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1 Introduction

The majority of the work on empirical option pricing has been to the case of European

style index options, in particular to options written on the S&P 500 Index.1 Much less

literature has focussed on pricing individual stock options. The reason for the focus on

European style options is that they are easier to price since one does not have to consider

and estimate the optimal early exercise strategy which is required to price the American

style stock options. However, data from the Chicago Board of Options Exchange shows

that in March 2018 the combined volume of the 500 most traded stock options exceeded

that of the S&P 500 Index options by 26%. Thus, by considering only European style index

options this large and important source of data is neglected. Moreover, individual stock

options likely contain important information that allows us to learn about more about,

e.g., investor preferences than can be deduced from index options alone.

Most, if not all, of the existing literature on individual stock option pricing uses uni-

variate models, i.e. models in which the stock dynamics is considered in isolation, see

1ESSEC Business School, Av. B. Hirsch, Cergy Pontoise, France 95021. Phone: +33 1 3443 3049 -
E-mail: rombouts@essec.edu.

2Corresponding author at: Department of Economics and Department of Statistical and Actuarial
Sciences, University of Western Ontario, Social Science Centre, London, ON, Canada N6A 5C2, Phone:
+1 519 661 2111 ext. 85311 - E-mail: lars.stentoft@uwo.ca.

3CREST-ENSAE-ParisTech, 5, Av. Henry Le Chatelier, TSA 96642, 91764 Palaiseau CEDEX. Phone:
+33(0)1 70 26 67 50 - E-mail: francesco.violante@ensae.fr
We would like to thank participants at the 4th and 5th ESSEC empirical finance workshop, the 1st
International Conference on Econometrics and Statistics (EcoSta 2017), the 2018 HEC/McGill Spring
Finance Workshop, and at seminars at Amundi, Queen’s University, University of Waterloo, and Wilfrid
Laurier University for useful comments. Jeroen Rombouts acknowledges the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-17-CE26-0001 (project BREAKRISK). Lars Stentoft
acknowledges financial support from CREATES, funded by the Danish National Research Foundation
(DNRF78). Francesco Violante acknowledges financial support from the Danish Council for Independent
Research (1329-00011A) and CREATES, funded by the Danish National Research Foundation (DNRF78).
Please address correspondence to Lars Stentoft Department of Economics, University of Western Ontario,
Social Science Centre Room 4071, London, ON, Canada N6A 5C2, Phone: +1 519 661 2111 ext. 85311 -
E-mail: lars.stentoft@uwo.ca.

1For some early contributions see for example Bollerslev and Mikkelsen (1996), Bollerslev and Mikkelsen
(1999), Heston and Nandi (2000), Christoffersen and Jacobs (2004), and Hsieh and Ritchken (2005). In
addition to the mentioned applications to the S&P 500 Index, GARCH models were found to perform well
for European style options on the German DAX index by Härdle and Hafner (2000), on the Hang Seng
Index by Duan and Zhang (2001), and on the FTSE 100 Index by Lehar, Scheicher, and Schittenkopf
(2002).
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Stentoft (2015) for a recent example. However, asset pricing models like, e.g., the Capital

Asset Pricing Model imply that these dynamics and the expected returns depend on the

asset’s exposure to market risk factors. To fill this gap in the literature and to analyze the

importance of allowing for interactions with and exposure to the market risk factors, we

consider a bivariate discrete time model for the asset returns with time varying conditional

volatility specified as a multivariate generalized autoregressive conditional heteroskedas-

ticity (GARCH) process. Given our joint model for individual stock and the market index

returns, we use the results of Rombouts and Stentoft (2011) to derive the risk neutral

dynamics and we price American options using a simulation based approach that allows

incorporating the early exercise feature.

Multivariate GARCH models have been previously used to test asset pricing models.

One of the first papers to do so is Bollerslev, Engle, and Wooldridge (1988) who use GARCH

models for the excess returns on bills, bonds, and stocks. See also Turtle, Buse, and Korkie

(1994) and Gonzalez-Rivera (1996) who formulate bivariate models with size portfolios or

individual stock returns and the market portfolio. More recent uses of multivariate GARCH

models focus on portfolio risk management applications, see e.g. Francq and Zakoian

(2018). Compared to this early literature, our paper considers not only the statistical

support, in terms of significantly estimated coefficients for the risk parameters, but it also

assesses the economic value of considering a bivariate framework by comparing out of

sample option pricing errors.

To be specific, we ask the relevant question: does it pay, in the sense of yielding smaller

pricing errors, to consider a bivariate model linking the market and the individual stock

historical returns in terms of pricing the individual stock options? To assess this, we use

an economically relevant metric for option pricing errors, a metric we believe is much more

relevant for this type of comparisons, instead a purely statistical metric like the in sample

fit. Our results show that the losses from using a univariate formulation amounts to 18%

on average and may be as large as 80% for certain individual stocks. These results are

robust, not only across option characteristics, such as moneyness and maturity, but also

through time, in general, and in crisis periods, in particular, lending strong support to our
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proposed model.

We compare our flexible model to alternative specifications that uses the index returns

as the one risk factor that should be priced. These results confirm that allowing for flexible

dynamic conditional correlation is key to superior option pricing performance whereas the

particular specification of risk premia is of second order only. For example, when consider-

ing a one factor model formulated in the spirit of e.g. Begin, Dorion, and Gauthier (2017)

or Elkamhi and Ornthanalai (2010), the losses continue to be substantial and amounts to

more than 10% on average. We also compare our model’s performance to what would be

obtained with a so-called affine specification. Affine dynamics are essential for obtaining

closed form solutions for European options but in terms of accuracy of index option pricing,

Christoffersen, Dorion, Jacobs, and Wang (2010) find that non-affine univariate GARCH

models are dominated by affine specifications. Using a specification with affine conditional

covariance dynamics, we confirm and generalize this finding to the multivariate setting. In

particular, we document that using an affine specification instead of the more flexible and

traditional non-affine specification results in large losses, that on average amount to 40%

even when allowing for flexible conditional dependence.

In conclusion, our model shows excellent performance when it comes to option pric-

ing. A potential drawback of our proposed approach, however, is that risk parameters

are estimated from historical returns alone and that, therefore, potentially important in-

formation available from option data is not used. Previous literature, which has included

option data, has used affine specifications of factor models with very restricted conditional

dependence to allow obtaining semi-closed form solutions for European style option prices.

Incorporating option data in a calibration exercise is very difficult in our model because

option prices are unavailable in closed form and instead one has to use computationally

expensive simulation based techniques. However, individual stock options are of American

style and for these no closed form solutions are currently available rendering calibration to

option prices difficult and, considering the large improvements our proposed methodology

has over alternative methods that use affine formulations of simple one factor models and

lead to large losses, we therefore argue that this “drawback” may not be that important
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after all because of our model’s superior performance.

The rest of the paper is organized as follows: In Section 2 we present our bivariate

model, we explain how to obtain the risk neutral dynamics, and we discuss the different

choices of risk specifications. In Section 3 we describe the data and we present some overall

results on model estimation and on the resulting aggregate pricing errors. In Section 4 we

contrast the performance of our proposed methodology with various alternative models to

assess the economic value of using a theoretically consistent model when pricing individual

stock options. Section 5 conducts a series of robustness checks. Finally, Section 6 offers

some conclusions and outlines future avenues for research.

2 A dynamic bivariate model for asset returns

We consider the following bivariate model

rt = ri + ∆(Σt,Λ)− 1

2
(Σt � I)i + Σ

1/2
t ηt, (1)

where rt = (r1,t, r2,t)
′, with asset 1 indicating the market index return and asset 2 indicating

the individual stock returns, i = (1, 1)′, Σt is the conditional covariance matrix (with

elements denoted by σij,t), and ηt is a standard bivariate Gaussian innovation term. In (1),

∆(Σt,Λ) specifies the risk premia linking risk related parameters in Λ (with typical element

λij) to the conditional covariance Σt. We specify Σt according to the so-called BEKK-model

(named after Baba-Engle-Kraft-Kroner) defined in Engle and Kroner (1995), though any

other specification could have been used. Defining N × N matrices Aik and Bik and an

upper triangular matrix C0 the general version of the BEKK-model is given by

Σt = Cᵀ
0C0 +

K∑
k=1

q∑
i=1

Aikεt−iε
ᵀ
t−iA

ᵀ
ik +

K∑
k=1

p∑
i=1

BikΣt−iB
ᵀ
ik. (2)

For practical purposes, we will assume that K = q = p = 1 and we set N = 2 in this

bivariate setup. In this case the Full BEKK bivariate model in (2) contains 11 parameters

and implies the following dynamic model for typical elements of Σt:

σ11,t = c11 + a211ε
2
1,t−1 + 2a11a12ε1,t−1ε2,t−1 + a212ε

2
2,t−1
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+b211σ11,t−1 + 2b11b12σ21,t−1 + b212σ22,t−1, (3)

σ21,t = c21 + a11a12ε
2
1,t−1 + (a21a12 + a11a22)ε1,t−1ε2,t−1 + a21a22ε

2
2,t−1

+b11b12σ11,t−1 + (b21b12 + b11b22)σ21,t−1 + b21b22σ22,t−1, (4)

σ22,t = c22 + a221ε
2
1,t−1 + 2a21a22ε1,t−1ε2,t−1 + a222ε

2
2,t−1

+b221σ11,t−1 + 2b21b22σ21,t−1 + b222σ22,t−1, (5)

where εt = Σ
1/2
t ηt.

The Full BEKK model above allows for feedback effects from both assets, i.e. when

α12 6= 0 the innovation to the second asset contributes to updating assets one’s conditional

variance. In the setup we have outlined above with the market as the first asset, this

may not make much sense. For this reason we pick as our benchmark model a restricted

version of the Full BEKK model in which A and B are lower diagonal. To be specific, in this

model market innovations feed back into the stock volatility, but not the other way around.

Also note that this assumption has implications for updating the covariance which now

depends on the product of the innovations and the squared stock innovation but not the

squared market innovation ε1. We call this model the Triangular BEKK model. To assess

the importance of allowing for flexible conditional covariance dynamics, we will contrast

the performance of this model with one in which both off diagonal elements of A and B

and where we force the covariance to be zero which results in a model with independent

dynamics for the index and for the stock, that is a model that corresponds to what one

would get if the stock returns were modelled univariately.

2.1 Risk neutral dynamics

In order to price options we need to derive the risk neutral dynamics implied by the system

above. In the bivariate model we propose, markets are incomplete and hence there is no

unique way to derive the equivalent martingale measure (EMM) needed for option pricing.

In this paper, we follow the approach of Rombouts and Stentoft (2011) in which a candidate
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EMM is specified from the following Radon–Nikodym derivative

dQ

dP

∣∣∣∣Ft = exp

(
−

t∑
i=1

(ν ′iεi + Ψi (νi))

)
, (6)

where νi is a N -dimensional vector sequence and Ψt (·) denotes the conditional cumulant

generating function. This specification generalizes the results from Christoffersen, Elkamhi,

Feunou, and Jacobs (2010) from a univariate case to the multivariate setting.

Rombouts and Stentoft (2011) show that the probability measure defined above is an

EMM if and only if

0 = Ψt (νt − ej)−Ψt (νt)−Ψt (−ej) + ∆(Σt,Λ), (7)

for all j = 1, ..., N , where ej is an N−dimensional vector of zeros except for position j

where it is 1. Moreover, in this case it is straightforward to shown that under the risk

neutral measure the conditional cumulant generating function of εt is given by

ΨQ
t (u) = Ψt (νt + u)−Ψt (νt) . (8)

When εt is bivariate Gaussian distributed, the conditional cumulant generating function

is particularly simple and given by

Ψt(u) =
1

2
u′Σtu. (9)

This very simple form means that option pricing is simple even in the case with conditional

heteroskedasticity. In particular, it is straightforward to show that the distribution under

Q is obtained from

ΨQ
t (u) = u′∆(Σt,Λ) +

1

2
u′Σtu. (10)

Thus, it follows that the risk neutral dynamics remain Gaussian although with a shifted

mean. The shift in the mean is exactly what is required to compensate investors for the

risk associated with investing in the underlying risky assets. Moreover, in this case we can

solve the EMM restriction in (7) explicitly to obtain

νt = Σ−1t ∆(Σt,Λ). (11)
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This means that there is a one-to-one correspondence between the ν-parameter, which is

implicitly linked to investor preferences, and the elements of Λ, the λ-parameters, which

we can estimated straightforwardly from historical returns.

The tight link between P and Q dynamics and the ability to link λ with ν is an im-

portant reason for maintaining the Gaussian assumption. Another important reason is

that maintaining this assumption ensures that our results do not critically depend on the

exact method used for risk-neutralization since all methods will yield similar results.2 An

important potential future extension of this paper is to generalize the innovation distribu-

tion to better fit the extant empirical evidence documenting that returns are in fact highly

non-normal with excess kurtosis and potentially significant skewness.

2.2 Specifications of risk premia

The above section shows that the formulation of ∆(Σt,Λ) is key to specifying risk premia

and to driving a wedge between the dynamics under P and Q and is, naturally, expected

to be important for option pricing. In this paper we will consider several different spec-

ifications linking the risk related parameters in Λ denoted by λij to the elements of the

conditional variance in Σt denoted by σij,t. The most general specification we consider is

given by

∆(Σt,Λ) =

 σ11,t λ11

f(σ11,t, σ21,t, σ22,t) λ21 + σ22,t λ22

 , (12)

where f(σ11,t, σ12,t, σ22,t) is a function of, potentially, all the elements in the conditional

covariance matrix at time t. For example, we could simply set this function to be the

covariance, i.e. f( ) = σ12,t, which we will refer to as our “benchmark” specification. In

addition to this, we will consider specifications in which we set f( ) equal to the conditional

correlation (that is ρt = σ12,t/(
√
σ11,t
√
σ22,t), the conditional beta (that is βt = σ12,t/σ11,t),

and the conditional index variance σ11,t.

2For example, Simonato and Stentoft (2015) document that very different empirical pricing performance
can be obtained when using different standard methods for obtaining the risk neutral dynamics in univariate
GARCH models with non-Normal innovations.
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We will also consider the case when λ21 = 0 such that only (own) variance risk is priced

in the model. In this case the risk premia are given by

∆(Σt,Λ) =

 σ11,t λ11

σ22,t λ22

 . (13)

When this specification for the risk premia is combined with a model with zero correlations

it essentially corresponds to using a univariate model for option pricing purposes and we

refer to it as the “Univariate” or “Independent” specification.

To assess the importance of allowing for flexible specifications of the risk premia we

will contrast the performance of the above models to two alternatives which we discuss

in detail in the Appendix. The first of these is a model formulated in the spirit of the

one factor models. In this framework innovations are assumed independent but return

correlation is introduced by assuming that market excess returns drives risk premia. This

setup is straightforward to accommodate in our framework by allowing the function f( )

to depend on the market innovation also and setting f( ) = λ11σ11,t − 1
2
λ21σ11,t + ε1,t. The

second alternative is a model formulated in the spirit of Duan and Wei (2005) in which

the market is used as the driver of the stochastic discount factor directly. This setup is

also straightforward to accommodate in our framework and simply involves a particular

restriction on ∆(Σt,Λ) in which the only estimated risk parameter comes from the index

equation.

3 Data and preliminary results

We consider 26 large US stocks for which full samples of options are available for the

period from 2000 to 2015 and full samples of returns are available for the period from

1999 to 2015, both years included.3 To decrease the computational burden involved with

numerically evaluating option prices we only consider options traded on Wednesdays and

3We require an additional year of data for returns since, when pricing options, we need to filter out
starting values of the conditional covariance matrix. These stocks are all part of the Dow Jones Industrial
Avarage (DJIA) as of the most recent change to the index which happened after the close of trading on
March 18, 2015.
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to ensure that quoted option prices are for liquidly traded options we only consider out

of the money options.4 Table 1 shows the relevant stock tickers together with information

about the option data and sample statistics for the asset returns for the period between

2000 and 2015.

The table shows that though the number of options available for the individual stocks

does vary slightly, the split across moneyness categories is remarkably stable with most

of the options, about 42%, being out of the money put options as expected. Across

maturity most of the options fall in the long term category but the table shows that a

significant amount, i.e. 31.6%, of the options in our sample have less than 2 months to

maturity. For individual stocks, the results do differ much more across maturity than across

moneyness. For example, for PFE almost one third of the options have long maturity and

only around one eight of them have short maturity. The sample statistics for the return

data shown in the right most columns in Table 1 confirm that all stocks share the typical

empirical regularities found for financial asset returns with, in particular, significant excess

kurtosis. Compared to what is typically observed for index returns, though, the skewness

of individual stock returns is much smaller in absolute terms.

3.1 Estimation

All the specifications considered in this paper are straightforward to estimate with the

maximum likelihood method. In particular, by construction, all the parameters needed

for pricing can be identified from historical return data since we are implying the pricing

parameters, i.e. the λ’s. This is a clear advantage of the methodology and means that

it could be used even in cases where options do not exist. On the other hand and as

was previous mentioned, option data may have important information and incorporating

this information is a valuable future area of research. This would, though, require one to

develop faster pricing methodologies than the state of the art simulation based method

used in this paper. Note that since we are considering individual stock options which are

4These restrictions are in line with most of the literature. In particular, we consider only options, put
options as well as call options though, that are less than 20% out of the money.
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American style and hence allow for early exercise this is a non-standard task as no closed

(or semi-closed) form pricing formulas exist.

Table 2 shows the likelihood values for the Triangular BEKK model with 6 different

risk premia specifications. The table shows that likelihoods always increase when adding

risk premia to the equation and this most importantly so when adding all three premia.

In fact, the increase in likelihood is large, around 20 on average, and significant for all the

models with three risk premia parameters. The likelihood also increases significantly at a

10% level for all of the index-stock combinations when only considering (own) volatility

risk premia in the index and stock equation. The table shows that a model with covariance

risk is the one that in most cases results in the largest likelihood value. This happens for

13 of the stocks. Thus, from the return series alone there is strong support of models that

include risk premia and in terms of likelihood values the best model is a model with priced

covariance risk in the stock equation.

Table 3 provides parameter estimates for this model and Table 4 provides the corre-

sponding statistics from a t-test of their significance. The tables first of all show that, as

expected, in general most of the estimated risk premia are positive. In particular, all the

estimated parameters from the index equation are positive and in the stock equation the

covariance risk is positive for all of the stocks and the own variance risk is positive for 22

of the stocks. For the 4 stocks with negative own variance risk premia neither of these are

significant. In terms of statistical significance of the individual stock risk premia only 6

of the own variance risk premia are significantly positive.5 However, when considering the

covariance risk in addition to the own variance risk, 11 of the 26 individual stocks have

significant risk premia. Table 4 also shows that most of the dynamic parameters, the c’s,

a’s and b’s, are precisely estimated and significantly different from zero. In particularly all

the ai,i’s and bi,i’s, for i = 1, 2, are significant with the only exception being a2,2 for UNH.

The parameter estimates for the feedback effects, i.e. a2,1 and b2,1, are also significant

in the majority of the cases, 20 and 16, respectively. In total, 199 of the 225 dynamic

parameters are significant lending strong support to our choice of specification.

5It is well known that estimating these precisely from historical asset return data alone is difficult.
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3.2 Simulated option prices

Given a set of parameter estimates, the risk-neutral distribution derived above is easily

simulated from, and since option values are essentially conditional discounted expectations,

option pricing is possible in all the models outlined above. Option pricing using simulation

for European style derivatives dates back to, at least, Boyle (1977). To accommodate the

early exercise feature in individual stock options we implement the Least Squares Monte

Carlo (LSMC) pricing method initially suggested by Longstaff and Schwartz (2001). The

method has since then been used in several empirical papers, see e.g. Stentoft (2005) for

the first empirical application of a (univarite) GARCH model to price individual stock

options and for a detailed description of how the method can be implemented.6

The LSMC method of Longstaff and Schwartz (2001) approximates the value of holding

the American style option at a given point in time along a specific simulated path by the

predicted value from a cross-sectional regression using all the in-the-money paths. The

method proceeds as follows: First, given the full sample of random paths, the pricing

step is initiated at the maturity date of the option. At this time, it is possible to decide

along each path if the option should be exercised because the future value trivially equals

zero. Hence, the pathwise cash flows may be easily determined at maturity. Second,

working backwards through time, a cross-sectional regression is performed at the previous

point in time where early exercise is to be considered. In the regression, the discounted

future cash flows are regressed on transformations of the current state variables, i.e. the

asset prices and volatility levels. The fitted values from this regression are then used as

estimates of the pathwise conditional expected values of holding the option for one more

period. The decision of whether to exercise or not along each path can now be made

by comparing the estimated conditional expected value of holding the option with the

value of immediate exercise. Third, once the decision has been recorded for each path,

we can move back through time to the previous early exercise point and perform a new

cross-sectional regression with the appropriate pathwise cash flows based on the previously

6See also Stentoft (2008) and Stentoft (2015) for additional results on the use of simulation methods
to price American style individual stock options in GARCH models with non-Gaussian innovations.
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Table 5: RIVRMSE for various risk premia specifications

RIVRMSE Best model
Ticker Count CBeta Correl Covar Index Cbeta Correl Covar Index

AXP 22,266 0.2137 0.2137 0.2134 0.2136 *
BA 28,239 0.1538 0.1537 0.1538 0.1537 *

CAT 28,943 0.1872 0.1874 0.1876 0.1878 *
CSCO 12,261 0.1951 0.1949 0.1949 0.1950 *

CVX 24,425 0.1755 0.1755 0.1754 0.1755 *
DD 18,021 0.1875 0.1874 0.1875 0.1875 *
DIS 19,251 0.2661 0.2658 0.2665 0.2657 *
GE 13,023 0.2537 0.2534 0.2540 0.2530 *
HD 21,614 0.1686 0.1679 0.1669 0.1666 *

IBM 29,799 0.2974 0.2948 0.3007 0.3006 *
INTC 14,912 0.1937 0.1941 0.1944 0.1943 *

JNJ 15,596 0.2019 0.2017 0.2013 0.2014 *
JPM 27,461 0.2712 0.2713 0.2718 0.2717 *

KO 13,965 0.1425 0.1421 0.1420 0.1416 *
MCD 21,059 0.1445 0.1445 0.1441 0.1442 *

MMM 18,523 0.1513 0.1513 0.1507 0.1508 *
MRK 17,190 0.2281 0.2282 0.2276 0.2262 *

MSFT 19,183 0.2203 0.2203 0.2202 0.2205 *
NKE 21,810 0.1950 0.1950 0.1950 0.1949 *
PFE 12,528 0.1688 0.1707 0.1698 0.1691 *
PG 16,212 0.1843 0.1840 0.1829 0.1831 *

UNH 25,092 0.1682 0.1683 0.1682 0.1686 *
UTX 21,149 0.1525 0.1525 0.1522 0.1522 *

VZ 16,595 0.1601 0.1599 0.1593 0.1570 *
WMT 19,098 0.1661 0.1658 0.1665 0.1657 *
XOM 21,432 0.1856 0.1856 0.1848 0.1861 *

All 519,647 0.2002 0.1999 0.2003 0.2002 4 3 10 9

This table shows the relative implied volatility root mean squared error for option pricing models Trian-
gular BEKK specifications and various formulations for the risk premium. Left hand columns contain the
actual RIVRMSE and right hand columns contains a “*” for the best performing model among the four
specifications.

determined optimal choices. Fourth and finally, with the early exercise strategies along

each path, an estimate of the American option value can be obtained as a simple average

of the discounted pathwise cash flows.

In our application we use M = 100, 000 paths in the simulation and we use the complete
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set of polynomials of order less than or equal to two in the stock price and the stock

volatility in the cross-sectional regressions. Table 5 contains the pricing errors expressed

in terms of relative implied volatility root mean squared errors, RIVRMSEs, for the four

different risk premia specifications with a Triangular BEKK specification for the conditional

covariance.7 Implied volatilities, IVs, are often used as a reasonable and informative non-

linear transformation of option prices that allows comparing options with different maturity

and moneyness on an equal footing. The first thing to notice from the table is that there is

generally very little difference between the RIVRMSEs for different specifications of the risk

premium. This holds for all individual stocks, in general, and on average, in particular. The

Covar specification is the one that most often has the lowest RIVRMSE for the individual

stocks but is the specification with the, marginally, largest average RIVRMSE. Thus, our

first conclusion is that the particular specification used for the risk premium is of second

order and in the following we therefore consider the Covar specification, for the simple

reason that this model is the one that most often has the highest likelihood value.8

4 Evaluating option pricing models

To evaluate our proposed option pricing model’s performance we now compare its RIVRMSE

to what would be obtained with several alternative specifications. The most obvious al-

ternative is the univariate models. Specifically we consider the relative losses specified

by

Loss =
RIV RMSE(alternative)

RIV RMSE(multivariate)
− 1. (14)

Positive relative losses directly measures the cost that would be incurred if instead of

using the multivariate model one was to use the standard univariate framework, or any of

the other alternatives considered. Table 6 shows the relative implied root mean squared

errors, RIVRMSE, for various alternative models along with their losses, calculated from

7We imply the volatility by inverting the Black-Sholes-Merton formula.
8Since it is the worst performing benchmark model our results should be robust to this choice.
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Table 6: RIVRMSE for alternative option pricing models

Ticker Indep Loss Factor Loss Index Loss Affine Loss
AXP 0.2221 0.0408 0.2561 0.2001 0.2154 0.0092 0.3834 0.7964

BA 0.2162 0.4062 0.1679 0.0920 0.1544 0.0038 0.2422 0.5752
CAT 0.1957 0.0429 0.1998 0.0650 0.1881 0.0023 0.2388 0.2728

CSCO 0.2294 0.1767 0.4280 1.1956 0.1948 -0.0006 0.3036 0.5575
CVX 0.1962 0.1186 0.1998 0.1394 0.1765 0.0066 0.2258 0.2874

DD 0.2255 0.2024 0.2087 0.1128 0.1877 0.0010 0.2575 0.3731
DIS 0.2802 0.0513 0.3120 0.1706 0.2696 0.0117 0.2393 -0.1021
GE 0.2540 -0.0001 0.2679 0.0547 0.2542 0.0007 0.3431 0.3510
HD 0.2648 0.5868 0.1772 0.0619 0.1703 0.0205 0.2992 0.7932

IBM 0.2928 -0.0262 0.3503 0.1649 0.3077 0.0234 0.2576 -0.1432
INTC 0.2207 0.1354 0.2005 0.0316 0.1952 0.0041 0.2938 0.5114

JNJ 0.2198 0.0919 0.1847 -0.0824 0.2004 -0.0048 0.2647 0.3145
JPM 0.2735 0.0062 0.2375 -0.1260 0.2703 -0.0055 0.4309 0.5855

KO 0.1919 0.3511 0.1667 0.1734 0.1424 0.0024 0.2431 0.7112
MCD 0.1703 0.1821 0.1557 0.0805 0.1448 0.0052 0.2407 0.6707

MMM 0.2249 0.4917 0.1560 0.0346 0.1514 0.0045 0.2454 0.6277
MRK 0.3428 0.5061 0.2062 -0.0938 0.2280 0.0020 0.3619 0.5903

MSFT 0.2861 0.2995 0.2175 -0.0123 0.2217 0.0068 0.2789 0.2666
NKE 0.2297 0.1779 0.1946 -0.0023 0.1957 0.0036 0.2526 0.2953
PFE 0.1934 0.1393 0.2282 0.3443 0.1720 0.0130 0.2359 0.3893
PG 0.2104 0.1507 0.1807 -0.0117 0.1823 -0.0031 0.2429 0.3284

UNH 0.2357 0.4012 0.1810 0.0765 0.1676 -0.0036 0.2478 0.4733
UTX 0.2752 0.8076 0.1623 0.0664 0.1524 0.0012 0.2424 0.5927

VZ 0.1722 0.0813 0.1535 -0.0362 0.1606 0.0086 0.2663 0.6718
WMT 0.1758 0.0558 0.1740 0.0447 0.1661 -0.0023 0.2743 0.6472
XOM 0.2002 0.0836 0.1999 0.0817 0.1854 0.0036 0.2479 0.3416

All 0.2359 0.1774 0.2213 0.1045 0.2015 0.0059 0.2803 0.3994

This table shows the relative implied volatility root mean squared error for various alternative option pricing
models. Column 2 shows results for the benchmark Triangular BEKK multivariate GARCH model with
covariance risk premia. Columns 3 and 4 shows results and relative losses for the univariate restriction,
columns 5 and 6 shows results and relative losses for a one factor model, and columns 7 and 8 shows results
and relative losses for the Duan model (delete this though). Finally, columns 8 and 9 shows results and
losses for the Affine specification.

(14), when compared to the benchmark Triangular BEKK multivariate GARCH model

with covariance risk premia.

Column 3 in the table shows results for the restricted version of our model without

conditional covariances equivalent to assuming that a univariate model is used and column
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4 shows the relative losses one would incur when using this model instead of our proposed

benchmark model. The table shows that the losses amount to 17.74% on average. For

most, i.e. 24 out of 26, stocks, the univariate model performs worse and losses may be

very large with the maximum loss amounting to 80.76% for UTX. The average loss in

RIVRMSE from using the univariate specification is 0.037 larger than with the multivariate

benchmark model and a simple T-test for equal performance of the two specifications is

strongly rejected with a test statistic equal to 5.40. IBM is the only stock for which the

univariate model actually performs slightly better. The parameter estimates in Table 3

shows that for IBM a2,1 and b2,1 are estimated with the opposite sign of all other models

and this could potentially be the reason for the loss in performance.

The one factor model maintains the assumption of independent innovations but essen-

tially introduces return correlation through the mean specification which involves a term

that compensates for index excess return. The results shown in column 5 and 6, though,

shows that using this model for option pricing results in losses of 10.45% on average and

that individual losses could be as large as 119.56%. Losses are incurred for 21 of the 26

stocks, the average losses are 0.021 larger than with the benchmark model, and again the

assumption of equal performance is rejected with a test statistic of 2.18. The three stocks

for which the one factor model works the best are JPM, MRK, and JNJ. The estimation

results, not shown here, show that all parameters are estimated significantly different from

zero in the factor specification. However, given the pricing results statistical significance is

clearly not an indication that economical improvements in terms of pricing precision will

ensue. The specification proposed by Duan and Wei (2005), in which the market index

return is used indirectly as the driver of the stochastic discount factor, allows for more flex-

ible conditional covariance when used with the Triangular BEKK specification, performs

much better than the one factor model and almost as well as the covariance risk specifica-

tion benchmark we propose, yet still results in losses that are statistically significant with

a test statistic of 2.74.

Finally, columns 7 and 8 in Table 6 show the results for an affine covariance specification
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of the Triangular BEKK multivariate GARCH model.9 Surprisingly, this simple change

of specification in the dynamics of the conditional covariance results in very poor relative

pricing performance which is on average 39.94% worse. The average loss in RIVRMSE from

using the affine specification is 0.082 larger than with our proposed multivariate model and

a simple T-test for equal performance of the two specifications is massively rejected with a

test statistic equal to 8.95. Across the individual stocks the affine model works better for

only 2 stocks, DIS and IBM, but may result in losses that are as high as 79.64%.

5 Robustness checks

To examine the robustness of the above results we now compare the performance of the

multivariate model to the independent or univariate special case across various interesting

option characteristics. Again we use the losses from (14) for comparisons and Table 7

shows the results across option moneyness, option maturity, and through time.

Columns 2-4 in the table show the losses from imposing the univariate restriction across

option moneyness. The columns labelled “Put” and “Call” corresponds to put and call

options that are between 2% and 20% out of the money, respectively, and the column

labelled “ATM” corresponds to out of the money put and call options that are less than

2% out of the money. The first thing to notice is that on average losses are incurred for

all these categories and these losses increase with the strike price, i.e. losses are larger for

out of the money call options than for out of the money put options. In fact, the losses

are always positive for call options strongly demonstrating the improved performance of

our model with flexible specifications of the conditional covariance. The losses are also

primarily positive for options close to being at the money though the univariate model

occasionally performs the best for the out of the money put options.

Columns 5-7 show the losses from imposing the univariate restriction across option

maturity. The column labelled “ST” corresponds to options with maturity of less then 2

months, “MT” corresponds to options with maturity of more than 2 months but less than

9The affine model is implemented by using ηt instead of εt = Σ
1/2
t ηt in the Triangular BEKK specifi-

cation.
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Table 7: Relative performance of the multivariate model for various categories

Moneyness Maturity Time
Ticker Put ATM Call ST MT LT Pre Crisis Post

AXP -0.074 -0.015 0.158 0.030 0.155 0.018 0.095 0.286 -0.027
BA 0.257 0.294 0.601 0.278 0.452 0.579 0.605 0.389 0.381

CAT -0.045 0.005 0.143 0.066 0.075 0.000 0.206 -0.030 0.021
CSCO -0.003 0.132 0.397 0.109 0.180 0.198 0.187 0.031 0.187

CVX 0.011 0.079 0.215 0.099 0.136 0.131 0.085 0.054 0.137
DD 0.048 0.176 0.358 0.223 0.182 0.190 0.240 0.087 0.210
DIS -0.058 0.023 0.125 0.034 0.044 0.070 0.110 0.067 0.042
GE -0.161 0.001 0.211 0.060 0.044 -0.019 0.054 -0.021 -0.019
HD 0.406 0.389 0.849 0.308 0.551 0.901 0.808 0.440 0.552

IBM -0.058 -0.059 0.006 -0.011 -0.036 -0.034 -0.016 0.061 -0.036
INTC -0.034 0.122 0.311 0.124 0.152 0.134 0.265 -0.038 0.118

JNJ 0.031 0.047 0.198 0.046 0.111 0.122 0.145 0.092 0.070
JPM -0.226 -0.068 0.186 -0.014 0.061 -0.002 0.007 0.196 -0.096

KO 0.233 0.280 0.549 0.196 0.333 0.415 0.415 0.361 0.316
MCD 0.100 0.141 0.370 0.135 0.192 0.230 0.227 0.135 0.180

MMM 0.278 0.474 0.723 0.379 0.480 0.615 0.475 0.336 0.525
MRK 0.479 0.462 0.587 0.445 0.556 0.533 0.291 0.544 0.542

MSFT 0.189 0.256 0.456 0.216 0.311 0.355 0.287 0.184 0.312
NKE 0.122 0.130 0.269 0.153 0.259 0.205 0.203 0.120 0.177
PFE 0.052 0.119 0.266 0.081 0.130 0.153 0.085 0.053 0.180
PG 0.083 0.070 0.303 0.121 0.128 0.182 0.211 0.088 0.119

UNH 0.279 0.337 0.538 0.256 0.399 0.576 0.319 0.391 0.438
UTX 0.443 0.552 1.228 0.439 0.589 1.240 0.825 0.749 0.808

VZ 0.015 0.018 0.258 0.064 0.076 0.090 0.242 0.107 0.041
WMT 0.062 0.017 0.098 0.095 0.082 0.012 0.104 0.168 0.028
XOM -0.029 0.070 0.170 0.080 0.101 0.081 -0.034 0.110 0.102

All 0.058 0.137 0.300 0.142 0.190 0.201 0.211 0.179 0.168

This table shows the relative performance of the independent or univariate special case relative to the
multivariate model as defined in (14) across option moneyness, option maturity and through time. Columns
2-4 show results for different option moneyness with columns labelled “Put” and “Call” corresponding to
put and call options that are between 2% and 20% out of the money, respectively, and the column labelled
“ATM” corresponding to out of the money put and call options that are less than 2% out of the money.
Columns 5-7 show results for different option maturities, with columns labelled “ST” corresponding to
options with maturity of less then 2 months, “MT” corresponding to options with maturity of more than 2
months but less than 4 months, and “LT” corresponding to options with maturity of more than 4 months.
Columns 8-10 show results through time with the pre-crises period covering 2000-2006, the crisis period
covering 2007-2009, and the post-crisis period covering 2010-2015, all years included.
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4 months, and “LT” corresponds to options with maturity of more than 4 months. The

first thing to notice is that on average losses are incurred for all these categories and these

losses increase with maturity, i.e. losses are larger for long term options than for short

term options. For the individual stocks, most of the losses are also positive, may be as

large as 124.0%, and only rarely does the univariate model perform the best.

Finally, columns 8-10 in Table 7 show results through time with pre-crises covering

the 2000-2006 period, crisis covering the 2007-2009 period, and post-crisis covering the

2010-2015 period, all years included. The first thing to notice is that the average relative

performance of our proposed option pricing models is remarkably stable across these very

different periods of time, and much more stable than across option characteristics such

as moneyness or maturity. For the 26 individual stocks the multivariate specification is

the best model for 24, 23 and 22 stocks, respectively, for the three subperiods. The worst

relative performance is for JPM in the post crisis period, a stock that was clearly hit hard

by the events of the Global Financial Crisis of 2007-2009 and for which “idiosyncratic”

effects are likely much more important than dependency on the market factor during and

after this volatile period.

6 Conclusion

In this paper we use a joint model for individual stock returns and the market index to price

options written on the individual stock and we ask the following question: does it pay, in

the sense of yielding smaller pricing errors, to consider a flexible bivariate model linking the

market and the individual stock historical returns in terms of pricing the individual stock

options? Our paper is motivated by the fact that most, if not all, the existing literature

on individual stock option pricing uses univariate models, i.e. models in which the stock

dynamics are considered in isolation whereas most, if not all, asset pricing models implies

that these dynamics, in general, and the expected returns, in particular, should depend on

the asset’s exposure to market risk factors.

To fill this gab in the literature and to analyze the importance of allowing for interac-
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tions with and exposure to the market risk factors, we consider a bivariate discrete time

model for the asset returns, we use the class of multivariate GARCH processes to allow for

time varying conditional volatility, we use a generalization of the no-arbitrage approach

to derive the risk neutral dynamics allowing us to estimate all relevant parameters from

historical returns alone, and we price the options using a simulation based approach that

allows us to incorporate the early exercise of individual stock options which are of American

style.

Our model improves significantly on the univariate models which are typically used

in the existing literature. In particular, our results show that the losses from using a

univariate formulation amount to 18% on average and may be as large as 80% for certain

individual stocks. These results are robust, not only across option characteristics, such

as moneyness and maturity, but also through time, in general, and in crisis periods, in

particular, lending strong support to our proposed model. Similar results are obtained

when comparing to alternative models that uses the index returns as the one risk factor

that should be priced and to specifications that use affine specifications for the conditional

covariance.
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A Related literature

In this Appendix we describe in detail the approach used in two related papers. We change

the notation used in Tzang, Wang, and Yu (2016) to specify conditional volatilities as σ2

instead of h and we change the specification in Duan and Wei (2005) to having risk premia

being specified in terms of variances instead of volatilities.

A.1 The wrong factor model of Tzang, Wang and Yo (2016)

Tzang, Wang, and Yu (2016) consider a restricted version of the bivariate framework

we propose in this paper. In particular, instead of formulating a general model with

flexible dynamics the model they use is essentially a one-factor model where risk premia

are introduced in terms of “beta pricing” of the excess market return. Their one factor

model uses a mean equation given by

rm,t = µm,t −
1

2
σ2
m,t + σm,tzm,t, (15)

for the index and

rs,t = µs,t −
1

2
σ2
s,t + βs(rm,t − r) + σs,tzs,t, (16)

for the individual stock where r is the risk free rate. In this setting, it is assumed that

the two innovations zm,t and zs,t are independent Gaussian. However, due to the term

involving the excess market return in the mean for the stock asset returns will be correlated.

Assuming the local risk neutral valuation relationship, LRNVR, of Duan (1995) holds it

is straightforward to derive the risk neutral dynamics or alternatively to sort out what

the risk neutral innovations should be so as to make both processes Q-martingales. For

the market index this is simple and involves the following restriction on the market index

pricing parameter

λQm,t =
µm,t − r
σm,t

, (17)
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with zQm,t = zm,t + λQm,t = zm,t + λm,tσm,t being standard normally distributed. This means

that though the innovations in the mean equation have zero mean and unit variance the

“innovation” going into the GARCH updating equation have non-zero mean, similarly to

Duan (1995). For the stock it is (only) slightly more complicated. If we substitute from

the mean equation of the market index and use the restriction from the pricing parameter

we obtain the following:

rs,t = µs,t −
1

2
σ2
s,t + βs(rm,t − r) + σs,tzs,t

= µs,t −
1

2
σ2
s,t + βs(µm,t −

1

2
σ2
m,t + σm,tzm,t − r) + σs,tzs,t

= µs,t −
1

2
σ2
s,t + βs(λm,tσ

2
m,t −

1

2
σ2
m,t + σm,tzm,t) + σs,tzs,t

= µs,t −
1

2
σ2
s,t + βsλm,tσ

2
m,t −

1

2
βsσ

2
m,t +

1

2
β2
sσ

2
m,t −

1

2
β2
sσ

2
m,t + βsσm,tzm,t + σs,tzs,t

= µs,t +
1

2
βs(βs − 1)σ2

m,t −
1

2
σ2
s,t + σs,tzs,t + βsλm,tσ

2
m,t −

1

2
β2
sσ

2
m,t + βsσm,tzm,t,

where the next to last step is needed to ensure that the expected value of the exponential

of −1
2
β2
sσ

2
m,t+βsσm,tzm,t equals zero. While the last two terms have expectation zero under

the physical measure by construction the last three terms have expectation zero under the

risk neutral measure and because of this the requirement that the individual mean be a

Q-martingale implies the following (generalized) restriction on the individual stock pricing

parameter

λQs,t =
µs,t − r + 1

2
βs(βs − 1)σ2

m,t

σs,t

=
µs,t − r
σs,t

+
βs(βs − 1)σ2

m,t

2σs,t
, (18)

with zQs,t = zs,t + λQs,t = zs,t + λs,tσs,t being standard normally distributed.10 Formulated in

terms of λ the estimating equations are

rm,t = r + λm,tσ
2
m,t −

1

2
σ2
m,t + σm,tzm,t, (19)

for the index and

rs,t = r + λs,tσ
2
s,t −

1

2
βs(βs − 1)σ2

m,t −
1

2
σ2
s,t + βs(rm,t − r) + σs,tzs,t

10Note that the term σ2
m,t is mistakenly missing from equation (8) in Tzang, Wang, and Yu (2016).
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= r + λs,tσ
2
s,t −

1

2
σ2
s,t − βs(λm,tσ

2
m,t −

1

2
βsσ

2
m,t + σm,tzm,t) + σs,tzs,t, (20)

for the individual stock. Though we could simplify the last equation slightly, keeping it in

terms of the innovations z allows comparison with the risk neutral dynamics in a simple

way. In particular, the simulation equations are given by

rm,t = r − 1

2
σ2
m,t + σm,tz

Q
m,t, (21)

for the index and

rs,t = r − 1

2
σ2
s,t − βs(−

1

2
βsσ

2
m,t + σm,tz

Q
m,t) + σs,tz

Q
s,t, (22)

for the individual stock. It is easily seen that this model can be implemented in our setup

by simply setting λ21 = βs and estimating this parameter from an equivalent formulation

of (20).

A.2 The market index model of Duan and Wei (2005)

The framework used in the current paper specifies a particular Radon-Nikodym derivative,

and implicitly a price of risk, that can be directly estimated from historical data. An alter-

native to this approach is to obtain the risk neutral dynamics be specifying the stochastic

discount factor directly in a general equilibrium framework. Duan and Wei (2005) is an

example of the latter approach. In that paper, a standard mean equation like

rs,t = r + λs,tσ
2
s,t −

1

2
σ2
s,t + σs,tzs,t, (23)

is used for the stock returns but unlike most of the previous literature λs,t is not estimated

from data on the stock.11 Instead it is characterized explicitly in terms of “systematic”

risk by specifying a utility function depending on consumption and defining Yt = κ −

ln(U ′(Ct)/U
′(Ct−1)) as the one period stochastic discount factor. It is then shown that in

11Note that Duan and Wei (2005) specifies risk premia as being specified in terms of λs,tσs,t instead of
λs,tσ

2
s,t as we essentially do. The calculations goes through with either specification, though, since it is the

product that is important for risk neutralization. This is a benefit of using maintaining the assumption of
Gaussian innovations.
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equilibrium

λs,t =
qtδt
σs,t

, (24)

where qt = CorrP (rs,t, Yt|φt−1) and δ2t = V arP (Yt|φt−1), with φt denoting the information

set at time t.

If the market index is assumed to be the only factor, Yt it can be expressed as

Yt = a+ brI,t + εt, (25)

where rI,t = ln(It/It−1) is the market index return. With this specification we have that

δt =
√
b2σ2

I,t + c, (26)

where σ2
I,t = V arP (rI,t|φt−1) and c = V arP (εt) and it follows that

qt =
bCovP (rs,t, rI,t|φt−1)

σs,t
√
b2σ2

I,t + c
=

bβtσ
2
I,t

σs,t
√
b2σ2

I,t + c
, (27)

where βt = CovP (rs,t, rI,t|φt−1)/σ
2
I,t. As a result we can write

λs,t =
bβtσ

2
I,t

σ2
s,t

, (28)

and therefore we have that λs,tσ
2
s,t = bβtσ

2
I,t. Note that this depends on the parameter b,

which is constant across different assets, and can be identified from the market portfolio

since the market portfolio’s own systematic risk equals one by definition. In particular, we

have for the market index that

rI,t = r + λI,tσ
2
I,t −

1

2
σ2
I,t + σI,tzI,t

= r + b1σ2
I,t −

1

2
σ2
I,t + σI,tzI,t (29)

and the estimated b thus corresponds to our λ11. Since there is no λ21 in this formulation

it is seen to lead to a very restricted formulation of the risk premium compared to what we

propose. Thus, in our setting this model is easily implemented and involves only estimating

the parameter b from the market index equation and using this times the conditional

covariance in the individual stock equation.
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