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Abstract 

 

 

We provide conditions for the existence and the uniqueness of strictly stationary solutions of 

the usual Dynamic Conditional Correlation GARCH models (DCC-GARCH). The proof is 

based on Tweedie's (1988) criteria, after having rewritten DCC-GARCH models as nonlinear 

Markov chains. We also study the existence of their moments and discuss the tightness of 

our sufficient conditions. 
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1 Introduction

1.1 The problem

In multivariate extensions of GARCH models, modelers are faced with the prob-

lem of correlations (between asset returns, in most applications). The simplest

idea is to assume that these correlations are constant in time, and constitute

only an additional matrix of parameters. This has provided the class of Con-

stant Conditional Correlations models (CCC), first introduced by Bollerslev

(1990). Since CCC models can be seen as the components of first-order Markov

processes, once such models are rewritten in an extended vector space, it is rel-

atively easy to prove the existence of strictly stationary and explicit solutions,

even if the latter are analytically complex: see classical textbooks, for instance

Francq and Zaköıan (2010).

It rapidly became apparent that the assumption of constant correlations

is too strong. It does not correspond to economic intuition or many empir-

ical features: see the recent paper by Otranto and Bauwens (2013) and the

numerous references therein, for instance. Therefore, Engle (2002) proposed ex-

tending CCC specifications by adding particular dynamics on the (conditional)

correlation matrices of returns, denoted here by (Rt). To ensure modelers

are dealing with true correlation matrices, he introduced a non-linear trans-

form: there exists a sequence of variance-covariance matrices (Qt) such that

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2, and (Qt)-dynamics are specified instead of

(Rt)-dynamics directly, contrary to other authors (Tse and Tsui, 2002 or Pel-
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letier, 2006, for instance). This non-linear transform ensures that Rt is always

a correlation matrix, i.e. positive semidefinite with ones on its main diagonal.

Nonetheless, it considerably complicates the work of stating DCC model sta-

tionarity conditions. Indeed, analytically tractable solutions to such processes

no longer exist. This explains why the existence and uniqueness of DCC model

stationarity solutions have not yet been established in the literature, nor have

the finiteness of their moments. Particularly, this implies that theoretically

sound statistical inference procedures do not yet exist, as noted in Caporin and

McAleer (2013).

Despite their theoretical shortcomings, DCC models have been used inten-

sively among academics and practitioners. Besides numerous applied works,

several extensions of the baseline DCC representation have been proposed in

the literature: inclusion of asymmetries (Cappiello, Engle, and Sheppard, 2006),

volatility thresholds (Kasch and Caporin, 2013), macro-variables (Otranto and

Bauwens, 2013), univariate switching regime probabilities (Pelletier, 2006, Bil-

lio and Caporin, 2005, Fermanian and Malongo, 2013), among others. Other

authors have revisited the DCC parameterization itself: Billio, Caporin, and

Gobbo (2006), Franses and Hafner (2009), etc. Therefore, there is an urgent

need for new theoretical results concerning the seminal DCC model itself.

Usually in econometrics, proving the existence of stationary solutions is the

first step towards developing a full asymptotic theory (consistency/asymptotic

normality of QML estimates typically, as in Comte and Lieberman (2003) in

the case of multivariate GARCH models), because laws of large numbers and
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some CLTs are easily obtained in this case. In the GARCH literature, this

essential task has been fulfilled by Bougerol and Picard (1992) for univariate

GARCH models, by Ling and McAleer (2003) for multivariate ARMA-GARCH

models, and by Boussama et al. (2011) for BEKK models. In the case of DCC

models, a keystone is missing: a theory for inference has been proposed by Engle

and Sheppard (2001), but their two stage estimation procedure is contingent on

the underlying DCC process being strictly stationary and ergodic (see their

Assumption A.2). The goal of this paper is to fill this gap.

After introducing some notations, we define DCC models at the beginning

of Section 2. They will be rewritten as “almost linear” Markov chains in Sub-

section 2.2. The existence of strong and weak stationary solutions is stated in

Subsection 3.1. Subsection 3.2 exhibits sufficient conditions to get their unique-

ness. We discuss the tightness of our technical conditions from a qualitative

standpoint in Section 4. Proof of the propositions and theorems are detailed in

the appendices.

1.2 Notations

Consider an (n,m) matrix M = [mij ]1≤i≤n,1≤j≤m.

• M ≥ 0 (resp. M > 0) means that all elements of M are non-negative

(resp. strictly positive), and |M | = [|mij |]1≤i≤n,1≤j≤m.

• If n = m, let the diagonal matrix diag(M) = [mij1(i = j)]1≤i≤m,1≤j≤m

and the vector V ecd(M) = [mii]1≤i≤m in Rm.
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• If n = m and M is symmetric, V ech(M) denotes the m(m + 1)/2 =:

m∗ column vector whose components are read from M column-wise and

without redundancy. To be formal, V ech(M) = [m̃k]1≤k≤m∗ , where m̃k =

mij for the unique couple of indices (i, j) in {1, . . . ,m}2, i ≥ j such that

[m+(m−1)+ . . .+(m−j+2)]++(i−j+1) = k. This defines a one-to-one

mapping φ between the indices k ∈ {1, . . . ,m∗} and the pairs (i, j), i ≥ j,

1 ≤ i, j ≤ m, i.e. (i, j) = (φ1(k), φ2(k)) =: φ(k).

• ⊗ denotes the usual Kronecker product, and M⊗p = M ⊗ . . . ⊗ M (p

times). � denotes the element-by-element product. If v is a vector in Rn,

then v �M = [vimij ]1≤i≤n,1≤j≤m.

• We will consider several matrix norms, particularly

‖M‖max = max
1≤i≤n,1≤j≤m

|mij |,

and the spectral norm, defined for any squared matrix by

‖M‖s = sup{
√
λ | λ is an eigenvalue of M ′M} = sup

x

‖Mx‖2
‖x‖2

·

Besides, we will consider any norm N for vectors, that is not the Euclidian

norm ‖ · ‖2. Then, we can define the norm ‖ · ‖N for matrices by setting

‖M‖N = supxN (Mx)/N (x). Note that ‖M‖∞ = maxi
∑
j |mij | when

N (x) = ‖x‖∞ = maxi |xi|.

• ρ(M) denotes the spectral radius of the squared matrix M , i.e. the largest
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of the modulus of M ’s eigenvalues. If M is positive semi-definite, then

ρ(M) = ‖M‖s and its smallest eigenvalue is denoted by λ1(M).

• For any column vector zt ∈ Rm, we denote zt = (z1,t, . . . , zm,t)
′ and

~zt := (z21,t, . . . , z
2
m,t)

′.

• e denotes a vector of ones, the dimension of which will be implicit. 0m

(resp. Im) denotes the m × m matrix of zeros (resp. identity matrix).

When the dimension of an identity matrix is not specified, it will be de-

noted by Id.

• If M depends on x ∈ A, then supx∈AM(x) is the matrix [supx∈Amij(x)].

2 Dynamic Conditional Correlation models

2.1 The classical DCC specification

Let us reiterate here the standard DCC model, as introduced in Engle (2002).

Consider a stochastic process (yt)t∈Z in Rm, typically a vector ofm asset returns.

The sigma field generated by the past information of this process until up to

and including time t− 1 is denoted by It−1.

Modeling the expected returns of financial series is a problem per se, that

has generated a huge amount of literature. In this paper, our focus will be on

the dynamics of the conditional variance-covariance of yt instead. Therefore,

following current practice, we will assume we can remove the conditional means
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of our returns. Let µt(θ) = E[yt|It−1] =: Et−1[yt] be the conditional mean vec-

tor of yt. It depends on a vector of parameters θ ∈ Θ. We define a “detrended”

series (zt)t∈Z by

yt = µt(θ) + zt, Et−1[zt] = 0.

For convenience, the conditional mean µt(θ) is assumed to be measurable with

respect to σ(zt−1, zt−2, . . .). Therefore, It = σ(yt, yt−1, . . .) = σ(zt, zt−1, . . .).

Let us denote by Ht the variance-covariance matrix of the t-observations,

conditionally on It−1: V ar(yt|It−1) = V ar(zt|It−1) := Ht. As usual with DCC-

type models, we split the variance-covariance matrix Ht between volatility terms

on one side (in Dt), and correlation coefficients on the other side (in Rt):

Ht = D
1/2
t RtD

1/2
t , Dt = diag(h1,t, ..., hm,t), (1)

where hk,t denotes the “instantaneous variance” of the return yk,t (or zk,t, equiv-

alently), conditionally on It−1. We assume GARCH-type models on every mar-

gin, but with potential cross-effects between all these volatilities:

V ecd(Dt) = V0 +

r∑
i=1

Ai.V ecd(Dt−i) +

s∑
j=1

Bj .~zt−j , (2)

for some deterministic non-negative matrices (Ai)i=1,...,r and (Bj)j=1,...,s, and

for a positive vector V0 in Rm. We will set Ai := [a
(i)
k,l]1≤k,l≤m, i = 1, . . . , r, and

Bj := [b
(j)
k,l ]1≤k,l≤m, j = 1, . . . , s.

Let us introduce the vector of so-called “standardized residuals” εt := D
−1/2
t zt.
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Obviously, Et−1[εt] = 0 and Et−1[εtε
′
t] = Rt. We impose that M1/2 is positive

definite for any positive definite matrix M . In this case, the square root of Rt

is uniquely defined: see Serre (2010), Theorem 6.1. This will be our convention

throughout the article.

The dynamics of correlations are given by the traditional Dynamic Condi-

tional Correlation specification:

Rt = diag(Qt)
− 1

2Qtdiag(Qt)
− 1

2 , (3)

where the sequence of matrices (Qt)t∈Z satisfies

Qt = W0 +

ν∑
k=1

MkQt−kM
′
k +

µ∑
l=1

Nlεt−lε
′
t−lN

′
l , (4)

for some deterministic matrices (Mk)k=1,...,ν and (Nl)l=1,...,µ, and for a posi-

tive definite constant matrix W0. Obviously, when such a sequence (Qt)t≥−ν

is initialized with ν non negative definite (possibly null) matrices, every Qt,

t ≥ 0, will be definite positive. In Theorem 1, we prove that a “doubly infi-

nite” stationary sequence (Qt)t∈Z of definite positive matrices exists and which

satisfies (4).

We will set Mk := [m
(k)
p,q ]1≤p,q≤m, k = 1, . . . , ν, and Nl := [n

(l)
p,q]1≤p,q≤m, l =

1, . . . , µ. In practice, the positive matrix W0 (or the constant vector V ech(W0)

in Rm∗ equivalently) is a parameter that has to be estimated, most often during

the first stage.
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Aielli (2013) noticed that the estimation of the unknown matrix W0 is not

straightforward, because it cannot be deduced trivially from the unconditional

correlation between the standardized residuals εt. Therefore, he introduced a

new variety of DCC-GARCH models (called cDCC), where (4) is replaced by

Qt = W0 +

ν∑
k=1

MkQt−kM
′
k +

µ∑
l=1

Nldiag(Qt−l)
−1/2εt−lε

′
t−ldiag(Qt−l)

−1/2N ′l .

(5)

Under this new assumption, cDCC can be seen as a particular BEKK model (En-

gle and Kroner, 1995). Therefore, Aielli obtained the existence of strictly and/or

weakly stationary solutions, applying the conditions of Boussama, Fuchs, and

Stelzer (2011) on BEKK processes. Actually, Aielli’s model (5) is a smart but

not intuitive “ad-hoc” specification. Its main justification appears as essentially

technical, to avoid the non-linear feature of Engle’s original DCC model (4).

Under the standard latter specification, DCC models can no longer be rewrit-

ten as BEKK models and other techniques have to be found. In this paper, we

obtain similar results to Aielli (2013), but by keeping the original specification

of DCC models and without relying on another surrounding family of processes.

2.2 DCC as Markov chains

Actually, it is possible to rewrite the previous DCC model as a Markov chain,

that looks like an AR(1) process. This rewrite will become a crucial tool when
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studying stationary solutions hereafter. Set

Xt := (X
(1)
t , X

(2)
t , X

(3)
t , X

(4)
t )′, (6)

where

X
(1)
t := (V ecd(Dt), . . . , V ecd(Dt−r+1))′,

X
(2)
t := (~zt, . . . , ~zt−s+1)′,

X
(3)
t := (V ech(Qt), . . . , V ech(Qt−ν+1))′, and

X
(4)
t := (V ech(εtε

′
t), . . . , V ech(εt−µ+1ε

′
t−µ+1))′.

The dimensions of the four previous random vectors are rm, sm, νm∗ and µm∗

respectively. Their sum, the dimension of Xt, is denoted by d. With simple

block matrix calculations, random matrices (Tt) and a vector process (ζt) exist,

such that the dynamics of Xt, any solution of the DCC model, may be rewritten

as

Xt = Tt.Xt−1 + ζt, (7)

for any t. We will write the block matrix Tt := [Tij,t]1≤i,j≤4 with convenient

random matrices Tij,t.

Knowing (7), the underlying process (Xt) can be seen as a vectorial autore-

gressive of order one, but with random matrix-coefficients (Tt). Let us detail

the AR(1) form of (7):
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• set T1k,t = 0 when k = 3, 4,

T11,t :=



A1 A2 · · · · · · Ar

Im 0m · · · · · · 0m

0m Im 0m
...

...
. . .

. . .
. . .

...

0m · · · 0m Im 0m


, and T12,t :=



B1 B2 · · · · · · Bs

0m · · · · · · · · · 0m

...
...

...
...

0m · · · · · · · · · 0m


.

• We deduce from Equation (2) that

Dt~εt = ~εt�V ecd(Dt) = ~zt = ~εt�V0+

r∑
i=1

~εt�Ai.V ecd(Dt−i)+

s∑
j=1

~εt�Bj .~zt−j .

(8)

Let us set T23,t = T24,t = 0,

T21,t :=



~εt �A1 ~εt �A2 · · · · · · ~εt �Ar

0m · · · · · · · · · 0m

...
...

0m · · · · · · · · · 0m


, and

T22,t :=



~εt �B1 ~εt �B2 · · · · · · ~εt �Bs

Im 0m · · · · · · 0m

0m Im 0m
...

...
. . .

. . .
. . .

...

0m · · · 0m Im 0m


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• Clearly, matrices M̃k, k = 1, . . . , ν, exist such that

V ech(MkQt−kM
′
k) = M̃k.V ech(Qt−k).

Similarly, matrices Ñl, l = 1, . . . , µ, exist such that

V ech(Nlεt−lε
′
t−lN

′
l ) = Ñl.V ech(εt−l.ε

′
t−l).

It is possible to explicitly write the previous matrices M̃k and Ñl.s Indeed,

with the notations of Subsection 1.2, M̃k = [m̃
(k)
u,v]1≤u,v≤m∗ where

m̃(k)
u,v = m

(k)
φ1(u),φ1(v)

m
(k)
φ2(u),φ2(v)

.

Similarly, Ñl = [ñ
(l)
u,v]1≤u,v≤m∗ and ñ

(l)
u,v = n

(l)
φ1(u),φ1(v)

m
(l)
φ2(u),φ2(v)

. Then,

set T31,t = T32,t = 0,

T33,t :=



M̃1 M̃2 · · · · · · M̃ν

Im∗ 0m∗ · · · · · · 0m∗

0m∗ Im∗ 0m∗
...

...
. . .

. . .
. . .

...

0m∗ · · · 0m∗ Im∗ 0m∗


, and T34,t :=



Ñ1 Ñ2 · · · · · · Ñµ

0m∗ · · · · · · · · · 0m∗

...
...

0m∗ · · · · · · · · · 0m∗


.
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• T4k,t = 0, k = 1, 2, 3, and define the µm∗ × µm∗ matrix

T44,t :=



0m∗ 0m∗ · · · · · · 0m∗

Im∗ 0m∗ · · · · · · 0m∗

0m∗ Im∗ 0m∗
...

...
. . .

. . .
. . .

...

0m∗ · · · 0m∗ Im∗ 0m∗


.

Moreover, rewrite ζt = (ζ
(1)
t , ζ

(2)
t , ζ

(3)
t , ζ

(4)
t ), where, with obvious sizes, these

vectors are

ζ
(1)
t = (V0, 0m, . . . , 0m)′, ζ

(2)
t = (~εt � V0, 0m, . . . , 0m)′,

ζ
(3)
t = (V ech(W0), 0m∗ , . . . , 0m∗)

′, and ζ
(4)
t = (V ech(εtε

′
t), 0m∗ , . . . , 0m∗)

′.

Since Dt, Qt and Rt are It−1−measurable, it is easy to see that the filtration

induced by the observations is the natural filtration of (Xt): σ(Xt, Xt−1, . . .) =

It for all t. From now on, we consider (It) as the filtration that is generated

by (Xt). This means that Et−1[Z] = E[Z|It−1] = E[Z|Xt−1, Xt−2, . . .], for

any random vector Z. And a process (Zt) is said to be (one-order, implicitly)

I-Markov if the law of Zt given It−1 is the law of Zt given Xt−1.

Intuitively, the sequence (Xt) is I-Markov because it is the case for the pro-

cesses (ζt) and (Tt) themselves. To prove this formally, we need an assumption

concerning the data generating process (DGP) of (zt).
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Let us define the t-vector of innovations by

ηt := R
−1/2
t εt = R

−1/2
t D

−1/2
t zt. (9)

Note that Et−1[ηt] = 0 and Et−1[ηtη
′
t] = Im by construction. The definition

of these innovations implies that, for every t, σ(ηj , j ≤ t) ⊂ σ(εj , j ≤ t) ⊂

It. Nonetheless, we will not establish whether there are equalities between the

latter filtrations. Technically speaking, this would be equivalent to stating the

invertibility of the underlying process.

Assumption A0: (ηt)t∈Z possesses the Markov property with respect to

the filtration I. In particular, E[ηt|It−1] = E[ηt|Xt−1] for every t.

Obviously, the latter assumption is satisfied if (ηt)t∈Z is a sequence of identi-

cally distributed and mutually independent random vectors, with E[ηt] = 0 and

E[ηtη
′
t] = Im. For instance, if the random vectors ηt are standardized Gaus-

sian and mutually independent, the process (zt)t∈Z is conditionally Gaussian, a

standard case in practice.

Proposition 1. Under A0, the process (Xt) is Markov of order one with respect

to its natural filtration.

See the proof in the appendix.

Remark 1. It would be possible to define a slightly different DGP for the DCC

model above: consider a I-martingale difference (i.i.d., for instance) sequence

(et)t∈Z and set zt = H
1/2
t et, Et−1[et] = 0, Et−1[ete

′
t] = Im. In the latter case,
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the process (ηt) above would be defined by ηt = R
−1/2
t D

−1/2
t H

1/2
t et. Then, it

is easy to check that (ηt) is I-Markov and is a martingale difference. In other

words, A0 would apply in such circumstances.

3 Stationarity of DCC models

3.1 Existence of stationary DCC solutions

The AR dynamics of Xt were defined above thanks to Tt and ζt, which will

be stochastic only through εt, i.e. through the t-innovation ηt and the It−1-

measurable matrix Rt. This creates a major difficulty in proving the existence

of stationary solutions. In particular, this means that Tt depends on some

components of Xt. Therefore, it will be difficult to find explicit expressions like

Xt = f(ηt, ηt−1, . . .) for some deterministic and measurable function f , because

the link between Tt and the past innovations (or observations) is highly non-

linear.

To obtain the existence of stationary solutions in the previous DCC model,

we will invoke Tweedie’s (1988) criterion. The latter result will provide the ex-

istence of an invariant probability measure for the Markov chain defined by (7).

sThis technique has already been used in several papers in econometrics, notably

Ling and McAleer (2003) or Ling (1999).

To get the stationarity conditions of (zt), we have to control the magnitude of

the random matrix Tt, which depends on the random variables ε2kt, k = 1, . . . ,m.

The mean of the latter variables is one, but they are not independent. This is
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in contrast with Ling and McAleer (2003). Moreover, unfortunately, the joint

law of ~εt is a function of Rt, i.e. a function of Xt−1. That is why we need the

following condition.s

Assumption E1: For some p ≥ 1, E[‖ηt‖2p] <∞ and ρ (T ∗) < 1, where

T ∗ := sup
x∈Rd

E[|T⊗pt | | Xt−1 = x].

We reiterate that Tt depends on ~εt, that εt = R
1/2
t ηt, and that the compo-

nents of ηt are uncorrelated. As such, the coefficients of T ∗ are finite because

all of the coefficients of Rt are less than one (in absolute values). When there

are no correlation dynamics, the matrices Mk and Nl are zero and we recover

CCC models. In the latter case, our Assumption E1 is reduced to the main

assumption of Ling and McAleer (Theorem 2.2) that was stated for vectorial

ARMA-GARCH models.

Assumption E2: The law of ηt given that Xt−1 = x is absolutely continu-

ous with respect to the Lebesgue measure, and its density is denoted by fηt(·|x),

for every x ∈ Rd and t. The function x 7→ fηt(η|x) is continuous for every

η ∈ Rm and t. There exists an integrable functionH s.t. supt supx∈Rd fηt(η|x) ≤

H(η) for every η ∈ Rm. Moreover, suptE[‖ηt‖2p |Xt−1 = x] ≤ h̄(‖x‖), for some

function h̄ that satisfies limv→+∞ h̄(v)/vγ = 0 for every γ > 0.

The latter technical assumption is trivially satisfied when (ηt) is an i.i.d.

sequence of random vectors s.t. E[‖ηt‖2p] < +∞. Otherwise, E2 provides

some constraints insofar as the law of ηt depends on the past values of the
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DCC process. Similar conditions may appear in the literature about the non-

parametric estimation of conditional expectations. However, most of them relate

to the boundedness of h̄ and/or its derivatives (as in Assumption 3 in Newey

1997, for instance), or to the moments of h̄ (as Assumption 1 in Donald et al.

2003, for instance). Clearly, E2 is weaker than such assumptions.

Theorem 1. Under the assumptions A0 and E1-E2, the process (zt, Dt, Rt)

as defined by Equations (1), (2), (3) and (4), possesses a strictly stationary

solution. The latter process is measurable with respect to the σ-field I induced

by the observations. Moreover, the 2p-th moments of a solution (zt) are finite.

Example 1: In practice and for the sake of parsimony, it is usual to assume

diagonal-type DCC models, where all the parameter matrices are diagonal, as-

suming no “cross-effects” in terms of volatilities and/or correlations. This means

the non-negative real numbers a
(i)
u , b

(j)
u , m

(k)
u and n

(l)
u , u = 1, . . . ,m, exist such

that

Ai = diag(a
(i)
1 , . . . , a(i)m ), i = 1, . . . , r, Bj = diag(b

(j)
1 , . . . , b(j)m ), j = 1, . . . , s,

Mk = diag(m
(k)
1 , . . . ,m

(k)
m∗), k = 1, . . . , ν, Nl = diag(n

(l)
1 , . . . , n

(l)
m∗), l = 1, . . . , µ.

The associated matrices M̃k and Ñl are also diagonal. Set M̃k = diag(m̃
(k)
l )1≤l≤m∗ ,

and check that m̃
(k)
l = m

(k)
φ1(l)

m
(k)
φ2(l)

. Now, let us specify the previous Assump-

tion E1 when p = 1.

Since E[~εkt | Xt−1 = x] = 1 for every index k, T ∗ is simply |Tt|, replacing
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~εt by one. Denote by P ∗ the characteristic polynomial of T ∗, i.e. P ∗(λ) =

Det(T ∗ − λId). It can be seen easily that two polynomials P ∗1 and P ∗2 s.t.

P ∗(λ) = P ∗1 (λ)P ∗2 (λ) exist. Here, P ∗1 denotes the characteristic polynomial of

the block-matrix [|Tij,t|]1,≤i,j≤2, replacing ~εt by one. P ∗2 is the characteristic

polynomial of the previous matrix |T33,t|. Tedious, but relatively uncomplicated,

algebraic calculations provide

P ∗1 (λ) = ±λπ1

m∏
k=1

 r∑
i=1

a
(i)
k λr+s−i +

s∑
j=1

b
(j)
k λr+s−j − λr+s

 ,

P ∗2 (λ) = ±λπ2

m∗∏
l=1

(
ν∑
k=1

m̃
(k)
l λν−k − λν

)
,

for some integers π1 and π2. Let λ0 be a non-zero root of P ∗. If λ0 is a root

of P ∗1 then there exists an index k ∈ {1, . . . ,m} such that
∑r
i=1 a

(i)
k λr+s−i0 +∑s

j=1 b
(j)
k λr+s−j0 = λr+s0 . If |λ0| ≥ 1, this implies 1 ≤

∑r
i=1 a

(i)
k +

∑s
j=1 b

(j)
k .

On the other side and similarly, if λ0 is a root of P ∗2 and if |λ0| ≥ 1, then

there exists l ∈ {1, . . . ,m∗} s.t. 1 ≤
∑ν
k=1 |m̃

(k)
l |. In other words, a sufficient

condition to fulfill Assumption E1 is

sup
k=1,...,m

r∑
i=1

a
(i)
k +

s∑
j=1

b
(j)
k < 1, and sup

l=1,...,m∗

ν∑
k=1

|m̃(k)
l | < 1. (10)

Nonetheless, to apply Theorem 1 in the general case, it may be hard to

check the condition on the spectral radius of T ∗. This is due to the analytical

complexity of T⊗pt , p > 1, or to the calculation of its eigenvalues, even when

p = 1. In the next theorem, we provide more explicit conditions in the case
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p = 1, i.e. so that the second-order moments of (zt) are finite. These conditions

ensure that E1 will be satisfied. In other words, the conditions will be stronger

than E1, but they may be more practical. Indeed, it is often important to

obtain sufficient conditions that can be written explicitly in terms of the model

parameters, for instance for inference purposes (e.g. the optimization stage to

get QML estimates).

Let us consider N (resp. N ∗) an arbitrary norm for vectors in Rm (resp.

Rm∗). Denote by ‖ · ‖N and ‖ · ‖N∗ the associated norms for matrices.

Theorem 2. If
r∑
i=1

‖Ai‖N +

s∑
j=1

‖Bj‖N < 1, and (11)

ν∑
k=1

‖M̃k‖N∗ < 1, (12)

then Assumption E1 is satisfied with p = 1.

Note that the conditions of Theorem 2 do not depend on the matrices Nl,

l = 1, . . . , µ, which is a relatively unexpected result. Once they are satisfied,

and under A0 and E2, Theorem 1 applies.

By choosing N as the maximum norm for vectors, it can easily be checked

that ‖Ai‖N = supp=1,...,m

∑m
q=1 a

(i)
p,q, and similarly with the matrices Bj . Alter-

natively, we can choose N (x) = ‖x‖2, that induces the spectral norm ‖Ai‖N =

‖Ai‖s. Obviously, we can choose these norms for N ∗ and the matrices M̃k.

It is often of value to assume that the Markov chain is initialized at t = 0

by drawing X0 following its stationary law. Introducing the filtration I∗t :=
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σ(X0, z1, . . . , zt), we can easily see that the DCC solution is now measurable

with respect to the σ-field induced by the innovations and the initial value,

because, whenever t > 0,

σ(X0, z1, . . . , zt) = σ(X0, ε1, . . . , εt) = σ(X0, η1, . . . , ηt).

Example 1 (Continued): Consider a diagonal-type DCC model and max-

imum norms for vectors. In this case, the condition (11) becomes

r∑
i=1

sup
l=1,...,m

a
(i)
l +

s∑
j=1

sup
l=1,...,m

b
(j)
l < 1,

and the condition (12) is
∑ν
k=1 supl=1,...,m∗ |m̃

(k)
l | < 1. These two conditions

are stronger than (10), as expected.

Example 2: To reduce the number of free parameters even further, scalar-

DCC models are often introduced. In this case, all the unknown matrices are

simply products of a scalar and an identity matrix:

Ai = a(i)Im, i = 1, . . . , r, Bj = b(j)Im, j = 1, . . . , s,

Mk = m(k)Im, k = 1, . . . , ν, Nl = n(l)Im, l = 1, . . . , µ.

Such models are very popular, because they allow the number of free parameters

to be drastically reduced. With obvious notations, the conditions of Theorem 1
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and 2 are the same as above:

r∑
i=1

a(i) +

s∑
j=1

b(j) < 1, and

ν∑
k=1

|m(k)|2 < 1. (13)

In passing, we recover the usual (second-order and strict) conditions of station-

arity for GARCH-type models:

0 ≤ a(i), b(j) ≤ 1, and

r∑
i=1

a(i) +

s∑
j=1

b(j) < 1.

3.2 Uniqueness of stationary DCC solutions

Even if stationary solutions of the DCC model do exist, we are not initially

sure a priori that they are unique. Besides its theoretical interest, this problem

has practical implications. For instance, for any process, the convergence of

simulated trajectories towards the same stationary law, independently of the

initialization stage, is a desirable feature. Moreover, the uniqueness of invariant

measures of a Markov process implies the ergodicity of the stationary solution

(see Douc et al. 2014, Corollary 7.17). This is particularly important for in-

ference purposes. Indeed, the estimation of DCC models is typically based on

M-estimates (Quasi Maximum Likelihood, for instance). These techniques rely

heavily on uniform Laws of Large Numbers, that are most often deduced from

the ergodicity of the process. The conditions for identifiability and consistency

rely on some expectations with respect to the underlying invariant measure of

the given stationary process. If, for a given set of parameters, several invari-
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ant measures exist, then it becomes difficult to check such conditions. Finally,

with several underlying invariant measures, we cannot exclude the possibility of

switches from one stationary trajectory to another, disturbing the econometric

analysis (stationarity tests, statistical uncertainty around estimates, etc).

Unfortunately, this uniqueness is not given “for free” by Tweedie’s Lemma 1.

Moreover, the usual arguments concerning the uniqueness of stationary GARCH-

type solutions do not apply here. Indeed, under the Markov-chain specification

given by Equation (7), the matrix Tt is itself a function of the random vector

Xt through the ~εt factors. This is a major difference with the CCC case, and

we need to find another strategy. In this section, we provide some uniqueness

results under some more or less restrictive assumptions.

Now, we will consider only stationary solutions of the DCC model, as given in

Section 3.1. We know that such solutions exist under the (sufficient) conditions

of Theorem 1 or 2, but it is not necessary to impose such conditions from the

outset. Obviously, we will need other technical assumptions.

Assumption U0: The sequence of innovations (ηt)t∈Z is highly stationary

and ergodic.

Assumption U1: ‖T33‖s < 1.

The matrix T33 has been introduced in Subsection 2.2, under the name T33,t.

Since T33,t does not depend on time, we have removed the index t here.

Thanks to the latter assumptions, we will be able to bound ‖Qt‖max from

above by a stationary process (qt), and from below by a constant. Moreover,
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λ1(Qt) will be bounded from below. These tools will be crucial in proving

the uniqueness of stationary DCC solutions. To do so, let us introduce some

intermediate quantities.

• The process (qt), defined by

qt :=
‖V ech(W0)‖2

1− ‖T33‖s
+

√
m3(m+ 1)

2

µ∑
l=1

‖Ñl‖sξt−l,

where ξt :=
∑+∞
k=0 ‖T33‖ks‖ηt−k‖22.

• The constants Cλ := λ1(W0) and Cq := mini=1,...,m(W0)ii.

• The constants

C∗λ :=
λ1(W0)

1−
∑ν
k=1(m(k))2

, and C∗q :=
mini=1,...,m(W0)ii
1−

∑ν
k=1(m(k))2

·

• κ = max(ν, µ) and, for every j = 1, . . . , κ, set

βj,t := 1(j ≤ ν)‖Mj‖2s + 1(j ≤ µ)‖Nj‖2s
4(2m+ 1)m1/2

√
CλCq

‖ηt‖22
√
qt.
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Let N∗t be the (κ, κ)-squared random matrix

N∗t :=



β1,t β2,t · · · · · · βκ,t

1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


.

Note that the sequences (ξt), (qt) and (N∗t ) are stationary and ergodic be-

cause any ξt, qt or N∗t is a measurable function of the innovations (ηt) that are

stationary and ergodic under Assumption U0.

Assumption U2: E[ln+ ‖N∗t ‖] <∞ and the top Lyapunov exponent of the

sequence (N∗t ), defined by γN := limt→+∞ t−1E[ln(‖N∗1N∗2 . . . N∗t ‖)], is strictly

negative.

Such conditions are standard in the GARCH literature (see Francq and

Zaköıan, 2010, Section 2.2.2. for instance). Note that γN ≤ E[ln ‖N∗1 ‖] for

any norm ‖ · ‖.

Actually, the technical assumptions U1-U2 above will ensure the uniqueness

of (εt), (Qt) and (Rt) only. To get the uniqueness of (Dt) and then of (zt) itself,

we need a last assumption: with the notations of Subsection 2.2, set

T̄t :=

 T11,t T12,t

T21,t T22,t

 , and T̄ ∗ = E[T̄t].
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Note that T̄ ∗ does not depend on any particular sequence (εt) nor t, because

E[ε2kt] = 1 for every k.

Assumption U3: ρ(T̄ ∗) < 1

Theorem 3. Under A0 and U0-U3, a strictly stationary solution of the DCC

model is unique and ergodic, given a sequence (ηt).

The latter result can be strengthened in the following particular case, which

is commonly encountered in the literature.

Assumption U4: The underlying DCC model is “partially” scalar, i.e.

scalars m(k) exist such that Mk = m(k)Im for all k = 1, . . . , ν. Moreover,

ρ(M∗) < 1 by setting

M∗ :=



(m(1))2 (m(2))2 · · · · · · (m(ν))2

1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


.

Obviously, U4 is not mandatory to get our uniqueness result, even if it allows

the technical condition U2 to be weakened most often, by lowering the βj,t terms.

In every case, this “partially” scalar case encompasses the common practice of

scalar DCC (or scalar multivariate GARCH) models.

Corollary 1. Under A0 and U0-U4, a strictly stationary solution of the DCC
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model is unique and ergodic, given a sequence (ηt), replacing Cλ (resp. Cq) by

C∗λ (resp. C∗q ) in U2.

Example 2 (Continued): In the case of scalar DCC models of order one,

it is easy to specify the conditions above. Here, r = s = ν = µ = 1,

A1 = a(1)Im, B1 = b(1)Im, M1 = m(1)Im, N1 = n(1)Im.

Assumptions U1 and U4 are equivalent and mean |m(1)| < 1. Assumption U4

is fulfilled if E[ln ‖N∗1 ‖max] < 0, or if

E

[
ln

(
(m(1))2 + (n(1))2

4(2m+ 1)m1/2

√
CλCq

‖ηt‖22
√
qt

)]
< 0. (14)

This expectation could be easily evaluated by simulation, by noting that ηt and

qt are independent. Finally,

T̄ ∗ =

 a(1) b(1)

a(1) b(1)

⊗ Im.

Through elementary algebra, it can checked that the characteristic function

of T̄ ∗ is the function x 7→ (−x)m(a(1) + b(1) − x)m. Then Assumption U3

means a(1) + b(1) < 1. Therefore, as expected, the conditions required for

stationary DCC solutions to be unique are more demanding than for them to

simply exist, due to U2. Generally, the latter condition will be fulfilled more

easily if supl ‖Nl‖s is “a lot smaller” than one, if m is not “too large”, and if
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the tails of ηt are not “too heavy”.

4 Discussion and practical considerations

Now, let us discuss the sufficient conditions to obtain the existence of stationary

DCC solutions, as given in Theorems 1 and 2. The most explicit ones are (11)

and (12). Since scalar DCC models are by far the most commonly used models

in the literature, we focus on the conditions of the previous examples 1 and 2

above, particularly (13). In the latter case, the conditions on the coefficients

of the volatility process are those generally applied in the univariate GARCH

literature. It can be proved they are necessary and sufficient for the existence of

second-order and strictly stationary GARCH solutions (see Francq and Zaköıan,

2010, Theorem 2.6 and Remark 2.6). More interestingly, we can check empiri-

cally how tight the (now) new conditions on the coefficients of the (Qt) process

are. In other words, in Example 2, is the constraint
∑ν
k=1 |m(k)|2 < 1 close to a

necessary and sufficient condition for generating stationary trajectories of (zt),

(Rt) and/or (Qt)s?

For illustrative purposes, we have considered a very simple bivariate scalar

DCC model of order one, given by

hk,t = v0 + a hk,t−1 + b ε2k,t, k = 1, 2,

v0 = 1/4, a = 0.8, b = 0.1,
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Qt = W0 + (m(1))2Qt−1 + (n(1))2εt−1ε
′
t−1,

W0 = I2/2 + ee′/2, e = [1, 1]′,

with our notations. The latter process is generated by i.i.d. innovations (ηt)

that are independent standard bivariate Gaussian vectors. We initialize the

process at t = 0 with Q0 = R0 = I2 and hk,0 = 1/2, k = 1, 2.

In the paper, we have stated theoretically that the values of the coefficients

of the matrices Nl, l = 1, . . . , µ (or the coefficients n(l) in the scalar case)

do not matter to obtain the existence of stationary DCC solutions. We have

verified this fairly counter-intuitive fact empirically: with the model above,

different coefficients n(1) do not seem to modify the shape of the trajectories we

generate, independently of the other parameters. Therefore, our experiments

will lead with a fixed value n(1) =
√

3. Note that this value is larger than one

and this could be seen “naively” as a source of non-stationarity.

As expected, the value one is key for m(1). When the latter is very close to

one but less than one ((m(1))2 = 0.999 in our case), we check that the simu-

lated trajectories of (zt), (Qt) and (Rt) look stationary, once the influences of

the starting values have been forgotten (broadly speaking when t ≥ 4000): see

Figure 1 (solid lines). On the other side, when this auto-regressive parameter

is larger than one, even by a small amount ((m(1))2 = 1.001 in our case), we

observe that the (Qt) trajectories explode: see Figure 1 (dashed lines). Appar-

ently, this is not the case for the (Rt) correlation coefficients. They tend towards

some constant levels (Figure 2), but differ from one experiment to another one.
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This phenomenon is a consequence of the normalization stage (3), but it seems

difficult to maintain that feature will happen for almost every trajectory and

any DCC model. Indeed, by managing increasingly (very) high numbers with

the (Qt) process, we cannot exclude the possibility of spurious unexpected (Rt)

behaviors. Moreover, we have checked that the (zt) trajectories that we gener-

ated in this case do not seem to exhibit non-stationary patterns visually. This is

logical because our DCC model tends towards a CCC model in such situations.

Therefore, it is likely that modelers will be able to manage (i.e. evaluate and

simulate numerically) DCC trajectories in practice, even if (12) or its gener-

alizations are not satisfied. Actually, this task remains feasible as long as the

numerical values of (Qt) are manageable (i.e. not too large) by our software.

This is the case when the number of dates is not too large.

We have replaced Gaussian innovations (ηt) by fat-tailed random vectors, to

check to what extent this may be a source of instability. The ηkt components,

k = 1, 2 and t = 0, . . . , T , have been drawn following mutually independent

standardized Student laws with ν degrees of freedom, ν > 0. We reiterate here

that the ηt-moments of order ν or higher do not exist. As long as ν ≥ 2 and

m(1) < 1, we do not observe explosive patterns for (zt). The components of

Rt appear to become stationary, even if the decrease in initial value effects is

very slow when ν is close to two. On the contrary, when ν < 2, the processes

(Qt) and (Rt) are highly unstable. The former exhibit very spiky trajectories,

while the latter often tend to be attracted by the 1 or (−1) area. Besides, some

(zt) trajectories reach very high and unrealistic values (1080 for instance). In
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every case, when m(1) ≥ 1, the (Qt) trajectories explode and the (Rt) ones tend

to constant values that depend on each experiment. In such cases, the return

process (zt) may reach huge values, but only when ν ≤ 2, apparently. This

analysis illustrates the necessity of considering innovations with finite second-

order moments, and the fact that higher-order moments are not mandatory to

obtain stationary solutions.

Concerning the sufficient conditions that guarantee that stationary DCC

solutions are unique, it is more difficult to evaluate their tightness because they

are more intricate and involve too many model characteristics. Nonetheless,

with the simple scalar DCC model used in Example 2, we observe that the

key condition (14) will be more demanding when the number m of underlyings

increases. On the contrary, smaller values |n(1)| would help. And the partially

scalar case induces significantly less demanding conditions than the general case,

because the values of the constants C∗λ and C∗q in the denominator are a lot

higher than Cλ and Cq respectively. The effect of |m(1)| is ambiguous because

it appears in several quantities, especially T33 and C∗λ.
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A Technical lemmas

We recall Tweedie’s criterion, a key tool to prove the existence of an invariant

probability measure for a Markov chain. This result has a remarkable advantage:

contrary to more commonly used techniques (based on some Lyapunov-Foster

conditions, for example), it is not necessary to state the irreducibility of the

underlying Markov chain, to obtain the existence of stationary solutions. Tech-

nically speaking, proving the irreducibility of such a non-linear Markov chain is

a very challenging task in general.

Let (Xt)t=1,2,... be a temporally homogeneous Markov chain with a locally

compact separable metric state space (S,B). The transition probability is

P (x,A) = P (Xt ∈ A|Xt−1 = x), where x ∈ S and A ∈ B. Tweedie’s (1988)

Theorem 2 provides:

Lemma 1. Suppose that (Xt) is a Feller chain, i.e. for each bounded contin-

uous function h on S, the function of x given by E[h(Xt) |Xt−1 = x] is also

continuous.

1. If there exists, for some compact set A ∈ B, a non-negative function g and

ε > 0 satisfying

∫
Ac

P (x, dy)g(y) ≤ g(x)− ε, x ∈ Ac, (15)

then there exists a σ−finite invariant measure µ for P with 0 < µ(A) <∞.
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2. Furthermore, if

∫
A

µ(dx)

[∫
Ac

P (x, dy)g(y)

]
<∞, (16)

then µ is finite and hence π = µ/µ(S) is an invariant probability measure.

3. Furthermore, if

∫
Ac

P (x, dy)g(y) ≤ g(x)− f(x), x ∈ Ac, (17)

then µ admits a finite f -moment, that is
∫
S
µ(dy)f(y) <∞.

The following Lemma is our version of Lemma A.2 in Ling and McAleer

(2003). Therefore, its proof is omitted.

Lemma 2. For a given squared matrix T , if ρ(|T |) < 1, then there exists a

vector M > 0 such that (Id− |T |′)M > 0.

B Proof of Proposition 1:

Note that εt (or ~εt, or even V ech(εtε
′
t)) is a function of the couple (Rt, ηt) only.

Due to (3) and (4), Rt is a deterministic function of Xt−1. Since ηt is Markov

with respect to I, the law of εt knowing It−1 is the law of εt knowing Xt−1

merely. The same assertion applies with Tt, ζt, or Xt itself, instead of εt.

In other words, the non-linearity of the DCC model comes mainly from ~εt in

Tt. But there exist constant matrices (of zeros and ones) F and G such that (7)
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can be rewritten

Xt = (F · ~ε ∗t )� ToXt−1 + (G · V ech(εtε
′
t)
∗)� ζo, (18)

where To (resp. ζo) is the Tt matrix (resp. ζt vector) when εt = 1, ~ε ∗t :=

[~ε
′

t , 1]′ and V ech(εtε
′
t)
∗ := [V ech(εtε

′
t)
′, 1]′. Since εt = R

1/2
t ηt and since Rt is

a measurable function of Xt−1, then Xt is clearly a function of Xt−1 and of

the innovation ηt only, that are Markov. These arguments prove the Markovian

structure of the (Xt) process under A0. �

C Proof of Theorem 1:

First, let us check that (Xt) is a Feller chain in a convenient space, to be able

to apply Lemma 1 afterwards. Let h be a bounded and continuous function on

Rd. Clearly,

E[h(Xt) |Xt−1 = x] = E[h(Ttx + ζt) |Xt−1 = x]

= E[h(ψ1(εtε
′
t)x + ψ2(εtε

′
t)) |Xt−1 = x],

for some continuous transforms ψ1 and ψ2. Note that εt = R
1/2
t ηt and that R

1/2
t

is a continuous function of Xt−1. Indeed, Rt 7→ R
1/2
t is continuous (see Propo-

sition 6.3 in Serre (2010), e.g.), and Xt−1 7→ Rt is continuous by construction.
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Then,

E[h(Xt) |Xt−1 = x] = E[h ◦ ψ̃(x, ηt) |Xt−1 = x] =

∫
h ◦ ψ̃(x, η) fηt(η|x) dη,

for some continuous transform ψ̃. Now, consider a sequence of vectors (xn)

that tends to x when n → ∞. Since h is bounded and since the sequence

(h ◦ ψ̃(xn, η)fηt(η|xn))n is convergent for every η, we can apply the dominated

convergence theorem under E2. We deduce that x 7→ E[h(Xt) |Xt−1 = x] is

continuous and then (Xt) is Feller.

Note that the vector Xt belongs to the metric space Rd, endowed with the

usual topology. Since we impose that the matrices Qt will be positive definite,

Xt will live in a subspace of Rd, where X
(3)
t will gather only the components

of definite positive matrices. It is easy to check that this subspace is separable

and locally compact. Therefore, the assumptions of Lemma 1 are satisfied.

Second, set g(x) = 1 + |x⊗p|′M , for an arbitrary positive vector M , that

will be chosen after. Let us check that the latter function can be invoked as in

Lemma 1. Clearly,

E[g(Xt) |Xt−1 = x] = 1 + E
[
|(Ttx + ζt)

⊗p|′ |Xt−1 = x
]
M.

By expanding the Kronecker products, we can check that (Ttx+ζt)
⊗p = (Ttx)⊗p+
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R(x), with

‖R(x)‖ ≤ C0

(
‖ζt‖.‖(Ttx)⊗(p−1)‖+ . . .+ ‖ζt‖p−1.‖(Ttx)‖+ ‖ζt‖p

)
,

for some positive constant C0 and any multiplicative matrix norm ‖ · ‖.

Note that (Ttx)⊗k = T⊗kt .x⊗k. Recall that Tt is a function of ~εt, i.e. of

εt. Then, its conditional law depends on Rt, i.e. it is a function of Xt−1. We

deduce

E[|(Ttx)⊗p| |Xt−1 = x]′M ≤ |x⊗p|′E[|T⊗pt |′ |Xt−1 = x]M

≤ |x⊗p|′
(

sup
x∈Rd

E[|T⊗pt |′ |Xt−1 = x]

)
M

≤ |x⊗p|′(T ∗)′M.

Now, choose M as provided by Lemma 2, when the matrix T in this lemma is

replaced by T ∗.

Moreover, εt = R
1/2
t ηt, and the (positive definite) matrix R

1/2
t can be chosen

so that all its coefficients are less than m1/2 (diagonalize this matrix on an

orthonormal basis and invoke Cauchy-Schwartz inequality). This implies that

constants αk exist such that ‖V ech(εtε
′
t)
⊗k‖ ≤ αk‖V ech(ηtη

′
t)
⊗k‖ when k ≤ p.

Since E[‖ηt‖2p|Xt−1 = x] < h̄(‖x‖) by assumption, some constants ck,l such

that Et−1[‖ζt‖k.‖~εt‖l] < ck,lh̄(‖x‖)(k+l)/p for any couple (k, l), k + l ≤ p exist.
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We deduce the boundedness of E[T⊗kt |Xt−1 = x], k ≤ p, and

E[‖R(x)‖ |Xt−1 = x] ≤ C1

(
h̄(‖x‖)1/p‖x⊗(p−1)‖+ . . .+ h̄(‖x‖)(p−1)/p‖x‖+ h̄(‖x‖)p

)
,

for some positive constant C1. Applying E2, we have obtained

E[g(Xt) |Xt−1 = x] ≤ 1 + |x⊗p|′(T ∗)′M +O

(
p−1∑
k=0

‖x⊗k‖ · ‖x‖a
)

≤ g(x)− |x⊗p|′ (Id− (T ∗)′)M +O

(
p−1∑
k=0

‖x⊗k‖ · ‖x‖a
)
, (19)

for every constant a > 0. By Lemma 2, (Id−(T ∗)′)M is strictly positive. Then,

a positive constant c0 exists such that

|x⊗p|′ (Id− (T ∗)′)M ≥ c0
d∑
j=1

|xj |p,

for every d-dimensional vector x. Set N(x) :=
∑d
j=1 |xj |p. By a similar rea-

soning, a positive constant c1 exists such that g(x) ≥ c1N(x) for every x ∈ Rd.

Moreover, by applying Hölder’s inequality, we have

∑
i1,...,ik

|xi1 · · ·xik | =

(
d∑
i=1

|xi|

)k
≤

(
d∑
i=1

|xi|p
)k/p

dk,

for every k ≤ p. Then, a positive constant c2 exists such that

• g(x) ≤ 1 + ‖M‖
∑
i1,...,ip

|xi1 · · ·xip | ≤ 1 + c2N(x), and

• every “residual” term ‖x⊗k‖ is bounded above by (a scalar times)N(x)k/p,
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when k < p.

Therefore, this provides

E[g(Xt) |Xt−1 = x] ≤ g(x)

[
1− c0

N(x)

g(x)
+O

(
sup

k=0,...,p−1

N(x)(k+a)/p

g(x)

)]

≤ g(x)

[
1− c0N(x)

1 + c2N(x)
+O

(
sup

k=0,...,p−1

N(x)(k+a)/p

c1N(x)

)]
.

Let us define the set A := {x ∈ Rd |N(x) ≤ ∆}, for some ∆ > 1. When ∆ is

sufficiently large, we obtain, for any x 6∈ A and a power a s.t. 0 < a < 1/p,

0 ≤ E[g(Xt) |Xt−1 = x] ≤ g(x)

[
1− c0

2c2
+O

(
∆a−1/p

c1

)]
< g(x)

[
1− c0

3c2

]
.

(20)

Since g(x) ≥ 1, it follows that E[g(Xt) |Xt−1 = x] ≤ g(x) − ε for some ε >

0. This proves Equation (15) in Lemma 1. Therefore, there exists a σ-finite

invariant measure µ for the Markov chain (Xt), and 0 < µ(A) <∞.

For any x ∈ A, Equation (19) provides

E[g(Xt) |Xt−1 = x] ≤ g(x) +O

(
p−1∑
k=0

‖x⊗k‖ · ‖x‖a
)
≤ c3∆(1+a/p)

for some constant c3 that does not depend on x. Then,

∫
A

µ(dx)

[∫
Ac

P (x, dy)g(y)

]
≤
∫
A

µ(dx)E[g(Xt) |Xt−1 = x] ≤ C∆1+a/pµ(A) <∞.

We deduce that µ is finite and hence π = µ/µ(Rd) is an invariant probability
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measure of (Xt). This implies that a strictly stationary solution satisfying (7)

exists, still denoted by (Xt).

Third, by invoking Equation (20), we get (17) in Lemma 1 with f(x) =

βg(x), for some β ∈ (0, 1). Since g(x) ≥ c1N(x), we obtain

Eπ[N(Xt)] <∞. (21)

In particular, invoking Hölder’s inequality, this implies that Eπ[z2kit ] < ∞, for

every i = 1, . . . ,m and every k ≤ p. �

Remark 2. Equation (21) provides a lot more than only the finiteness of z’s

moments. Overall, it means that

Eπ

[
m∑
i=1

hpit

]
<∞, Eπ

[
m∑
i=1

z2pit

]
<∞,

Eπ

 m∑
i,j=1

|Qij,t|p
 <∞, and Eπ

[
m∑
i=1

|εit|2p
]
<∞.

D Proof of Theorem 2:

Let us consider λ, a non zero eigenvalue of T ∗, when p = 1. We can easily check

that this matrix is simply Tt, by replacing ~εt by one, and replacing the coeffi-

cients of the matrices M̃k and Ñl by their absolute values (remember that the

matrices Ai and Bj are already non-negative). Let v = (v(1),v(2),v(3),v(4))

be the associated eigenvector, where the dimensions of the subvectors v(k),
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k = 1, . . . , 4 are consistent with those of Xt in (6). We can further split the latter

subvectors, so that they comply with the matrices Ai, Bj , M̃k and Ñl. With ob-

vious vector sizes, we will denote v(1) = (v
(1)
1 , . . . ,v

(1)
r ), v(2) = (v

(2)
1 , . . . ,v

(2)
s ),

v(3) = (v
(3)
1 , . . . ,v

(3)
ν ) and v(4) = (v

(4)
1 , . . . ,v

(4)
µ ).

By simple block-matrix calculations, the relation T ∗v = λv implies

v
(1)
1 = v

(2)
1 =

r∑
i=1

Aiv
(1)
1

λi
+

s∑
j=1

Bjv
(2)
1

λj
,

v
(3)
1 =

ν∑
k=1

M̃kv
(3)
1

λk
+

µ∑
l=1

Ñlv
(4)
1

λl
, and v

(4)
1 = 0.

Note that v
(1)
i = v

(1)
1 /λi and v

(2)
j = v

(2)
1 /λj for every i and j. Moreover,

v
(3)
k = v

(3)
1 /λk and v

(4)
l = 0 for every k and l.

If λ ≥ 1, then

N (v
(1)
1 ) ≤

r∑
i=1

‖Ai‖N
N (v

(1)
1 )

|λ|i
+

s∑
j=1

‖Bj‖N
N (v

(1)
1 )

|λ|j

≤ N (v
(1)
1 )

 r∑
i=1

‖Ai‖N +

s∑
j=1

‖Bj‖N

 .

Similarly,

N ∗(v(3)
1 ) ≤

ν∑
k=1

‖M̃k‖N∗
N ∗(v(3)

1 )

|λ|k
≤ N ∗(v(3)

1 )

ν∑
k=1

‖M̃k‖N∗ .

41



Since v 6= 0, we obtain

1 ≤
r∑
i=1

‖Ai‖N +

s∑
j=1

‖Bj‖N , or 1 ≤
ν∑
k=1

‖M̃k‖N∗ .

This proves the result. �

E Proof of Theorem 3:

Suppose that two strongly stationary solutions (Xt) and (X̃t) exist. Since both

satisfy Equation (7), with obvious notations, we can write for every t

Xt = Tt.Xt−1 + ζt, and X̃t = T̃t.X̃t−1 + ζ̃t.

Note that the difference between Tt and T̃t is only due to the (a priori different)

factors εt and ε̃t. We want to prove that, for every t, almost certainly Xt = X̃t.

The problem will be solved if we prove the uniqueness of the process (X
(3)
t , X

(4)
t ),

given by subvectors of (Xt). For the moment, assume it has been proved. Recall

that

X
(3)
t := (V ech(Qt), . . . , V ech(Qt−ν+1))′, and

X
(4)
t := (V ech(εtε

′
t), . . . , V ech(εt−µ+1ε

′
t−µ+1))′.

(Rt) is therefore unique, due to (3). Moreover, the sequence of random matrices

(Tt) and of noises (ζt) are also unique, similarly to the CCC case. Now, let us

prove the uniqueness of Yt := (X
(1)
t , X

(2)
t ), knowing (ηt). This would imply the
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uniqueness of the instantaneous volatility process (Dt) and of the return process

(zt) themselves. With our notations, we have

Yt = T̄tYt−1 + ζ̄t, and Ỹt = T̄tỸt−1 + ζ̄t,

for every t, by setting ζ̄t = (ζ
(1)
t , ζ

(2)
t ). The arguments are then standard: for

instance, see Theorem 2.4’s proof in Francq and Zaköıan (2010).

We recall the reasoning briefly, to get the uniqueness of (Yt). Note that

Yt − Ỹt = T̄tT̄t−1 · · · T̄t−p · (Yt−p−1 − Ỹt−p−1),

whenever p > 1. Since the sequences (Yt) and (Ỹt) are stationary, it is sufficient

to prove that ‖T̄tT̄t−1 · · · T̄t−p‖ tends to zero a.e. when p tends to the infinity,

for any matrix norm. This is the case under Assumption U3 because, for every

sequence (εt),

E[ln ‖T̄tT̄t−1 . . . T̄1‖1] ≤ lnE[‖T̄tT̄t−1 . . . T̄1‖1] = ln ‖
(
T̄ ∗t
)t ‖1,

by invoking Jensen’s inequality, the stationarity of (T̄t), and by noting that

all the coefficients of the matrices T̄t are non-negative. It is well-known that

limt→∞ t−1 ln(‖At‖) = ln ρ(A), for any squared matrix A. Apply this result with

A = T̄ ∗t . Therefore γT = limt→∞ t−1E[ln ‖T̄tT̄t−1 . . . T̄1‖1], the top Lyapunov

exponent of the sequence of random matrices (T̄t), is strictly negative under

Assumption U3. Since the sequence of matrices (T̄t) is strictly stationary under
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U0, we get limp→+∞ ‖T̄tT̄t−1 · · · T̄t−p‖1 = 0 with probability one (Theorem 2.3

in Francq and Zaköıan, 2010). This provides the uniqueness of the processes

(Dt) and (zt), once we assume the uniqueness of the processes (Qt) and (εt).

Now, let us prove the uniqueness of (X
(3)
t , X

(4)
t ) or, in other terms, of (Qt, εt).

This task is clearly more tricky, because we will have to deal with the nonlinear

feature of the DCC specification. Here, the convenient matrix norm will be the

spectral norm ‖ · ‖s. Consider two stationary solutions (Qt, εt) and (Q̃t, ε̃t).

Since the spectral norm is sub-multiplicative, we deduce from (4) that

‖Qt − Q̃t‖s ≤
ν∑
k=1

‖Mk‖2s‖Qt−k − Q̃t−k‖s

+

µ∑
l=1

‖Nl‖2s‖εt−lε′t−l − ε̃t−lε̃′t−l‖s. (22)

The key point will be to bound from above the terms ‖εt−lε′t−l − ε̃t−lε̃′t−l‖s by

a function of ‖Qt−l − Q̃t−l‖s. To lighten the indices, we assume l = 0. Clearly,

we have

‖εtε′t − ε̃tε̃′t‖s = ‖R1/2
t ηtη

′
tR

1/2
t − R̃1/2

t ηtη
′
tR̃

1/2
t ‖s

≤ ‖(R1/2
t − R̃1/2

t )ηtη
′
tR

1/2
t ‖s + ‖R̃1/2

t ηtη
′
t(R

1/2
t − R̃1/2

t )‖s

≤ ‖R1/2
t − R̃1/2

t ‖s‖ηtη′t‖s‖R
1/2
t ‖s + ‖R̃1/2

t ‖s‖ηtη′t‖s‖R
1/2
t − R̃1/2

t ‖s.

Since the rank of ηtη
′
t is one, ‖ηtη′t‖s = Tr(ηtη

′
t) = ‖ηt‖22. Moreover,

‖R1/2
t ‖s = ρ(Rt)

1/2 ≤ Tr(Rt)1/2 =
√
m.
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We deduce

‖εtε′t − ε̃tε̃′t‖s ≤ 2m1/2‖ηt‖22.‖R
1/2
t − R̃1/2

t ‖s. (23)

Since the spectral norm is unitarily invariant, Theorem 6.2 in Hingham (2008)

provides

‖R1/2
t − R̃1/2

t ‖s ≤
1

λ1(Rt)1/2 + λ1(R̃t)1/2
‖Rt − R̃t‖s. (24)

Note that, for any t,

λ1(Rt) = min
x

x′Rtx

x′x
= min

x

x′diag(Qt)
−1/2Qtdiag(Qt)

−1/2x

x′x

≥ min
y

y′Qty

y′y
min
x

‖diag(Qt)
−1/2x‖22

‖x‖22

≥ λ1(Qt) min
i

1

qii,t
≥ Cλ
‖Qt‖max

,

invoking Lemma 4. Since the same inequality applies with λ1(R̃t), we get

1

λ1(Rt)1/2 + λ1(R̃t)1/2
≤ ‖Qt‖

1/2
max + ‖Q̃t‖1/2max√

Cλ
· (25)

Moreover,

Rt − R̃t = (diag(Qt)
−1/2 − diag(Q̃t)

−1/2)Qtdiag(Qt)
−1/2

+ diag(Q̃t)
−1/2(Qt − Q̃t)diag(Qt)

−1/2

+ diag(Q̃t)
−1/2Q̃t(diag(Qt)

−1/2 − diag(Q̃t)
−1/2) := R1 +R2 +R3.

Note that R1 = [(qii,t − q̃ii,t)qij,tq−1/2jj,t q
−1/2
ii,t q̃

−1/2
ii,t /(q

1/2
ii,t + q̃

1/2
ii,t )]1≤i,j≤m and

|qij,t| ≤
√
qii,t
√
qjj,t (Cauchy-Schwartz). Since ‖A‖max ≤ ‖A‖s ≤ m‖A‖max, we
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get

‖R1‖max ≤ C−1q ‖diag(qii,t − q̃ii,t)‖max ≤ C−1q ‖Qt − Q̃t‖max ≤ C−1q ‖Qt − Q̃t‖s,

and ‖R1‖s ≤ mC−1q ‖Qt − Q̃t‖s. Similarly, ‖R3‖s ≤ mC−1q ‖Qt − Q̃t‖s. By

Lemma 4, we obtain

‖R2‖s = ‖diag(Q̃t)
−1/2(Qt − Q̃t)diag(Qt)

−1/2‖s

≤ ‖diag(Q̃t)
−1/2‖s‖diag(Qt)

−1/2‖s‖Qt − Q̃t‖s

≤ 1√
mini qii,t

1√
mini q̃ii,t

‖Qt − Q̃t‖s ≤
1

Cq
‖Qt − Q̃t‖s.

Globally, we get

‖Rt − R̃t‖s ≤
2m+ 1

Cq
‖Qt − Q̃t‖s (26)

everywhere. Recalling (23), (24) (25) and (26), we deduce

‖εtε′t − ε̃tε̃′t‖s ≤
2m1/2‖ηt‖22√

Cλ
· 2m+ 1

Cq
(‖Qt‖1/2max + ‖Q̃t‖1/2max)‖Qt − Q̃t‖s. (27)

Set vt := ‖Qt − Q̃t‖s. By using the previous inequality and the notation of

Lemma 3, we obtain

vt ≤
ν∑
k=1

‖Mk‖2svt−k +

µ∑
l=1

‖Nl‖2s
4m1/2(2m+ 1)√

CλCq
‖ηt−l‖22

√
qtvt−l :=

κ∑
j=1

βj,tvt−j ,

(28)
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for all t and with our notations.

Setting ~vt := [vt, vt−1, . . . , vt−κ+1]′, we get

0 ≤ ~vt ≤ N∗t ~vt−1 ≤ . . . ≤ N∗t N∗t−1 · · ·N∗t−p~vt−p−1,

for any positive integer p. By the stationarity of the (Qt) and (Q̃t) trajectories,

the norm of ~vt is bounded by a constant that is independent of t. Moreover,

under the assumptions U0 and U2, ‖N∗t N∗t−1 · · ·N∗t−p‖s tends to zero a.e. when

p→ +∞ and for any fixed t (see Francq and Zaköıan 2010, Theorem 2.3). We

deduce vt → 0 a.e. when t → ∞, because (vt) can be initialized arbitrarily far

in the past. This implies that Qt = Q̃t a.e. Therefore, Rt = R̃t a.e. and εt = ε̃t

a.e., knowing (ηt). This concludes the proof of uniqueness. The ergodicity of

the (now unique) DCC solution is a consequence of Corollary 7.17 in Douc et

al. (2014). �

Lemma 3. Under Assumption U0-U1, for almost every trajectory of a solution

(Qt) of the DCC model, we have

‖Qt‖max ≤
‖V ech(W0)‖2

1− ‖T33‖s
+

√
m3(m+ 1)

2

µ∑
l=1

‖Ñl‖sξt−l := qt,

where ξt :=
∑+∞
k=0 ‖T33‖ks‖ηt−k‖22.

If these innovations |ηt| are bounded from above by a positive constant Cη
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a.e., then the latter inequality is simply

‖Qt‖max ≤
‖V ech(W0)‖2 +

√
m3(m+1)

2

∑µ
l=1 ‖Ñl‖sC2

η

1− ‖T33‖s
.

Proof of Lemma 3: For any t, ‖V ech(εtε
′
t)‖s = ‖V ech(εtε

′
t)‖2 ≤

√
m(m+ 1)‖εt‖2∞/

√
2.

Moreover, since ‖x‖s = ‖x‖2 for any vector x and ‖A‖max ≤ ‖A‖s for any ma-

trix A (Lütkepohl, 1996, p. 111), we get

‖εt‖∞ ≤ ‖εt‖s ≤ ‖R1/2
t ηt‖s ≤ ‖R1/2

t ‖s.‖ηt‖s

≤ ‖Rt‖1/2s ‖ηt‖2 ≤
√
m‖ηt‖2.

This proves the inequality ‖V ech(εt−lε
′
t−l)‖s ≤

√
m3(m+ 1)‖ηt−l‖22/

√
2, for

every t and l.

With the notations of Subsection 2.2, consider the dynamics of the random

vector X
(3)
t := (V ech(Qt), . . . , V ech(Qt−ν+1))′. Clearly, X

(3)
t = T33X

(3)
t−1 + πt,

where

πt := V ech(W0) +

µ∑
l=1

ÑlV ech(εt−lε
′
t−l).
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We deduce from U1 that

‖Qt‖max ≤ ‖X(3)
t ‖max ≤ ‖X(3)

t ‖s ≤
+∞∑
k=0

‖T33‖ks‖πt−k‖s

≤
+∞∑
k=0

‖T33‖ks

{
‖V ech(W0)‖s +

µ∑
l=1

‖Ñl‖s.‖V ech(εt−k−lε
′
t−l)‖s

}

≤ ‖V ech(W0)‖s
1− ‖T33‖s

+

+∞∑
k=0

‖T33‖ks
µ∑
l=1

‖Ñl‖s.
√
m3(m+ 1)

2
‖ηt−k−l‖22

≤ ‖V ech(W0)‖s
1− ‖T33‖s

+

√
m3(m+ 1)

2

µ∑
l=1

‖Ñl‖sξt−l := qt.

Since the spectral norm of V ech(W0) is its Euclidian norm, as for any vector,

we obtain the result. �

Lemma 4. Under Assumption U1, for almost every trajectory of a solution

(Qt) of the DCC model, we have λ1(Qt) ≥ Cλ and mini=1,...,m qii,t ≥ Cq, where

Cλ = λ1(W0) and Cq := mini=1,...,m(W0)ii. In addition, if we assume U4, then

λ1(Qt) ≥ C∗λ and mini=1,...,m qii,t ≥ C∗q , with

C∗λ :=
λ1(W0)

1−
∑ν
k=1(m(k))2

and C∗q :=
mini=1,...,m(W0)ii
1−

∑ν
k=1(m(k))2

·

Proof of Lemma 4: Is it known that, for any two positive definite matrices

A and B, λ1(A+B) ≥ λ1(A) + λ1(B) (Weyl’s Theorem. See Lütkepohl, 1996,

p. 75). In our case, we deduce that λ1(Qt) ≥ λ1(W0) everywhere, due to

Equation (4).

We can improve this lower bound in the particular case of “partially” scalar
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DCC models. Indeed, in this case, we have

λ1(Qt) ≥ λ1(W0)+

ν∑
k=1

λ1((m(k))2Qt−k) ≥ λ1(W0)+

ν∑
k=1

(m(k))2λ1(Qt−k). (29)

Introduce the random vector ~λt := (λ1(Qt), . . . , λ1(Qt−ν+1))′ and ~λW := (λ1(W0), 0, . . . , 0)′.

Because of (29), we have ~λt ≥ M∗~λt−1 + ~λW for every t. Under Assumption

U4, it is easy to check that
∑+∞
k=0(M∗)k is absolutely convergent and that

~λt ≥
+∞∑
k=0

(M∗)k~λW := ~λ∞,

for every t. Obviously, M∗~λ∞ + ~λW = ~λ∞. Due to the definition of M∗, this

implies that all the components of ~λ∞ are the same, i.e. a real number λ∞

exists such that ~λ∞ = λ∞e, e ∈ Rν . Taking the first component of the vectorial

equation λ∞M
∗e+~λW = λ∞e provides λ∞

∑ν
k=1(m(k))2 +λ1(W0) = λ∞. This

states the lower bound of λ1(Qt) under U4.

Consider a fixed index i = 1, . . . ,m. The reasoning for the sequence (qii,t)t

is similar, because

qii,t ≥ (W0)ii +

ν∑
k=1

(m(k))2qii,t−k,

for all t, as this inequality is playing the same role as (29). This implies the

desired result. �
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Figure 1: Some simulated trajectories of Qt[1, 1] (top) and Qt[1, 2] (bottom)
when m(1) =

√
0.999 (solid line, left axis) or m(1) =

√
1.001 (dashed line, right

axis).
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Figure 2: Some simulated trajectories of Rt[1, 2] when m(1) =
√

0.999 (solid
line) or m(1) =

√
1.001 (dashed line).
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