (0.0057)
ηJs 0.0300 0.0562

(0.0097) (0.0092)
µv 0.0314 0.0727

(0.0092) (0.0026)
ηJv -0.0057 0.0562

(0.0095) (0.0051)
ρJ -0.7382

(0.1785)
σc 3.1345 3.0308 3.0963 3.0978

(0.0345) (0.0221) (0.0286) (0.0266)

Diffusive ERP 0.0889 0.0603 0.0714 0.0764
Jump ERP 0.0450 0.0101

Loglikelihood 2723.58 2866.25 2764.37 2878.71

Notes: We report parameter estimates based on the joint likelihood from returns and options for the SV,
SVJR, SVJV and SVCJ models. Parameters are annualized and under the physical measure. The posterior
standard deviations for each parameter are reported in parentheses. σc is the option RMSE in dollars.
Diffusive ERP and Jump ERP represent the average equity risk premia due to the diffusive and jump
components.
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Table 4: Parameter Estimates in Existing Studies: The Heston SV Model.

Panel A: Based on Returns

Author Period κ θ σ ρ
ABL 1953-1996 4.032 0.017 0.202 -0.380
CV 1980-2000 14.282 0.033 5.193 -0.629

CGGT 1953-1999 3.276 0.015 0.151 -0.279
EJP 1980-2000 5.821 0.023 0.361 -0.397
Jones 1986-2000 3.704 0.026 0.524 -0.603
Eraker 1987-1990 4.284 0.022 0.277 -0.373
Bates1 1953-1996 5.940 0.016 0.315 -0.579
CJM 1996-2004 6.520 0.035 0.460 -0.771

Panel B: Based on Options

Author Period κ θ σ ρ ηv
BCC 1988-1991 1.150 0.040 0.390 -0.640

Bates2 1988-1993 1.490 0.067 0.742 -0.571
1988-1993 1.260 0.071 0.694 -0.587 2.28

BCJ 1987-2003 7.056 0.019 0.361 -0.397
CJM 1996-2004 2.879 0.063 0.537 -0.704

Panel C: Based on Returns and Options

Author Period κ θ σ ρ ηv
Pan 1989-1996 7.100 0.014 0.320 -0.530 7.600

-0.500* -0.195*
Eraker 1987-1990 4.788 0.049 0.554 -0.569 2.520

2.268* 0.103*
ASK 1990-2004 5.070 0.046 0.480 -0.767
HLM 1990-2007 1.879 0.037 0.386 -0.741 1.9894

-0.111* -0.630*

Notes: We report parameters for the SV model in existing studies. Estimates in Panel A are physical
values. Estimates in Panel B are risk-neutral values. In Panel C, estimates with a star (*) indicate
risk-neutral values; the others are physical values. All parameters are annualized. BCC: Bakshi, Cao, and
Chen (1997), based on the S&P 500; ABL: Andersen, Benzoni, and Lund (2002), based on the S&P 500;
CV: Chacko and Viceira (2003), based on the S&P 500; CGGT: Chernov, Gallant, Ghysels, and Tauchen
(2003), based on the DJIA; EJP: Eraker, Johannes, and Polson (2003), based on the S&P 500; Jones:
Jones (2003), based on the S&P 100; Eraker: Eraker (2004), based on the S&P 500; Bates1: Bates (2006),
based on the S&P 500; Bates2: Bates (2000), based on the S&P 500. The second row of Bates2 presents
the estimates with dynamic constraint on the spot variance; CJM: Christoffersen, Jacobs, and Mimouni
(2010), based on the S&P 500; BCJ: Broadie, Chernov, and Johannes (2007), based on the S&P 500; Pan:
Pan (2002), based on the S&P 500; ASK: Aı̈t-Sahalia and Kimmel (2007), based on the S&P 500; HLM:
Hurn, Lindsay, and McClelland (2015), based on the S&P 500.
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Table 5: Parameter Estimates for the SV model. Alternative Sample Periods and Option
Subsamples.

1996-2015 1996-2000 1996-2006 2011-2015 SM ATM
κ 1.6999 1.3061 1.4799 1.9240 6.8354 1.4078

(0.2010) (0.2913) (0.2119) (0.2771) (0.4304) (0.1839)
θ 0.0334 0.0401 0.0296 0.0399 0.0350 0.0321

(0.0040) (0.0086) (0.0041) (0.0056) (0.0017) (0.0040)
σ 0.3715 0.3700 0.3194 0.4231 0.7181 0.2728

(0.0047) (0.0104) (0.0061) (0.0100) (0.0131) (0.0053)
ρ -0.9085 -0.8867 -0.8968 -0.9303 -0.8891 -0.8941

(0.0045) (0.0110) (0.0077) (0.0087) (0.0058) (0.0070)
ηs 2.6623 3.0017 2.7025 2.5583 3.4414 2.6509

(0.5168) (0.6172) (0.5761) (0.6378) (0.3259) (0.6334)
ηv 1.1156 1.0161 1.0008 0.9836 1.5182 1.0106

(0.2017) (0.2812) (0.2095) (0.2654) (0.3271) (0.1822)

σc 3.1345 3.1403 2.7663 2.9803 1.4415 2.9978
(0.0345) (0.0651) (0.0401) (0.0664) (0.0187) (0.0386)

Index
Mean

0.0797 0.0926 0.1716 0.1093 0.0797 0.0797

Index
Variance

0.0384 0.0315 0.0341 0.0239 0.0384 0.0384

Notes: We report parameters estimated for subsample periods and restricted option panels for the SV
model based on joint estimation. Parameters are annualized and reported under the physical measure. In
parentheses, we report the posterior standard deviation for each parameter. σc is the option RMSE in
dollars. Table 1 provides descriptive statistics for the restricted option panels. We also report the average
index returns and variances for each of the samples used in estimation.
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Table 6: Instantaneous Conditional Moments

Panel A: Conditional Moments

Conditional
Variance(R)

Conditional
Variance(V )

Conditional
Covariance(R, V )

SV Vt σ2Vt ρσVt
SVJR Vt + λ(µ2

s + σ2
s) σ2Vt ρσVt

SVJV Vt σ2Vt + λµv ρσVt
SVCJ Vt + λE(ξ2) σ2Vt + λµv ρσVt + λρJµ

2
v

Panel B: Conditional Moments. Sample Averages

Conditional
Variance(R)

Conditional
Variance(V )

Conditional
Covariance(R, V )

SV 0.0406 0.0056 -0.0137
SVJR 0.0417 0.0049 -0.0122
SVJV 0.0407 0.0258 -0.0137
SVCJ 0.0418 0.0582 -0.0144

Notes: Panel A presents closed-form expressions, following Eraker, Johannes, and Polson (2003), for three
instantaneous conditional moments for each of the four models we study. Panel B presents the sample
averages for these moments. Note that E(ξ2) = µ2

s + 2µsµvρJ + ρ2Jµ
2
v + σ2

s .
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Table 7: RMSEs based on Parameter Estimates from Subsamples.

(K/S, Mat) 1996-
2015

1996-
2000

1996-
2006

2011-
2015

SM ATM

(<0.90,<30) 1.888 1.966 1.948 1.781 1.262 2.047
(0.90-0.95,<30) 2.090 2.227 2.164 1.959 1.899 2.369
(0.95-1.00,<30) 2.685 2.707 2.807 2.651 3.865 2.812
(1.00-1.05,<30) 2.939 2.767 3.200 2.897 4.502 2.958
(1.05-1.10,<30) 2.074 1.941 2.209 2.068 3.378 2.142

(>1.10,<30) 1.949 1.901 1.986 1.976 3.301 1.971
(<0.90,30-60) 2.822 3.020 3.013 2.534 1.532 3.362

(0.90-0.95,30-60) 2.803 3.083 2.977 2.539 2.415 3.495
(0.95-1.00,30-60) 2.915 3.008 3.086 2.870 4.039 3.180
(1.00-1.05,30-60) 3.272 3.108 3.598 3.278 4.708 3.370
(1.05-1.10,30-60) 2.460 2.244 2.740 2.439 3.723 2.668

(>1.10,30-60) 2.209 2.047 2.412 2.215 3.621 2.392
(<0.90,60-90) 3.202 3.483 3.562 2.774 1.642 4.239

(0.90-0.95,60-90) 2.743 3.107 3.016 2.426 2.164 3.815
(0.95-1.00,60-90) 2.514 2.704 2.685 2.507 3.243 2.891
(1.00-1.05,60-90) 2.945 2.906 3.216 3.005 3.631 3.082
(1.05-1.10,60-90) 2.731 2.522 3.045 2.768 3.289 3.025

(>1.10,60-90) 2.372 2.128 2.693 2.369 3.201 2.745
(<0.90,90-180) 3.235 3.451 3.781 2.805 3.058 4.723

(0.90-0.95,90-180) 2.585 2.881 2.963 2.392 3.514 3.847
(0.95-1.00,90-180) 2.065 2.356 2.205 2.187 4.100 2.536
(1.00-1.05,90-180) 2.460 2.604 2.633 2.568 4.169 2.640
(1.05-1.10,90-180) 2.983 2.981 3.095 3.076 3.188 3.233

(>1.10,90-180) 2.651 2.564 2.819 2.798 2.415 3.030
(<0.90,>180) 4.039 4.010 4.419 4.445 8.267 4.941

(0.90-0.95,>180) 3.930 4.104 3.901 4.652 8.907 4.128
(0.95-1.00,>180) 3.875 4.144 3.508 4.824 9.796 3.606
(1.00-1.05,>180) 3.910 4.288 3.600 4.722 9.899 3.937
(1.05-1.10,>180) 3.717 4.035 3.614 4.200 9.020 4.155

(>1.10,>180) 3.836 3.953 3.831 4.103 6.952 4.244

RMSE 2.997 3.110 3.149 3.128 5.091 3.426

Notes: We report root mean squared errors (in dollars) based on the 1996-2015 sample period and all
options, using parameter estimates based on subsample periods and restricted option panels. σc is the
overall average option RMSE for the entire sample. All results are based on the SV model and joint
estimation, as in Table 5.
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Appendix A Option Valuation

We use a strike-optimized method based on the formula of Carr and Madan (1998). The
time-t price of a call option with strike K and maturity τ can be written as:

Ct =

∫ ∞
k

e−rτ (est+τ − ek)fs(st+τ )dst+τ , (A.1)

where st = log(St) and k = log(K). In the above formula, as k approaches −∞, the call
option price converges to St rather than zero and thus is not square-integrable. Carr and
Madan introduce a dampening factor α to solve the problem and let:

c = eαkC. (A.2)

Now the Fourier transform can be applied to c:

ψ(u) =

∫ ∞
−∞

eiukcdk,

=

∫ ∞
−∞

eiukeαk
∫ ∞
k

e−rτ (est+τ − ek)fs(st+τ )dst+τdk,

=

∫ ∞
−∞

e−rτfs(st+τ )

∫ st+τ

−∞
[est+τ+(α+iu)k − e(α+1+iu)k]dkdst+τ ,

=

∫ ∞
−∞

e−rτfs(st+τ )[
est+τ (α+1+iu)

(α + iu)(α + 1 + iu)
]dst+τ ,

=
e−rτ

(α + iu)(α + 1 + iu)

∫ ∞
−∞

e(α+1+iu)st+τfs(st+τ )dst+τ ,

=
e−rτφst+τ (α + 1 + iu)

(α + iu)(α + 1 + iu)
,

(A.3)

where φst denotes the risk neutral characteristic function of the log-price. Dropping the
notation for dependence on t, the call option value is given by:

C = eαk
1

2π

∫ ∞
−∞

e−iukψ(u)du. (A.4)

Since the imaginary part of ψ(u) is odd and the real part is even, Equation (A.4) can be
further simplified as
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C =
e−αk

π

∫ ∞
0

Re[e−iukψ(u)]du. (A.5)

Carr and Madan (1998) evaluate Equation (A.5) with the fast Fourier transform algorithm.
However, given the availability of improved computing power, we instead directly solve
equation (A.5) with a numerical integration method (See Crisóstomo (2018) for a comparison
of the two methods in terms of speed and accuracy). We vectorize equation (A.5) with respect
to the strikes and we apply Simpson’s rule for computing the call prices.

Appendix B Particle Filtering Using Returns

The particle filtering algorithm relies on the approximation of the true density of the
state Lt+1 by a set of N discrete points or particles that are updated iteratively through
equation (7). Here we outline how SIR particle filtering is implemented using the return
data.

Step 1: Simulating the State Forward
For i = 1, . . . , N , we first simulate all shocks from their corresponding distribution:

(wt+1, Bt+1, J
s
t+1, J

v
t+1)i (B.1)

where the correlation between the state variables needs to be taken into account.34 Then,
new particles are simulated according to equation (7):

Vt = Vt−1 + κ(θ − Vt−1) + σ
√
Vt−1wt + Jvt Bt (B.2)

Note that t+ 1 shocks affect Rt+1 and Vt+1, and thus to simulate Vt, we in fact need wt, J
v
t

and Bt from the previous period. We then record wt+1, Jvt+1 and Bt+1 for the next period
for each particle.

Step 2: Computing and Normalizing the Weights
Now, we compute the weights according to the likelihood for each particle i = 1, . . . , N :

34 The Brownian shocks zt+1 and wt+1 are correlated with coefficient ρ, and Jst+1 and Jvt+1 are correlated
with coefficient ρJ .
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ωit+1 = f1(Yt+1|Lit+1)

=
1√

2πV i
t

exp

−1

2

[
Rt+1 − (rt − δt − 1

2
V i
t + ηsV

i
t − λµ̄s + J

s(i)
t+1B

i
t+1)
]2

V i
t

 (B.3)

The normalized weights πit+1 are calculated as:

πit+1 = ωit+1/

N∑
j=1

ωjt+1 (B.4)

Step 3: Resampling

The set
{
πit+1

}N
i=1

can be viewed as a discrete probability distribution of Lt+1 = (Vt, J
v
t+1, Bt+1)

from which we can resample. The resampled
{
Lit+1

}N
i=1

as well as its ancestors are stored
for the next period.

The filtering for period t+ 1 is now done. The filtering for period t+ 2 starts over from
step 1 by simulating based on resampled particles and shocks for period t+ 1. By repeating
these steps for all t = 1, . . . , T , particles that are more likely to generate the observed return
series tend to survive till the end, yielding a discrete distribution of filtered spot variances
for each day.
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Table A1: Parameter Estimates: Return-Based Estimation

SV SVJR SVJV SVCJ
κ 6.4802 5.8990 8.0885 7.4387

(0.7732) (0.7451) (0.9158) (0.8418)
θ 0.0339 0.0336 0.0263 0.0244

(0.0025) (0.0024) (0.0020) (0.0015)
σ 0.5121 0.4933 0.4616 0.4387

(0.0270) (0.0267) (0.0281) (0.0268)
ρ -0.7886 -0.8024 -0.8180 -0.8232

(0.0241) (0.0234) (0.0251) (0.0245)
ηs 2.3818 2.2695 2.4483 3.2508

(0.6123) (0.4518) (0.5748) (0.2510)
λ 1.2089 0.8060 0.8128

(0.4845) (0.2183) (0.0907)
µs -0.0167 -0.0261

(0.0063) (0.0108)
σs 0.0173 0.0221

(0.0066) (0.0050)
µv 0.1252 0.0822

(0.0611) (0.0297)
ρJ -0.0960

(0.1124)
Loglikelihood 16122 16131 16137 16149

Notes: We report parameters estimated using returns only for the SV, SVJR, SVJV and SVCJ models.
Parameters are annualized. In parentheses, we report the posterior standard deviation for each parameter.
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Table A2: Parameter Estimates in Existing Studies: The SVJR Model

Panel A: Based on Returns

Author Period κ θ σ ρ λ µs σs
ABL 1953-1996 3.704 0.013 0.184 -0.620 5.040 0.000 0.012
CV 1980-2000 12.187 0.019 4.274 -0.271 0.372 0.051 exp(+)

5.379 0.026 exp(−)
CGGT 1953-1999 3.276 0.015 0.151 -0.279

EJP 1980-2000 3.226 0.021 0.240 -0.467 1.512 -0.025 0.041
Eraker 1987-1990 3.024 0.021 0.202 -0.468 0.756 -0.037 0.066
Bates1 1953-1996 4.380 0.014 0.244 -0.612 0.744 -0.010 0.052
CJM 1996-2004 6.589 0.032 0.450 -0.777 2.790 -0.013 0.013

Panel B: Based on Options

Author Period κ θ σ ρ λ µs σs
BCC 1988-1991 2.030 0.040 0.380 -0.570 0.590 -0.050 0.070
BCJ 1987-2003 5.796 0.012 0.240 -0.467 1.512 -0.100 0.041
CJM 1996-2004 2.638 0.063 0.448 -0.782 2.832 -0.015 0.006

Panel C: Based on Returns and Options

Author Period κ θ σ ρ λ µs σs
Pan 1989-1996 6.400 0.015 0.300 -0.530 12.300 -0.008 0.039

3.300* 0.030* -0.192*
Eraker 1987-1990 4.788 0.042 0.512 -0.586 0.504 -0.010 0.167

2.772* 0.072* -0.050*
HLM 1990-2007 1.711 0.049 0.653 -0.740 2.332 -0.021 0.019

0.415* 0.203* 2.831*

Notes: We report parameter estimates for the SVJR model from existing studies. Estimates in Panel A are
physical values. Estimates in Panel B are risk-neutral values. In Panel C, estimates with a star (*) indicate
risk-neutral values and the rest are physical values. All parameters are annualized. BCC: Bakshi, Cao, and
Chen (1997), based on the S&P 500; ABL: Andersen, Benzoni, and Lund (2002), based on the S&P 500; CV:
Chacko and Viceira (2003), based on the S&P 500; CGGT: Chernov, Gallant, Ghysels, and Tauchen (2003),
based on the DJIA; EJP: Eraker, Johannes, and Polson (2003), based on S&P 500; Eraker: Eraker (2004),
based on S&P 500; Bates1: Bates (2006), based on S&P 500; CJM: Christoffersen, Jacobs, and Mimouni
(2010), based on the S&P 500; BCJ: Broadie, Chernov, and Johannes (2007), based on the S&P 500; Pan:
Pan (2002), based on the S&P 500; HLM: Hurn, Lindsay, and McClelland (2015), based on the S&P 500.
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Table A3: Parameter Estimates in Existing Studies: The SVCJ Model

Panel A: Based on Returns

Author Period κ θ σ ρ λ µs σs µv ρJ
EJP 1980-

2000
6.552 0.014 0.199 -0.484 1.663 -0.018 0.029 0.037 -0.601

Eraker 1987-
1990

4.032 0.014 0.146 -0.461 1.008 -0.032 0.049 0.032 0.312

Panel B: Based on Options

Author Period κ θ σ ρ λ µs σs µv ρJ
BCJ 1987-

2003
14.112 0.006 0.199 -0.484 1.663 -0.066 0.029 0.108 -0.601

AFT 1996-
2010

2.049 0.033 0.354 -0.934 4.435 0.005 0.004 0.052 -0.502

Panel C: Based on Returns and Options

Author Period κ θ σ ρ λ µs σs µv ρJ
Eraker 1987-

1990
5.796 0.034 0.411 -0.582 0.504 -0.061 0.036 0.041 -0.693

2.772* 0.071* -0.075*

Notes: We report parameter estimates for the SVCJ model from existing studies. Estimates in Panel A are
physical values. Estimates in Panel B are risk-neutral values. In Panel C, estimates with a star (*) indicate
risk-neutral values and the rest are physical values. All parameters are annualized. EJP: Eraker, Johannes,
and Polson (2003), based on the S&P 500; Eraker: Eraker (2004), based on the S&P 500; BCJ: Broadie,
Chernov, and Johannes (2007), based on the S&P 500; AFT: Andersen, Fusari, and Todorov (2015a),
based on the S&P 500.
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Figure A1: Parameter Trace for SV Model Parameters. Return-Based Estimation

(a) κ (b) θ

(c) σ (d) ρ

(e) ηs

Notes: We plot the traces for each parameter in the SV model. We use 15,000 iterations. The first 5,000 of
the iterations are treated as burn-in.
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Figure A2: Parameter Trace for SV Model Parameters. Joint Estimation

(a) κ (b) θ

(c) σ (d) ρ

(e) ηs (f) ηv

Notes: We plot the traces for each parameter in the SV model. We use 15,000 iterations. The first 5,000 of
the iterations are treated as burn-in.
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