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Bond portfolio optimization is very different from equity 
portfolio optimization. Indeed, while continuous optimization 
is efficient when managing a portfolio of stocks, it is not 
always well-adapted to building a bond portfolio because 
the transformation of portfolio weights into numbers of 
shares may lead to significant rounding errors. Indeed, bond 
investors are often restricted to purchasing bonds in multiples 
of a minimum transaction unit, which can be expressed 
as a minimum number of bonds or a minimum amount 
of dollars. This is why discrete optimization has generally 
replaced continuous optimization when the investment 
universe concerns fixed-income securities, especially when 
we consider the business of passive management, such as 
bond index funds, exchange-traded funds, and dedicated 
fixed-income funds. Generally, bond portfolio optimization 
consists in tracking a benchmark index or a current portfolio 
with investment constraints, which mainly concern the 
transaction costs, the liquidity axes and more recently ESG 
and carbon risk restrictions. 

Solving such problems requires using integer programming 
and combinatorial optimization algorithms. This article 
focuses on genetic algorithms that have proven to be 
efficient for large-scale optimization problems. We show how 
to implement them in the context of bond index tracking, 
where the goal is to match several tracking risk metrics of 
a bond portfolio facing subscriptions or redemptions under 
multiple practical constraints such as minimum tradable 
amounts, secondary market lot sizes, liquidity axes, and 
market-making constraints. We also present simulations of 
a real portfolio with several definitions of genetic operators 
and determine the best simulation according to matching 
and transaction cost criteria. Our experience shows that 
genetic algorithms are an industrial solution for passive 
bond management even though the entry cost to be familiar 
with these algorithms is high. The stability and convergence 
of investment solutions require thousands of tests before 
proposing an automation to fund managers.

Keywords: Bond indexation, portfolio replication, market 
making, index sampling, genetic algorithm, constraint 
handling, duration, spread, credit risk, liquidity

JEL classification: C61, G11, G12



About the author

Mohamed Ben Slimane

Mohamed Ben Slimane is Head of Fixed-Income Quantitative 
Research in the Amundi Quantitative Research team. Prior 
to his current position, he was Senior Quantitative Analyst 
(2015-2020), Head of Credit and Counterparty Risks (2013-
2015) and Head of Regulatory Risk for Fixed-Income and 
Structured Funds (2010-2013). Before joining Amundi, 
he was Head of Regulatory Risk at Sociéte Générale AM 
(2005-2010), an IT Consultant with Altran (2002-2005) and 
a Software Engineer at Sungard Systems (2001-2002). He 
started his working career with Cap Gemini in 1999 as a 
Software Engineer. 

Mohamed holds an Engineering Degree from the Ecole 
Nationale de l’Aviation Civile (1999). He is Certified 
International Investment Analyst CIIA (2010) and FRM 
Charterholder (2013).

Acknowledgement
The author is very grateful to Edmond Lezmi for his invaluable assistance, Thierry Roncalli 
and Takaya Sekine for their insightful comments and support, and Stéphanie Pless and 
Fabrice Degni Yace for their valuable input and advice.



Bond Index Tracking with Genetic Algorithms

1 Introduction

Passive fund managers’ goal is to replicate a market index’s performance by holding the same secu-
rities or a stratified sampling of the securities (Neyman, 1992) that comprise the index. Therefore,
they track the index portfolio by exhibiting the same risk/return characteristics. In the fixed-
income space, modified duration (MD) and duration-times-spread (DTS) are the most widely
used risk metrics. Indeed, historical price volatility, which is used to measure equity portfolios’
risk, is not a reliable predictor of bond volatility since bonds are less frequently traded and ma-
ture over time. Therefore, fund managers use MD, which is the sensitivity of the bond return
to interest risk, and DTS, which measures the systematic exposure to credit risk by quantifying
sensitivity to a shift in the yield spread (Ben Dor et al., 2007).

Modified duration is frequently tracked per maturity bucket. Seven buckets are generally
considered: 0Y, 2Y, 5Y, 7Y, 10Y, 15Y, and 20Y. For instance, the five-year bucket refers to the
bonds whose term to maturity is around five years. A bond maturing in 3 years contributes two-
thirds1 of its MD to bucket 2Y and then one-third of its MD to bucket 5Y. The weight is the last
metric to be considered. the market index is often tracked using a sector-neutral approach2. Fund
managers do not take active positions, and hence the weights of sectors are matched within an
allowed deviation range.

Passive fund managers track broad bond indices that generally include thousands of individual
securities. For instance, the Bloomberg Barclays US Corporate Bond Index has 6 647 members as
of 31 January 2021. Fund managers sample these indices preferring liquid bonds as their purchase
or sale does not cause a drastic change in their price. The liquidity cost can be proxied by the
bond price times the liquidity score developed by Ben Slimane and De Jong (2017). This score,
which is highly correlated to bid-ask spreads, is based on seventeen characteristics of the bond
indenture. The older a debt obligation, the higher the score typically, or by the same token, the
longer the time-to-maturity, or the smaller the debt issue, the higher the score.

Besides liquidity, portfolio managers of bond exchange-traded funds (ETF) may have to comply
with market-making constraints. Indeed, market makers create ETF units by delivering a basket
of underlying securities to the ETF sponsor in exchange for a block of the ETF units with the
same market value. In a redemption process, the market maker exchanges ETF units with the
ETF provider for an equivalent basket of underlying securities from the ETF. Market makers may
then provide fund managers with their constraints on the bonds to be bought or sold. These
constraints, referred to hereafter as axis constraints, may impose, if possible, that bonds are part
of an authorised list A and that traded quantities do not exceed an allowed quantity per bond.

Portfolio managers of fixed-income index funds match their portfolios with the associated
benchmark at least once a month to diminish the tendency for “portfolio drift” and potentially
reduce their exposure to risk relative to their target asset allocation. Bonds with a final maturity
of less than one year are sold, and the proceeds are used, in conjunction with the available cash,
to match the metrics of the new benchmark. The adjustment consists of buying bonds most of
the time, as the new benchmark is riskier3 from month to month.

1We have
5− 3

5− 2
=

2

3
.

2Country-neutral when the market index is a government bond index.
3As new bonds are included by the end of each month.
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Like any mutual funds, fixed-income index funds experience subscriptions and redemptions
between the two monthly rebalancing dates. It is common to handle them based on in-kind baskets.
Fund managers produce these pro-forma portfolios daily, worth EUR 5 million, for example. Two
baskets are typically produced per fund, one of purchasable bonds for potential inflows and one
of saleable bonds for outflows. In the event of an in-or-outflow, if the size matches and all parties
agree, the in-kind basket will in effect be traded; otherwise, a new basket is agreed upon and
traded. Unlike the rebalancing process, the reference when building in-kind baskets is the current
portfolio. The intention is to keep the risk metrics unaffected by the in-kind process activated
only by the subscription-redemption flows.

The study’s objective is to design a tool to automatically handle the excessive workload the
fund managers are facing with daily flows. The tool must match the different metrics and consider
the liquidity and axis constraints and generate a tradable basket of bonds. Bonds, unlike equities,
cannot be traded at one unit of quantity. Each bond has its minimum tradable amount, under
which one cannot buy or sell a quantity of the bond (for example EUR 100 000). Above this
minimum tradable amount, lot size is the incremental nominal amount traded (for example EUR
1 000).

The automation could be seen as an optimization problem where the objective function is to
minimize the tracking risks under the constraints of liquidity and axis. A significant challenge is
then to handle the discrete quantities of bonds. This challenge can be taken up thanks to genetic
algorithms. This article is structured as follows. Section Two is dedicated to presenting the
genetic algorithms, while Section Three applies them to bond portfolio optimization. In Section
Four, we discuss the results of two examples of in-kind adjustments performed thanks to genetic
algorithms. Finally, Section Five offers some concluding remarks.

2 The concept of genetic algorithms

A genetic algorithm (GA) is a search-based optimization technique that mimics the Genetics and
Natural Selection principles elaborated by Darwin (1859). The technique became popular through
the ground-breaking works of Holland (1975) and since has been quite successfully applied to solve
NP-hard optimization problems (Feng-Tse et al., 1993), especially in machine learning.

Algorithm 1 illustrates the fundamental structures of a GA. In GA, we have a pool of poten-
tially feasible solutions called “population”. These solutions undergo recombination and mutation
(like in natural genetics) to produce new solutions. The process is repeated over various “gener-
ations”. Each candidate solution is assigned a fitness value and the fitter individuals are given a
higher chance to breed and yield more “fitter” individuals4. Thereby, we keep “evolving” better
individuals over generations until we reach a stopping criterion.

GAs have various advantages. They do not require any auxiliary information about the ob-
jective function value, such as derivatives, which may not be available. Therefore, they may be
used to optimize both continuous and discrete functions and multi-objective problems, providing
a list of “good” solutions and not just a single solution. Moreover, GAs have outstanding parallel
capabilities (Wang et al., 2005), which is an outstanding property when the search space is vast

4This is consistent with the Darwinian Theory of “survival of the fittest”.
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Algorithm 1 Fundamental structures of a GA

g ← 0
Generate initial population P (g) by encoding routine
Evaluate initial population P (g) by decoding routine
while Termination criteria not fulfilled do

Create C(g) from P (g) by crossover routine
Create C(g) from P (g) by mutation routine
Evaluate C(g) by decoding routine
Select P (g + 1) from P (g) and C(g) by selection routine
Find best
g ← g + 1

end while
return best

or when the number of parameters involved is considerable. GAs are also sufficiently randomized,
but they perform much better than random local search. They try various random solutions,
keeping track of the best so far, as they exploit historical information.

Like any technique, GAs also suffer from a few limitations. They are not suited to all problems,
especially those for which derivative information is available. As the algorithm is stochastic, there
is no guarantee of the optimality or the quality of the solution. GAs are not specialized algorithms
as they are application dependent. Their success depends on the knowledge of the problem and
the design of the evaluation function. The solution space must consider only the feasible solutions.
If it is not adequately implemented, the GAs may not converge to the optimal solution.

2.1 Terminology

0 1 0 1 0 1 1 0 1

Population
(set of chromosomes)

0 1 0 1 0 1 1 0 1

Chromosome

x1 x2

1
Gene

Figure 1: Genotype terminology

Typically, the population of potential solutions is made up of between 30 and 100 individuals.
Each individual is encoded as a string, called a chromosome, in an apparent reference to biology.
The chromosome is composed over some alphabet(s) so that the genotypes (chromosome values)
are uniquely mapped onto the decision variable (phenotypic) domain. The most commonly used
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representation in GA is the binary alphabet {0,1}. Each decision variable is encoded as a binary
string, and these are concatenated to form a chromosome. Figure 1 displays a problem with
two decision variables x1 and x2, where x1 is mapped with 4 bits (or genes) and x2 with 5 bits
reflecting their level of accuracy or their range. Examining the chromosome string in isolation
yields no information about the problem we are trying to solve. Only with the chromosome’s
decoding into its phenotypic values can any meaning be applied to the representation. However,
the search process will always operate on this encoding of the decision variables rather than the
decision variables themselves.

2.2 Parent selection and ranking

2.2.1 Fitness function

The fitness function is the heart of the genetic algorithm. The fitness is a function that takes a
candidate solution to the problem as input and produces as output how “fit” or “well” the solution
fulfils whatever criteria the algorithm is optimizing. In the case of a minimization problem, the
fittest individuals will have the lowest numerical value of the associated fitness function. The
fitness is applied to each individual in the population and calculated repeatedly, and therefore
it should be sufficiently fast. A slow computation of the fitness value can adversely affect the
algorithm and make it exceptionally slow.

2.2.2 Parent selection

According to Darwin’s theory of evolution, the best individuals survive to participate in repro-
duction. Potential parents should then be selected according to their fitness. There are many
selection schemes for GAs, each with different characteristics. An ideal selection technique would
be simple to code, efficient for both nonparallel and parallel architectures. Tournament selection
satisfies all the above criteria, being in addition to being independent of the fitness function and
can even work with negative fitness values.

P1
P2
P3
P4
P5
P6
P7

Chromosome

1
5
9
8
7
4
0

Fitness

P1

P4

P7

Random selection

P4

Pick the best

Figure 2: A 3-tournment selection

In this approach, a k-tournament is run between k individuals chosen at random from the
population, and the one with the best fitness is selected as the winner. Figure 2 illustrates a 3-
tournament selection where three entities are picked out of the pool, their fitnesses are compared,
and the best is permitted to reproduce. In the example, we suppose that fitness is maximized.
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2.3 Genetic operators

2.3.1 Crossover

Crossover or recombination is the main genetic operator. It operates on two chromosomes at a
time and generates offspring by combining both chromosomes’ features. A simple way to perform
crossover is to choose a random cut-point and generate the offspring by combining one parent
segment’s to the left of the cut-point with the other parent’s segment to the right of the cut-point.
This process, called one-point crossover5 and an often-used method for GAs operating on binary
strings, is visualized in Figure 3.

1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1

Figure 3: One-point crossover

The crossover is performed with a probability denoted by ρCrossover when the pairs are chosen
for breeding. This probability controls the expected number of chromosomes to undergo the
crossover operation. A higher crossover probability allows exploitation of more of the solution
space and reduces the chance of settling for a false optimum. However, a too high rate results in
omputation time being wasted in exploring unpromising regions of the solution space.

2.3.2 Mutation

The genetic material can be changed randomly by erroneous reproduction or other genes’ defor-
mations in real evolution. In GA, a mutation can be realized by altering one or more genes of a
selected chromosome. Figure 4 illustrates a technique called “inversion of single bits”, where one
randomly chosen bit is flipped.

0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1

Figure 4: The inversion of single bits mutation technique

The mutation is the part of the GA related to the exploration of the search space. It serves
to either replace the genes lost from the population during the selection process to be tried in a
new context or provide the genes that were not present in the initial population. The mutation is
considered as the operator that ensures that the probability of searching a particular subspace of
the search space is never zero and thus tends to alleviate the possibility of converging to a local

5The one-point crossover can be generalized to k-point crossover for any integer k, picking k crossover points
and swapping the bits in between the crossover points.
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optimum rather than the global optimum. The mutation probability denoted by ρMutation governs
the rate with which new genes are introduced into the population. When it is too low, many genes
that would have been used are never tried out, while if it is too high, there will be much more
random perturbation, the offspring will start losing their resemblance to the parents, and the GA
will lose the ability to learn from the search history.

2.3.3 Survivor selection

This component determines which individuals are to be kicked out and which are to be kept.
Traditional genetic algorithms put the new individuals directly into the next generation. Goldberg
(1989) has introduced the elitist strategy (Figure 5). The latter propagates the current fittest
member of the population to the next generation. Except for the fittest member, the older better
individuals, which have been crossed and mutated, have no chance to access the future generation.
Dong and Wu (2009) introduce the expansive optimal sampling where the new individuals are put
together with the previous generation and where the best half of the individuals survive to the
next generation.

P1
P2
P3
P4
P5
P6
P7

Chromosome

EXISTING POPULATION

1
5
9
8
7
4
0

Fitness

C1

C2

Chromosome

OFFSPRING

8

6

Fitness

+

C1
P2
P3
P4
P5
P6
C2

Chromosome

NEW POPULATION

8
5
9
8
7
4
6

Fitness

Figure 5: Survivor selection

2.4 Termination

Because GA is a stochastic search method (Spall, 2003), it is not easy to specify convergence crite-
ria formally. As a population’s fitness may remain static for several generations before a superior
individual is found, the application of conventional termination criteria becomes problematic.
Usually, the GA run comes to an end when given criteria are satisfied, e.g. no improvement in the
best fitness value for a high number of iterations or a certain number of generations or a specific
pre-defined value for the fitness.
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3 Application of genetic algorithms to our basket creation

problem

After studying the bonds held in the principal portfolios managed by the passive fund management
team, we find a variety of used minimum tradable (MT), but two of them (100 000 and 1 000)
stand out for EUR credit funds6. We also note that the quantity of the bonds to be bought or
sold is mostly a multiple of the minimum tradable since the lot size is seldom used. The multiple
of MT is generally lower than 10. When the MT equals 1 000, the multiple is frequently seen as
100 · k where k ∈ {1, 2, . . . , 10} for EUR credit funds7. Based on these observations, we will seek
quantities in the form of 100 000 · k, where k is a natural number lower than exceed 10.

3.1 Chromosome encoding

Regarding a given sector, our decision variables in the problem are the quantities of each bond
held from the reference portfolio’s sector. As we use the binary representation, we must find a
trick to reduce the number of bits representing the quantity of a bond in a chromosome. Indeed,
the overall number of potential portfolios is 2Nbonds·Nbits , where Nbonds and Nbits are respectively
the number of bonds and the number of bits. Decreasing Nbits by 1 unit divides the number of
potential solutions by 2Nbonds and dramatically reduces the computation time.

Natural Binary Gray

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Table 1: Binary and Gray codes

Academics use the standard binary or the Gray code8 to represent a natural. Using 4 bits, 10
can be written as 1010 in binary or 1111 in Gray. However, with these codes, we go beyond our
threshold of 10. Indeed, 15 can be written as 1111 in binary or 1000 in Gray (See Table 1). Table
2 shows that we can write any natural between 0 and 10 as a linear combination of 1, 2, 3, and
4 where the coefficients are 0 or 1. The combination is however not unique. For instance, if we
take the example of 7, two encodings are possible: 1101 as we can write 7 = 1 · 1 + 1 · 2 + 1 · 4 and
1100 as we can write 7 = 1 · 3 + 1 · 4. Nevertheless, the combination becomes unique if we force it
to prioritize the first bits as shown in column Encoding 1.

As discussed above, the range of possible solutions remains huge, even with Nbits = 4. Per-
forming a “warm start” initialization can speed up a GA’s convergence to an optimal solution.

6In the case of USD credit funds, 2 000 seems to be the most used minimum tradable amount.
7This figure becomes 50 · k for USD credit funds.
8A Gray Code, named after Frank Gray (Gray, 1953), represents numbers using a binary encoding scheme that

groups a sequence of bits so that only one bit in the group changes from the number before and after.
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Natural Encoding 1 Encoding 2

0 0000
1 0001
2 0010
3 0011 0100
4 0101 1000
5 0110 1001

Natural Encoding 1 Encoding 2

6 0111 1010
7 1011 1100
8 1101
9 1110
10 1111

Table 2: Yet another encoding method

We include in the initial population one chromosome encoded with the quantities of the current
portfolio. Here we face an issue to encode quantities that cannot satisfy the linear combination.
For instance, how do we cope with quantities that are not multiples of MT? A workaround consists
of the adding of an extra gene to reflect the odd quantity. Figure 6 illustrates an example of a
quantity of 3.5 MT. We decompose the quantity to use the 4 available bits and we add one gene
to reflect the residual, keeping in mind that all bits should correspond to tradable quantities. The
second bit is set to 1 and the residual 1.5 MT is reflected in the fifth bit since the residual cannot
be less than 1 MT. As can be noted, the extra gene’s value is not uniform and depends on the
residual of each odd quantity.

Bond with 3.5 MT . . . 0

4
M

T

0

3
M

T

1

2
M

T

0

1
M

T

1

X

. . .

Bond

Figure 6: From quantity to binary

3.2 Chromosome decoding

The decoding process is the reverse of encoding. It takes the chromosome representation and
transforms it back to the decision variable domain. Figure 7 shows the two different decoding
cases whether an extra gene is added or not during the encoding process. Here, we suppose that
only Bond a has an extra gene with Xa as the value. For both bonds, we calculate the associated

quantity as Q =
4∑
j=1

jαjMT + α5X, where (α1, . . . , α4) are the values of their genes and X is the

value of the eventual extra gene.
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. . . α4

4
M

T
a

α3

3
M

T
a

α2

2
M

T
a

α1

1
M

T
a

α5

X
a

. . . . . . γ4

4
M

T
b

γ3

3
M

T
b

γ2

2
M

T
b

γ1

1
M

T
b

. . .

Bond a Bond b

Qa =
4∑
j=1

jαjMTa + α5Xa Qb =
4∑
j=1

jγjMTb

Figure 7: From binary to quantity

3.3 Definition of fitness

Our GA aims to find solutions that match the following risk metrics per sector9: the modified
duration per bucket of maturity, the duration-times-spread10, and the weight. Solutions are con-
strained in terms of liquidity cost and by the presence of desired bonds on the axis. The fitness
should consider all these features in one single function.

If we note x as one possible solution, b as the reference portfolio, and s as one sector among
the several sectors of b, the fitness is defined as the sum of three risk measures with two penalty
terms:

Fitness (x, s) = RW (x | b, s) +RMD (x | b, s) +RDTS (x | b, s) +

λL · Liquidity (x, s) + λA · Axis (x, s)

Each of these components is defined below in such a way that the best solutions will minimize
the fitness. Regarding the weight risk measure, we define RW (x | b, s) as the weight difference
between Portfolio x and Portfolio b within the sector s:

RW (x | b, s) =

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi)

∣∣∣∣∣∣
where xi and bi are the weights of Bond i in Portfolios x and b. We define RMD (x | b, s) as the
modified duration risk of x with respect to b within the sector s:

RMD (x | b, s) =

NBuckets∑
j=1

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi) ·MDi (Bucketj)

∣∣∣∣∣∣
where NBuckets is the number of maturity buckets and MDi (Bucketj) is the modified duration
contribution of Bond i to the maturity bucket j. The rationale of this definition is to track the
difference in modified duration per bucket. We may remark that this measure of risk is higher

9Or per country if the reference portfolio is a government bond index. Any subsequent mention of “sector”
refers to a sector or a country.

10When the reference portfolio bears credit risk.
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than or equal11 to the traditional measure of modified duration risk12. Finally, we define the DTS
risk measure RDTS (x | b, s) as the weighted DTS difference between x and b:

RDTS (x | b, s) =

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi) ·DTSi

∣∣∣∣∣∣
where DTSi is the duration-times-spread of Bond i. Unlike the three previous risk measures,
Liquidity(x, s) is not used to match the liquidity cost of b but it indicates the preference in terms
of liquid bonds:

Liquidity(x, s) =
∑

i∈Sector(s)

xi · LTPi

where LTPi is the liquidity-times-price13 of Bond i. According to Ben Slimane and De Jong
(2017), the liquidity-times-price is a proxy of the bid-ask spread. The lower this value, the more
liquid the bond. The axis component Axis(x, s) is the second penalty function with the liquidity
component Liquidity(x, s). It is defined as the number of changes in the quantities of bonds that
do not belong to axis A:

Axis(x, s) = #

i ∈ Sector (s) : (1− δi) ·

∣∣∣∣∣∣∣Qi (x)−Qi

(
x0
)︸ ︷︷ ︸

∆Qi(x)

∣∣∣∣∣∣∣ > 0


where δi = 1 if Bond i is on the axis A and δi = 0 otherwise. Qi (x) and Qi (x

0) are respectively
the quantity of Bond i hold in Portfolio x and the current portfolio x0. With this definition, Bond
i, which is held in x and whose change in quantity with regard to the current portfolio (denoted
∆Qi (x) afterwards) differs from zero, will penalize the fitness if it does not belong to axis A. Both
penalty function terms are multiplied by respectively the penalty factors λL and λA.

3.4 Handling of constraints

The penalty methods are the most common approaches for constraint handling. Penalty terms
are added to the objective (or the fitness) function. The given problem is then converted from
a constrained to an unconstrained problem. Our fitness uses this approach to handle constraints
on liquidity or axis. The challenge with this approach is calibrating the penalty coefficients.
According to Chehouri et al. (2016), “the penalty term cannot be too high or else the algorithm
will be locked inside the feasible domain and cannot move towards the border with the infeasible
area. If it is too low, the term will be irrelevant with regard to the objective function and the
search will remain in the infeasible region”. The fitness defined above does handle the constraints
on liquidity and axis but does not consider the adjustment direction. Indeed, no constraints
are set in the fitness to have only positive (negative) changes in quantities in case of an in-kind
purchase (sale). Hereafter, we present two methods to handle these constraints without using any
additional penalty functions.

11See Appendix A.3 on page 41.
12As a reminder, traditional modified duration risk is defined as

∣∣∣∑i∈Sector(s) (xi − bi) ·MDi

∣∣∣.
13LTP is calculated as the product of a liquidity score and the clean price
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3.4.1 VCH method

VCH is the acronym for Violation-Constraint-Handling introduced by Chehouri et al. (2016). This
method is free of any penalty parameters and can sort a population with feasible and infeasible
individuals. For each sector s, the cardinal of violations is equal to:

CV (x, s) : Population −→ R+

x 7−→
{

# {i ∈ Sector (s) : ∆Qi (x) < 0} if purchases
# {i ∈ Sector (s) : ∆Qi (x) > 0} if sales

whereas the amount of violations is defined by:

AV (x, s) : Population −→ R+

x 7−→
{ ∑

i∈Sector(s) max (0,−∆Qi (x)) if purchases∑
i∈Sector(s) max (0,∆Qi (x)) if sales

The function CV (x, s) takes one candidate solution among the population and returns the number
of violations. Violations stand for the number of purchases when the process has to sell or for the
number of sales when the process has to purchase. The function AV (x, s) indicates the amount
of violations measured as the sum of changes in quantities for each case. We then divide the
population into two sets of feasible and infeasible solutions:{

P0 = {x ∈ Population : CV (x, s) = 0}
P1 = {x ∈ Population : CV (x, s) > 0}

We amend the GA by integrating functions CV (x, s) and AV (x, s) as shown in Algorithm 2. If
we note X = {x1, x2} a set of two candidate solutions, the fitness function is called only if one of
the two individuals is a feasible solution, i.e. when X ∩P0 6= ∅. In this case, the best individual is
the one with the lowest fitness value. If one individual is feasible and the other is infeasible, the
best individual will be the feasible solution. If both individuals are infeasible, the best individual
will have the lowest CV (x, s) if there are two different values of CV (x, s) or the lowest value
AV (x, s) if both individuals have the same value CV (x, s).

Algorithm 2 New ranking rules

Require: Portfolios x1 and x2 and Sector s
Let X = {x1, x2}
if X ∩ P0 6= ∅ then

return argminx∈X∩P0
Fitness (x, s)

else
if #CV (X , s) = 2 then

return argminx∈X CV (x, s)
else

return argminx∈X AV (x, s)
end if

end if
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Figure 8 illustrates the new ranking rules on a population of seven individuals where the fitness
is minimized. The amended algorithm ensures that feasible solutions (displayed in blue) are always
ahead of infeasible solutions14. Hence, if the algorithm is initiated with a feasible solution, it will
always return a feasible solution. One possible initial guess could be the current portfolio x0 since
by construction ∆Qi (x

0) = 0 for each Bond i held.

P1

P2

P3

P4

P5

P6

P7

Chromosome

1

5

2

7

0

4

0

0

0

2

1

2

0

0

0

0

100

200

300

0

0

2

4

6

5

7

3

1

Fitness CV AV Order

Figure 8: Illustration of the new ranking rules

3.4.2 Method of additional quantities

The three risk measures and the liquidity penalty functions listed above can be rearranged to
emphasize the change in quantities compared to the current portfolio. The axis penalty function
is already defined using the change in quantities. Expressions for both in-kind and standard
processes are available in Appendix A.2 on page 39. The GA is then warm-started with a null
chromosome and seeks a basket of purchasable or saleable bonds. This method ensures that all
changed quantities are positive since genes’ unique values are 0 or 1.

3.4.3 Constraints on axis

Let A = {A1, . . . , Anb
} be the axis where nb is the number of bonds in the reference portfolio b and

Ai is the maximum change in quantity allowed for Bond i. We set Ai = +∞ if Bond i is not on
axis A and we note A (s) = {i ∈ Sector (s) : Ai < +∞} the subset of A composed by constrained
bonds of sector s. We draw on again the VCH method to take care of these constraints and use
the same approach as above by introducing for each sector s two additional functions. The new
cardinal of violation is then defined as:

CW (x, s) : Population −→ R+

x 7−→
{

# {i ∈ Sector (s) : |∆Qi (x)| > Ai} if # {A (s)} > 0
max (0,# {i ∈ Sector (s) : |∆Qi (x)| > 0} −Nmax) otherwise

whereas the new amount of violations is given by:

AW (x, s) : Population −→ R+

x 7−→ CW (x, s) ·
∣∣∣ω (x0, s) · Adjustment−∑i∈Sector(s) ∆Qi (x) · Pi

∣∣∣
14This is also the case when fitness is maximized.
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where Pi is the dirty price of Bond i, ω (x0, s) is the weight of Sector s in the current portfolio x0

and Adjustment is the signed amount of in-kind subscription or redemption.

The function CW (x, s) returns the number of bonds whose quantities exceed the allowed
quantity or the number of altered positions if no limit is set for the sector’s bonds. A tolerance
value Nmax may be added, below which the function returns no violation. The function AW (x, s)
calculates the difference in mark-to-market between the portfolio of new trades and the adjustment
times the sector’s weight. The rationale of this definition is to obtain a basket of bonds whose
weight does not differ much from the sector’s weight in the current portfolio x0. The multiplication
by CW (x, s) ensures only a value of zero for feasible solutions. Then, we separate the feasible set
P0 defined above into P0,0 and P0,1:{

P0,0 = {x ∈ Population : CV (x, s) = 0, CW (x, s) = 0}
P0,1 = {x ∈ Population : CV (x, s) = 0, CW (x, s) > 0}

The amended ranking rules are shown in Algorithm 3. The same principle is reiterated. The
fitness is called only in the presence of at least one feasible individual. Two individuals from the
same infeasible set are ranked by the cardinal and amount functions. For instance, if they are
part of P0,1, we compare their values CW (x, s) or AW (x, s). Otherwise, we compare their values
CV (x, s) or AV (x, s). We note that this algorithm establishes a hierarchy when comparing two
individuals from different sets. The best is the individual that comes from P0,0, then P0,1, and
finally P1.

Algorithm 3 Amended ranking rules

Require: Portfolios x1 and x2 and Sector s
Let X = {x1, x2}
if X ∩ P0,0 6= ∅ then

return argminx∈X∩P0,0
Fitness (x, s)

else
if X ∩ P0,1 6= ∅ then

if #{CW (X , s)} = 2 then
return argminx∈U CW (x, s)

else
return argminx∈U AW (x, s)

end if
else

if #{CV (X , s)} = 2 then
return argminx∈X CV (x, s)

else
return argminx∈X AV (x, s)

end if
end if

end if
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3.5 Cash management

The GAs are performed per sector. They can run sequentially or in parallel, thus the overall
amount of purchases/sales, constrained by the amount of the adjustment, can be tested only when
all the GAs have terminated. Two scenarios regarding the overall amount of purchases/sales are
possible: (1) it can be above the adjustment or (2) it can be below the adjustment by an amount
exceeding a threshold15. In the first scenario, some sectors are selected and others are discarded.
The choice can be achieved if we formulate the problem as a Knapsack problem16 (KP). KP’s items
will be the sectors and the KP’s limited capacity is the adjustment. Items’ weights and values
are the amount of purchases/sales of bonds in sectors and hence the KP will consider first the
sectors with the highest values. In the second scenario, the basket found is added to the existing
quantities. The GAs are restarted using the updated quantities and the adjustment decreased by
the mark-to-market of the basket.

Run GAs

Aggregate results

Evaluate the
univested cash

Is the
univested

cash higher
than

threshold?

Over-
adjustment?

Stop

Add basket to
existing quantities

Amended
adjustment

Knapsack choice

no

yes

yes

no

Figure 9: Cash management

3.6 Calibration of parameters

Any GA has four intrinsic parameters to be calibrated: (1) the population size, (2) the termination
criteria, (3) the crossover rate and (4) the mutation rate. The size of the population indicates the
total number of the population’s individuals. On the one hand, if the size of the population is

15For instance, uninvested cash is higher than EUR 100 000.
16See Appendix A.4 on page 41.
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small, the available search space is small too, and therefore it is possible to reach a local optimum.
On the other hand, if the population size is very large, the search area is increased, and the
computational load becomes high. Therefore, the size of the population must be reasonable. We
set up this parameter to 50.

As termination criteria, we set up a threshold for the number of generations. The GA will
terminate when the number of iterations reaches this threshold. This number depends on the
problem type and complexity. In some cases, hundreds of loops are sufficient, but we might need
more in other cases. Setting a higher number may increase the computation time. We set up this
parameter to 500. The total number of generations may not be used if no improvement in the
best fitness is observed for I iterations. We set I to 100.

Choosing the crossover and mutation rates is not an easy task. Usually, these rates are fixed,
i.e. they do not change during the execution of the GA. These parameters’ values are determined
with a sensitivity analysis after carrying out multiple GA runs with different values and having
compared the outcome. Since the GA is intrinsically a dynamic and adaptive process, constant
parameters contrast with the evolutionary spirit. Therefore, the natural idea is to try to modify
the GA’s values while running it. This is possible to perform by using a particular rule or by
employing a particular self-adaptive process. Dong and Wu (2009) and Hassanat et al. (2019) fall
into these categories.

3.6.1 An example of self-adaptive mechanisms

Dong and Wu (2009) use a self-adaptive mechanism for both crossover and mutation rates. They
define the crossover rate for each couple of chromosomes as the difference in fitness scaled by the
difference between the greatest and lowest fitness values of the chromosomes in the population.
The authors justify this approach by the fact that “when the crossover rate is the same, all
the individuals in the cross-operation are retained at the same probability, thus the current better
individuals are selected several times during the choice operation in the next round and the poorer
individuals are eliminated leading the population to quickly evolve towards the current optimal
individual. If this current optimal individual is a local optimum, then the entire algorithm can fall
into local optimum”. With this definition, very close individuals have small chances to generate
offspring, contrary to very distant individuals. The mutation rate is defined as a quadratic function
of the fitness. When the fitness is maximized, the mutation rate is highest for the fitness’s highest
values. Better individuals are then allowed to have a bigger rate to avoid better individuals
occupying the entire population. We adopt this approach, and we define for each sector s the
crossover rate function:

ρCrossover (x1, x2, s) =
|Fitness (x1, s)−Fitness (x2, s)|

maxxFitness (x, s)−minxFitness (x, s)

and the mutation rate function:

ρMutation(x1, s) = ϕ ·
(

1− Fitness (x1, s)−minxFitness (x, s)

maxxFitness (x, s)

)2

where x1 and x2 are two candidate portfolios, and ϕ is the mutation rate reached when the fitness
is at its lowest value. To use the rates introduced above in our problem, we extend the defintion
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of fitness, thanks to the logistic function17, to take into account the infeasible solutions:

Fitness? (x, s) = Fitness (x, s) +(
1 + max

y
Fitness (y, s)

)
·
(
CW (x, s) + Logistic (AW (x, s))− 1

2

)
+(

1 + max
y
Fitness (y, s)

)
·
(
CV (x, s) + Logistic (AV (x, s))− 1

2

)
·(

1 + max
y
CW (y, s)

)
This extended fitness function preserves the priority of feasible solutions over infeasible solutions.
It also coincides with the original fitness function as far as feasible solutions are concerned since we
have CV (x, s) = AV (x, s) = CW (x, s) = AW (x, s) = 0 when a candidate solution x ∈ P0,0. The
coefficient (1 + maxy Fitness (y, s)) ensures that any infeasible solution of P0,1 lags any feasible
solution. For instance, in the extreme case where its fitness value is equal to 0 and CV (x, s) = 1,
then the associated extended fitness will be higher than (1 + maxy Fitness (y, s)). The same idea
applies to the infeasible solutions of P1. The logistic function ensures the hierarchy between two
infeasible solutions having the same value for CV (x, s) or CW (x, s).

3.6.2 An example of deterministic mechanisms

Hassanat et al. (2019) use a deterministic adaptation of the rates. A time-varying rule modi-
fies crossover and mutation rates with respect to the number of generations. The rule gradually
decreases (respectively increases) the crossover (respectively the mutation) rates as generations
elapse18. The crossover then decreases linearly from 1 to 0 when the maximum number of gen-
erations is reached and, at the same time, the mutation increases linearly from 0 to 1. At each
generation, the sum of both rates is 1.

An alternative to Hassanat et al. (2019) mutation curve is to cap the mutation rate to κ,
where 0 ≤ κ < 1. The rationale is to prevent too high mutation rates as they reduce the GA’s
searchability to a simple random walk. We may also apply a floor to the mutation rate (for
instance 5%) to ensure some mutation for the first generations. A fixed mutation is an extreme
case where the floor equals the cap. These adaptations’ profiles can be seen as similar to option
payoffs: (1) a short put when the mutation is capped, and (2) a long call spread when a floor is
added to the capped mutation. The original version of Hassanat et al. (2019) has a long stock
payoff profile. Figure 10 illustrates the different profiles.

By analogy, we may apply a floor to the crossover rate (for instance 60%) to ensure a high
crossover for the latest generations. The profile is then similar to a long put payoff. Similar to
what we have done for the mutation rates, we may add a cap to prevent very high crossover rates.
The profile then becomes a payoff of a long put spread option. The crossover version of Hassanat
et al. (2019) has a short stock payoff profile. The profiles discussed are shown in Figure 11.

17The logistic function Logistic (z) =
1

1 + e−z
is strictly increasing in R+ and takes its values in [0.5, 1[.

18Hassanat et al. (2019) also document an increasing (respectively decreasing) rule for the crossover (respectively
the mutation).
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Figure 11: Deterministic crossover rates

4 Application

In this section, we explore the capabilities of GA in a case study. Given a portfolio and its
benchmark, we generate in-kind basket portfolios using different genetic operators’ definition to
match two subscription and redemption amounts. We look closely at three metrics: (1) the number
of bonds in the baskets, (2) the percentage of the bonds that belong to the counterparty’s book
and (3) the uninvested amount. We strive to find the best parameters that optimize these metrics
first on a standalone basis and then combined.

4.1 Data

We consider a credit portfolio and its benchmark made up respectively of 1 408 and 2 879 of euro-
denominated bonds belonging to 16 sectors. The main metrics and contributions per sector are
reported in Table 3. The banking sector is the most represented sector, with 321 bonds in the
portfolio and 632 in the benchmark. This sector will be the more time-consuming sector for the
GA, especially when it comes to adjusting an in-kind subscription as the space search includes
the benchmark’s bonds. In Table 4, we also assume that the market maker has an axis list of 69
bonds, covering most sectors, where each traded bond cannot exceed a certain quantity. From the
list, only 52 bonds are held in the portfolio and thus are constrained in the in-kind redemption
process. We note that the banking sector is well represented among the constrained bonds. This
adds another layer of difficulty for the sector.
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Portfolio Benchmark

Sector Holdings
DTS Duration Weight

Holdings
DTS Duration Weight

(bps) (bps) (%) (bps) (bps) (%)

Agencies 13 4 5 0.83 29 4 6 0.82
Auto 105 42 33 7.14 202 41 33 7.18
Banking 321 90 106 25.47 632 89 107 25.46
Capital Goods 69 21 23 4.21 139 22 24 4.26
Chemistry 131 46 49 7.97 238 47 49 7.90
Consum 128 44 50 8.84 278 45 50 8.88
Energy 74 31 30 5.27 138 30 29 5.35
Insurance 26 8 9 1.61 54 8 9 1.67
Insurance Sub 42 24 14 2.65 69 25 14 2.66
Lower Tier2 50 22 16 3.88 101 22 16 3.94
Others 26 9 9 1.72 62 10 9 1.90
Pfandbriefe 1 0 0 0.04 2 0 0 0.04
Spec finance 73 33 27 4.81 189 33 27 4.98
Telecom/Techno 150 66 64 11.23 305 65 65 11.28
Transportation 62 25 23 4.04 135 24 22 3.92
Utility 137 53 57 9.81 306 53 55 9.75

Total 1 408 517 516 99.51 2 879 519 516 100.00

Table 3: Sector breakdown

Two adjustment cases will be studied: an in-kind subscription of EUR 5 million and an in-
kind redemption of the same amount. This amount represents roughly 2% of the portfolio’s initial
net asset value. To obtain comparable results between the subscriptions and the redemptions,
we neutralize the liquidity component (λL = 0) and we set the axis penalty multiplier λA to 7.
We will use the two self-adaptive and deterministic mechanisms for both crossover and mutation
rates introduced above. In Table 5, we expose the definitions of genetic operators to be used.
Regarding the self-adaptive mechanism, we adopt the dynamic processes introduced by Dong
and Wu (2009). We note DWCrossover and DWMutation as the associated crossover and mutation
methods afterwards. For deterministic mechanisms, we use the definition proposed by Hassanat
et al. (2019) (H00 method) and our amended definitions (H01-H14 methods). Each definition

Sector
Constrained Held

bonds in portfolio

Auto 4 3
Banking 16 11
Capital Goods 1 1
Chemistry 5 4
Consum 9 6
Energy 1 1

Sector
Constrained Held

bonds in portfolio

Lower Tier 2 1
Others 3 2
Spec finance 7 6
Telecom/Techno 11 8
Transportation 3 3
Utility 8 7

Total 69 52

Table 4: Axis constraints

22



Bond Index Tracking with Genetic Algorithms

of crossover or mutation refers to its payoff. When it is fixed, we study different values of the
crossover rate in the set {0.60, 0.65, . . . , 0.95, 0.99}. When the mutation is concerned, except in
the cases of H00 and H04, we assume that κ ∈ {0.01, 0.02, . . . , 0.07, 0.10, 0.15, . . . , 0.40}. For the
long call spread and long put spread methods, the floors are equal to 0.05 and 0.60. Two items are
reported in the Selection column in Table 5. Traditional means that offspring are placed directly
into the next generation. Expansive OS refers to the expansive optimal sampling introduced by
Dong and Wu (2009) where new individuals have to struggle with the previous generation to access
the next generation. We use both items when the deterministic mechanism is concerned.

Mechanism Method Crossover Mutation Selection

Self-Adaptive D00 DWCrossover DWMutation Expansive OS

Deterministic

H00 Short stock Long stock Expansive OS | Traditional
H01 Short stock Short put Expansive OS | Traditional
H02 Short stock Fixed Expansive OS | Traditional
H03 Short stock Long call spread Expansive OS | Traditional
H04 Long put Long stock Expansive OS | Traditional
H05 Long put Short put Expansive OS | Traditional
H06 Long put Long call spread Expansive OS | Traditional
H07 Long put Fixed Expansive OS | Traditional
H08 Fixed Long stock Expansive OS | Traditional
H09 Fixed Short put Expansive OS | Traditional
H10 Fixed Long call spread Expansive OS | Traditional
H11 Long put spread Long stock Expansive OS | Traditional
H12 Long put spread Short put Expansive OS | Traditional
H13 Long put spread Long call spread Expansive OS | Traditional
H14 Long put spread Fixed Expansive OS | Traditional
T00 Fixed Fixed Expansive OS | Traditional

Table 5: Studied methods

4.2 Statistics

We perform 200 random runs for each method and each adjustment for a total of 899 800 runs in
total. Each run takes on average 5 seconds on a 1.7 GHz Intel Core i5-8350U with 16 GB memory.
For each run, a basket of purchasable or saleable bonds is created to match the given adjustment.
We then report five metrics:

1. the duration-times-spread risk |∆DTS| expressed in bps;

2. the modified duration risk value |∆MD| expressed in bps;

3. the number of bonds NBasket in the basket;

4. the axis matching ratio RAxis defined as the number of bonds belonging to axis A to the
number of bonds in the basket and expressed in %;

5. the ratio RUninvested of the uninvested amount to the adjustment amount expressed in %.
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Among the different solutions, we will prefer those that lower the number of transactions, maximize
the number of bonds on the axis and minimize the uninvested amount.

In Tables 6 and 7, we display the statistics of the five metrics listed above for the subscrip-
tion/purchases process. We report nine statistics for each of them: the mean, the standard
deviation, the skewness, the excess kurtosis, the lowest and the highest values, the median, and
the 1st and 99th percentiles. The third and fourth statistics measure the asymmetry about the
mean and the “tailedness” of the empirical distribution. The uninvested amount ratio RUninvested
of purchases is the only metric whose skewness is not close to zero19. Its skewness is equal to 1.00,
indicating that the mass of the distribution is concentrated to the left of the mean and that most
of the outliers are present on the right side of the distribution. The excess kurtosis of 0.77 suggests
heavy tails compared to the normal distribution. Figures 20–23 and 24 on page 46 illustrate the
probability density functions of the five metrics. We note that DTS and MD risks evolve in the
desired range20. Having 100% of the bonds belonging to axis A is only possible in purchases but
maybe at the cost of high uninvested amounts. On average, we find that NBasket (respectively
RAxis and RUninvested) of purchases are lower (respectively higher) than those of sales and that the
standard deviations are tighter for sales.

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

|∆DTS| (in bps) 1.19 0.27 -0.22 0.03 0.01 0.52 1.20 1.77 2.39
|∆MD| (in bps) 1.42 0.23 0.20 0.18 0.49 0.91 1.42 2.01 2.54

NAxis 35.87 2.27 -0.07 -0.14 26.00 31.00 36.00 41.00 45.00
RAxis (in %) 91.10 3.83 0.12 -0.19 75.00 82.35 91.18 100.00 100.00
RUninvested (in %) 0.97 0.95 1.00 0.77 0.00 0.00 0.54 4.12 6.40

Table 6: Statistics of the subscription/purchases process

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

|∆DTS| (in bps) 1.39 0.21 -0.14 0.32 0.15 0.86 1.39 1.87 2.32
|∆MD| (in bps) 1.33 0.18 -0.14 -0.05 0.36 0.90 1.34 1.72 2.12

NAxis 38.36 1.42 -0.14 -0.00 32.00 35.00 38.00 41.00 44.00
RAxis (in %) 82.38 2.22 0.08 0.46 72.22 76.92 82.05 87.50 94.59
RUninvested (in %) 0.75 0.59 0.19 -1.33 0.00 0.00 0.68 1.79 2.01

Table 7: Statistics of the redemption/sales process

4.3 Standalone analysis

In the section, we study the outcome of different definitions of crossover, mutation, and selection
genetic operators on the metrics NBasket, RAxis and RUninvested. We only present the subscrip-

19A value close to zero means that the tails on both sides of the mean balance out overall.
20Only two observations have their |∆MD| higher than 2.5 bps.
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tion/purchases process results, but the redemption/sales process statistics are given in Appendix
B on page 43.

4.3.1 Crossover operator

In Tables 8, 9 and 10, we investigated the impact of the crossover method. We notice that we obtain
on average the lowest NBasket and the highest RAxis with a fixed crossover rate. The DWCrossover
method trails behind for these two metrics, with however the lowest standard deviation and the
highest skewness. Regarding the ratio of uninvested amount RUninvested, the ranking is reversed,
and the DWCrossover method has the lowest mean. However, all profiles exhibit a high positive
skewness. As far as sales are concerned (see Tables 17, 18 and 19 on page 43), we observe that (1)
apart from the DWCrossover profile, all the other types of crossover exhibit almost the same mean
and median, (2) DWCrossover exhibits the lowest standard deviation and (3) the skewness is very
close to 0.

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 35.87 2.27 -0.07 -0.14 26.00 31.00 36.00 41.00 45.00

Fixed 35.77 2.28 -0.06 -0.14 26.00 30.00 36.00 41.00 44.00
Long put spread 35.80 2.26 -0.07 -0.13 27.00 31.00 36.00 41.00 44.00
Short stock 35.92 2.25 -0.07 -0.13 28.00 31.00 36.00 41.00 44.00
Long put 35.96 2.24 -0.08 -0.15 27.00 31.00 36.00 41.00 45.00
DWCrossover 36.89 2.25 -0.28 0.01 29.00 31.00 37.00 42.00 44.00

Table 8: Impact of the crossover method on NBasket (subscription/purchases process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 91.10 3.83 0.12 -0.19 75.00 82.35 91.18 100.00 100.00

Fixed 91.18 3.88 0.10 -0.23 75.00 82.35 91.18 100.00 100.00
Long put spread 91.15 3.86 0.11 -0.20 75.68 82.35 91.18 100.00 100.00
Long put 91.04 3.78 0.13 -0.16 75.68 82.50 91.18 100.00 100.00
Short stock 91.04 3.78 0.11 -0.10 76.92 82.35 91.18 100.00 100.00
DWCrossover 90.19 3.48 0.36 0.07 78.95 82.50 89.47 97.37 100.00

Table 9: Impact of the crossover method on RAxis (subscription/purchases process)

Hereafter, we focus on the behavior of profiles for which a fixed value is set for the crossover
and we then discard the short stock and DWCrossover profiles. In Figure 12, we report the averages
of NBasket and RAxis per crossover rate. We note that the lowest values of fixed and long put
spread profiles exhibit the best results. The lower the crossover rate, the lower NBasket and the
higher RAxis. This means that the GA has no need to systematically crossover the portfolios’
population to obtain better results. The long put profile seems to be indifferent to the level of
crossover rate.
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Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 0.97 0.95 1.00 0.77 0.00 0.00 0.54 4.12 6.40

DWCrossover 0.88 0.98 1.51 2.22 0.00 0.00 0.44 4.29 5.38
Short stock 0.95 0.93 1.00 0.78 0.00 0.00 0.53 4.08 5.65
Long put 0.96 0.94 1.03 0.84 0.00 0.00 0.52 4.12 6.40
Long put spread 0.98 0.95 0.97 0.70 0.00 0.00 0.55 4.11 6.14
Fixed 0.98 0.95 0.96 0.69 0.00 0.00 0.56 4.13 6.05

Table 10: Impact of the crossover method on RUninvested (subscription/purchases process)
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Figure 12: Relationship between the crossover rate ρCrossover, NBasket and RAxis (subscrip-
tion/purchases process)
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Figure 13 shows that the long put profile has on average the lowest RUninvested and again,
this amount does not depend on the crossover rate. We also note that the higher the crossover
rate, the lower the percentage of RUninvested for the other profiles. These results contrast with
those obtained for NBasket and RAxis and can be understood because crossing over generates new
portfolios and thereby helps to reduce the portion of the uninvested amount. If we look at sales
in Figures 25 and 26 on page 48, we note that the range of average values is skinny and therefore
we infer that the level of crossover is not critical.

4.3.2 Mutation operator

Regarding the type of mutation used in the subscription/purchases process, we note in Tables 11,
12 and 13 that the best profiles to be used for NBasket and RAxis are the short put and to a lesser
extent the long stock. They have in common the fact that mutation increases linearly from 0 as
a function of the first generations. The long call spread does better than the fixed profile and is
preferred to reduce the uninvested amount. In Tables 20, 21 and 22 on page 44, we report the
same metrics for the redemption/sales process. We note that previous findings hold for NBasket

and RAxis.

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 35.87 2.27 -0.07 -0.14 26.00 31.00 36.00 41.00 45.00

Short put 35.41 2.21 -0.04 -0.10 26.00 30.00 35.00 40.00 44.00
Long stock 35.52 2.19 -0.03 -0.05 26.00 30.00 36.00 41.00 43.00
Long call spread 35.86 2.17 -0.07 -0.11 27.00 31.00 36.00 41.00 44.00
Fixed 36.30 2.28 -0.14 -0.15 27.00 31.00 36.00 41.00 45.00
DWMutation 36.89 2.25 -0.28 0.01 29.00 31.00 37.00 42.00 44.00

Table 11: Impact of the mutation method on NBasket (subscription/purchases process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 91.10 3.83 0.12 -0.19 75.00 82.35 91.18 100.00 100.00

Short put 91.63 3.96 0.01 -0.34 75.68 82.50 91.43 100.00 100.00
Long stock 91.30 3.80 0.06 -0.08 77.14 82.35 91.43 100.00 100.00
Long call spread 90.95 3.70 0.10 -0.01 75.68 82.35 91.18 100.00 100.00
Fixed 90.69 3.74 0.20 -0.09 75.00 82.35 90.24 100.00 100.00
DWMutation 90.19 3.48 0.36 0.07 78.95 82.50 89.47 97.37 100.00

Table 12: Impact of the mutation method on RAxis (subscription/purchases process)

As we did for the crossover, we look at the behavior of profiles for which a fixed value is set
for mutation. Figure 14 shows a clear hierarchy between profiles: (1) short put, (2) long call
spread, (3) fixed-rate and finally (4) DWMutation. The short put in the first position is consistent
with the results of Tables 11 and 12, where short put and long stock profiles present the best
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Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 0.97 0.95 1.00 0.77 0.00 0.00 0.54 4.12 6.40

Long call spread 0.86 0.82 0.66 -0.64 0.00 0.00 0.48 2.65 4.68
DWMutation 0.88 0.98 1.51 2.22 0.00 0.00 0.44 4.29 5.38
Long stock 0.89 0.83 0.59 -0.83 0.00 0.00 0.50 2.67 4.37
Fixed 0.93 0.96 1.18 1.25 0.00 0.00 0.48 4.19 6.05
Short put 1.09 1.00 0.87 0.49 0.00 0.00 0.71 4.20 6.40

Table 13: Impact of the mutation method on RUninvested (subscription/purchases process)
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Figure 14: Relationship between the mutation rate ρMutation, NBasket and RAxis (subscrip-
tion/purchases process)
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Figure 15: Relationship between the mutation rate ρMutation and RUninvested (subscrip-
tion/purchases process)
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results. We also observe that the lower the mutation rate, the better the results. For instance,
the lowest average of NBasket and highest average of RAxis is found with a mutation rate of 1%.
An interesting result concerns the curves of the short put and long call spread profiles. Indeed, we
note that the outcome is a flat curve above 10%, meaning that it does not depend on the chosen
mutation rate. Their GAs terminate on average after reaching only 10% of the maximum number
of generations. These findings apply to sales as well, as shown in Figure 27 on page 49.

The flip side of the coin is with the lowest mutation rates since we experience high rates of
uninvested amounts, as shown in Figure 15. With a mutation rate of 1%, 1.8% of the adjustment
is not invested. Again, we observe a flat curve for short put and long call spread profiles above
10%. Figure 28 on page 49 shows that all sales profiles exhibit almost the same level of RUninvested
if we exclude the first mutation rates of DWMutation.

4.3.3 Selection operator

Tables 14, 15 and 16 report the statistics related to NBasket, RAxis and RUninvested. We note
that both types of selection give almost the same statistics with a very slight preference for
the traditional method, even though the expansive optimal sampling exhibits a lower standard
deviation. This finding is also observable in Tables 23, 24 and 25 on page 45 when we focus on
the redemption/sales process.

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 35.87 2.27 -0.07 -0.14 26.00 31.00 36.00 41.00 45.00

Traditional 35.83 2.28 -0.07 -0.15 26.00 31.00 36.00 41.00 44.00
Expansive OS 35.90 2.25 -0.07 -0.13 27.00 31.00 36.00 41.00 45.00

Table 14: Impact of the selection method on NBasket (subscription/purchases process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 91.10 3.83 0.12 -0.19 75.00 82.35 91.18 100.00 100.00

Traditional 91.11 3.86 0.12 -0.22 76.32 82.35 91.18 100.00 100.00
Expansive OS 91.09 3.81 0.12 -0.17 75.00 82.35 91.18 100.00 100.00

Table 15: Impact of the selection method on RAxis (subscription/purchases process)

To assess the impact of the selection operator along with the crossover and mutation profiles,
we define for each metric M the statistic ∆M̄ = M̄Traditional − M̄Expansive OS, where M̄Traditional and
M̄Expansive OS are the average values taken by the metric M when we choose the traditional or
the expansive OS selection methods. In Figure 16, we report for each crossover and mutation
profiles ∆N̄Axis, ∆R̄Axis and ∆R̄Uninvested. We find better crossover results when we associate the
long put and short stock profiles with the traditional selection scheme since ∆N̄Axis is negative
and ∆R̄Axis is positive. We discard ∆R̄Uninvested as it is too close to zero. The expansive OS
scheme is suitable for fixed and long put spread profiles. This selection produces better results
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Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 0.97 0.95 1.00 0.77 0.00 0.00 0.54 4.12 6.40

Expansive OS 0.96 0.95 1.00 0.78 0.00 0.00 0.53 4.12 6.03
Traditional 0.98 0.95 0.99 0.76 0.00 0.00 0.54 4.12 6.40

Table 16: Impact of the selection method on RUninvested (subscription/purchases process)

for all mutation profiles except the fixed profile, where the traditional scheme is preferred since
∆R̄Axis is positive and the two other metrics is close to zero. These findings are not relevant to
the redemption/sales process because the range of metrics is very thin, as shown in Figure 29 on
page 50.
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Figure 16: Impact of the selection method on the ∆M̄ metrics (subscription/purchases process)

4.4 Combined analysis

Ideally, we might be interested in low values of NBasket, high values of RAxis and low values of
RUninvested at the same time. For this purpose, we combine the z-scores of the three winsorized
metrics. The winsorisation ensures that the average values used to standardize the variables are
less affected by extreme values. For a given variable, the values for all observations are first ranked
in ascending order. Then, for observations that lie outside the 1st − 99th percentile range, their
value is set equal to the 1st or 99th percentile values. Then, we define the z-score associated with
the ith observation of the random variable w:

zi (w) =
wi − µw
σw

where µw and σw are respectively the mean and the standard deviation of the winsorized random
variable w. The equally weighted z-score using the three winsorized metrics is equal to:

Wi =
−zi (NBasket) + zi (RAxis)− zi (RUninvested)

3
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The negative sign in the combination ensures that an observation having a high value of NBasket

or RUninvested gets a low z-score. We also define the z-score using only the first two metrics:

Vi =
−zi (NBasket) + zi (RAxis)

2

Figure 17 shows the average z-score W per crossover or mutation rate. Contrary to mutation,
the crossover does not seem to be too discriminating since the range is very thin. That said, we
observe a decreasing trend for fixed and long put spread profiles as the rate increases and a flat
curve for the long put spread as expected. If we look at mutation, the hierarchy is preserved but
the highest z-scores for the short put profile are obtained for mutation rates above 10%. In Figure
18, we use the average z-score V instead. We find for crossover and mutation the same profiles as
those we encountered above for RAxis graphs.
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Figure 17: Relationship between the crossover/mutation rates and the average z-score W (sub-
scription/purchases process)

Figure 19 displays the average z-scores W and V per crossover and mutation profiles. By con-
struction, the mean of the combined z-score is equal to zero when we consider all the observations.
We notice that DWCrossover and DWMutation exhibit on average the worst z-scores. This method
is definitely not suitable for this exercise of GA with its current settings. Dong and Wu (2009)
point out that the results will not be satisfactory if the GA requires high speed (i.e. low number of
generations). The results for other crossover profiles are however comparable. Therefore, we may
prefer fixed crossover profiles as they show positive z-scores on average. If we look at mutation,
both short put and long stock mutation profiles are to be selected since they are the only ones to
show clearly positive z-scores.
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Figure 18: Relationship between the crossover/mutation rates and the average z-score V (sub-
scription/purchases process)
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5 Conclusion

This article uses genetic algorithms to match the reference portfolio’s characteristics and handle
liquidity and axis constraints when adjusting an amount of subscription or redemption. These
algorithms’ main contribution lies in their capacity to navigate into huge search spaces looking
for optimal combinations of solutions, mainly when the objective function is discrete. Indeed, a
candidate solution is a portfolio of bonds belonging to the reference portfolio where each bond
has a discrete quantity set up as a multiple of the bond’s minimum tradable.

We perform thousands of purchases and sales tests on a real portfolio consisting of 16 sectors
and subject to axis constraints. We use different definitions of the genetic operators applying
deterministic or self-adaptive rules to crossover, mutation, and selection. We find that the execu-
tion time of a few seconds and the outcome are very satisfactory given the considerable number
of constraints to be satisfied overall and by sector. Using a population of 50 candidate solutions
and a number of generations that does not exceed 500, we also find that GAs with fixed crossover
and mutation rates increasing linearly along the number of generations are on average the most
successful in minimizing the total number of transactions and maximizing the number of bonds be-
longing to a counterparty’s book and the amount invested. These last findings may be enhanced if
we amend the selection process to let parents and offspring struggle to access the next generation.
Obviously, not all these results may be extended automatically to all real portfolios, especially
when the axis is “poor”, but they can be the first approach to solving similar automation issues.

Moreover, the genetic algorithm we have built is scalable, even though the chromosomes’ defini-
tion may need to be amended to manage larger quantities. The extension of the genetic algorithm
to more complex bond portfolio optimization problems is straightforward. It can particularly
handle additional requirements, such as constraints on ESG scores and carbon metrics, that have
now become mandatory when managing bond portfolios for tier-one institutional investors.
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A Appendix

A.1 Notations

We use the following notations:

• b is the reference (or benchmark) bond portfolio;

• x is a portfolio solution candidate;

• x0 is the current bond portfolio;

• s is a given sector among the sectors of b;

• nb is the number of bonds in Portfolio b;

• nx is the number of bonds in Portfolio x;

• NBuckets is the number of maturity buckets;

• DTSi, MDi, LTPi and Pi are the duration-times-spread price, modified duration, liquidity-
times-price, and the dirty price of Bond i;

• MDi (Bucketj) is the contribution of the modified duration of Bond i to the jth maturity
bucket:

MDi =

NBuckets∑
j=1

MDi (Bucketj)

• ∆Qi (x) = Qi (x) − Qi (x
0) is the change in quantity of Bond i in Portfolio x with respect

to its quantity in the current portfolio x0;

• Cash (x) is the amount of cash of Portfolio x;

• NAV (x) is the net asset value of Portfolio x:

NAV (x) =
nx∑
i=1

Pi ·Qi (x) + Cash (x)

• Adjustment = NAV (x)− NAV (x0) is the amount of adjustment;

• ωi (x) is the weight of Bond i in Portfolio x:

ωi (x) =
Pi ·Qi (x)

NAV (x)

• ωW (x, s) is the weight of Sector s in Portfolio x:

ωW (x, s) =
∑

i∈Sector(s)

ωi (x)

=
1

NAV (x)

∑
i∈Sector(s)

Pi ·Qi (x)
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• ωDTS (x, s) is the contribution to DTS of Sector s in Portfolio x:

ωDTS (x, s) =
∑

i∈Sector(s)

ωi (x) ·DTSi

• ωMD (x, s) is the contribution to MD of Sector s in Portfolio x:

ωMD (x, s) =
∑

i∈Sector(s)

ωi (x) ·MDi

• ωMD(Bucketj) (x, s) is the contribution of the modified duration of Sector s to the jth maturity
bucket in Portfolio x:

ωMD(Bucketj) (x, s) =
∑

i∈Sector(s)

ωi (x) ·MDi (Bucketj)

By construction, we have:

ωMD (x, s) =

NBuckets∑
j=1

ωMD(Bucketj) (x, s)

=

NBuckets∑
j=1

∑
i∈Sector(s)

ωi (x) ·MDi (Bucketj)

=
∑

i∈Sector(s)

ωi (x) ·
NBuckets∑
j=1

MDi (Bucketj)

=
∑

i∈Sector(s)

ωi (x) ·MDi

• ∆ωi (x) is the change in weight of Bond i in Portfolio x with respect to the current portfolio
x0:

∆ωi (x) =
Pi ·∆Qi (x)

NAV (x)

• ∆ωW (x, s) is the weight of the basket of bonds that belong to Sector s to be purchased or
sold with respect to NAV (x):

∆ωW (x, s) =
∑

i∈Sector(s)

∆ωi (x)

• ∆ωDTS (x, s) is the contribution to DTS of the basket of bonds to be purchased or sold from
Sector s in Portfolio x:

∆ωDTS (x, s) =
∑

i∈Sector(s)

∆ωi (x) ·DTSi
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• ∆ωMD(Bucketj) (x, s) is the contribution of the modified duration of the basket of bonds to be
purchased or sold from Sector s to the jth maturity bucket in Portfolio x:

∆ωMD(Bucketj) (x, s) =
∑

i∈Sector(s)

∆ωi (x) ·MDi (Bucketj)

• RW (x | b, s) is the weight risk measure:

RW (x | b, s) =

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi)

∣∣∣∣∣∣
• RMD (x | b, s) is the modified duration risk measure:

RMD (x | b, s) =

NBuckets∑
j=1

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi) ·MDi (Bucketj)

∣∣∣∣∣∣
• RDTS (x | b, s) is the duration-times-spread risk measure:

RDTS (x | b, s) =

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi) ·DTSi

∣∣∣∣∣∣
• Liquidity(x, s) is the liquidity penalty function of Sector s in Portfolio x:

Liquidity(x, s) =
∑

i∈Sector(s)

xi · LTPi

• ∆Liquidity (x, s) is the liquidity cost of the basket of bonds to be purchased or sold from
Sector s in Portfolio x:

∆Liquidity (x, s) =
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
LTPi

• Axis(x, s) is the axis penalty function of Sector s in Portfolio x:

Axis(x, s) = # {i ∈ Sector (s) : (1− δi) · |∆Qi (x)| > 0}

where δi = 1 if Bond i is on the axis A and δi = 0 otherwise;

• The fitness function is defined as:

Fitness (x, s) = RW (x | b, s) +RMD (x | b, s) +RDTS (x | b, s) +

λL · Liquidity (x, s) + λA · Axis (x, s)
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• NBasket(x) is the number of bonds purchased or sold in Portfolio x;

NBasket(x) = # {i ∈ x : ∆Qi (x) 6= 0}

• RAxis(x) is the percentage of bonds purchased or sold in Portfolio x that belong to the axis:

RAxis(x) =
1

NBasket(x)
·# {i ∈ x : δi ·∆Qi (x) 6= 0}

where δi = 1 if Bond i is on the axis A and δi = 0 otherwise;

• RUninvested(x) is the percentage of the adjustment that remains uninvested:

RUninvested(x) = 1− 1

Adjustment ·
∑
i∈x

Pi ·∆Qi (x)
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A.2 Method of additional quantities

A.2.1 In-kind process

In this process, the reference portfolio is the current portfolio x0. The weight risk measure can be
written as follows:

RW

(
x | x0, s

)
=

∣∣∣∣∣∣
∑

i∈Sector(s)

(
xi − x0

i

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Sector(s)

(
Pi ·Qi (x)

NAV (x)
− Pi ·Qi (x

0)

NAV (x0)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Sector(s)

(
Pi · (Qi (x

0) + ∆Qi (x))

NAV (x)
− Pi ·Qi (x

0)

NAV (x0)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
+

(
1

NAV (x)
− 1

NAV (x0)

) ∑
i∈Sector(s)

Pi ·Qi

(
x0
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
− Adjustment

NAV (x)

 1

NAV (x0)

∑
i∈Sector(s)

Pi ·Qi

(
x0
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
− Adjustment

NAV (x)

 1

NAV (x0)

∑
i∈Sector(s)

Pi ·Qi

(
x0
)∣∣∣∣∣∣

=

∣∣∣∣∆ωW (x, s)− Adjustment
NAV (x)

ωW

(
x0, s

)∣∣∣∣
where ∆ωW (x, s) is the weight of the basket of bonds that belong to Sector s to be purchased
with respect to NAV (x). We obtain similar formulas for the DTS risk measure:

RDTS

(
x | x0, s

)
=

∣∣∣∣∆ωDTS (x, s)− Adjustment
NAV (x)

ωDTS

(
x0, s

)∣∣∣∣
and the MD risk measure:

RMD

(
x | x0, s

)
=

NBuckets∑
j=1

∣∣∣∣∆ωMD(Bucketj) (x, s)− Adjustment
NAV (x)

ωMD(Bucketj)

(
x0, s

)∣∣∣∣
where ∆ωDTS (x, s) and ∆ωMD(Bucketj) (x, s) are respectively the contribution to DTS of Sector s
and the contribution of bucket j to the modified duration of Sector s by the basket of bonds to
be purchased or sold.
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A.2.2 Standard process

In the standard process, the reference portfolio is the benchmark b. The weight risk measure is
equal to:

RW (x | b, s) =

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi)

∣∣∣∣∣∣
= |ωW (x, s)− ωW (b, s)|

=

∣∣∣∣∣∣
∑

i∈Sector(s)

Pi · (Qi (x
0) + ∆Qi (x))

NAV (x)
− ωW (b, s)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
−

ωW (b, s)−
∑

i∈Sector(s)

Pi ·Qi (x
0)

NAV (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
−

ωW (b, s)− NAV (x0)

NAV (x)

∑
i∈Sector(s)

Pi ·Qi (x
0)

NAV (x0)

∣∣∣∣∣∣
=

∣∣∣∣∆ωW (x, s)−
(
ωW (b, s)− NAV (x0)

NAV (x)
ωW

(
x0, s

))∣∣∣∣
The adjustment in the standard process is often performed at a constant NAV:

RW (x | b, s) =
∣∣∆ωW (x, s)−

(
ωW (b, s)− ωW

(
x0, s

))∣∣
For the DTS and modified duration risk measures, we obtain similar formulas. We have:

RDTS (x | b, s) =
∣∣∆ωDTS (x, s)−

(
ωDTS (b, s)− ωDTS

(
x0, s

))∣∣
and:

RMD

(
x | x0, s

)
=

NBuckets∑
j=1

∣∣∆ωMD(Bucketj) (x, s)−
(
ωMD(Bucketj) (b, s)− ωMD(Bucketj)

(
x0, s

))∣∣
A.2.3 Liquidity penalty function

As a reminder, the liquidity penalty function is equal to:

Liquidity (x, s) =
∑

i∈Sector(s)

xi · LTPi

=
∑

i∈Sector(s)

Pi · (Qi (x
0) + ∆Qi (x))

NAV (x)
LTPi

=
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
LTPi +

∑
i∈Sector(s)

Pi ·Qi (x
0)

NAV (x)
LTPi

=
∑

i∈Sector(s)

Pi ·∆Qi (x)

NAV (x)
LTPi +

NAV (x0)

NAV (x)

∑
i∈Sector(s)

Pi ·Qi (x
0)

NAV (x0)
LTPi
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We notice that:

Liquidity
(
x0, s

)
=

∑
i∈Sector(s)

Pi ·Qi (x
0)

NAV (x0)
LTPi

We deduce that:

Liquidity (x, s) = ∆Liquidity (x, s) +
NAV (x0)

NAV (x0) +AdjustmentLiquidity
(
x0, s

)
where ∆Liquidity (x, s) is the liquidity cost of the basket of bonds to be purchased or sold. For
a given Adjustment, minimizing Liquidity (x, s) is equivalent to minimize ∆Liquidity (x, s).

A.3 Lower bound of the modified duration risk

Using the triangle inequality, we have:

NBuckets∑
j=1

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi) ·MDi (Bucketj)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
NBuckets∑
j=1

 ∑
i∈Sector(s)

(xi − bi) ·MDi (Bucketj)

∣∣∣∣∣∣
We notice that:

NBuckets∑
j=1

 ∑
i∈Sector(s)

(xi − bi) ·MDi (Bucketj)

 =
∑

i∈Sector(s)

(xi − bi)
(
NBuckets∑
j=1

MDi (Bucketj)
)

=
∑

i∈Sector(s)

(xi − bi) MDi

because:

MDi =

NBuckets∑
j=1

MDi (Bucketj)

We conclude that:

NBuckets∑
j=1

∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi) ·MDi (Bucketj)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∑

i∈Sector(s)

(xi − bi) MDi

∣∣∣∣∣∣
A.4 Knapsack problem

In the knapsack problem (KP), we have a set of items {1, . . . , n} and a knapsack of limited capacity
K. To each item, we associate a positive profit pj and a positive weight wj. The optimization
problem consists of selecting the set of items with the maximum profit that does not exceed the
knapsack capacity. We can formulate it as an integer linear programming problem:

{x1, . . . , xn} = arg max
n∑
j=1

pjxj

s.t.

{ ∑n
j=1 wjxj ≤ K

xj ∈ {0, 1}
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If
∑n

j=1wj ≤ K, the solution is trivial since we select all the items. If
∑n

j=1 wj > K, the items’
total weight exceeds the knapsack capacity K and we obtain an NP-hard problem.
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B Additional results

B.1 Tables

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 38.36 1.42 -0.14 -0.00 32.00 35.00 38.00 41.00 44.00

Fixed 38.34 1.43 -0.13 0.00 32.00 35.00 38.00 41.00 44.00
Long put spread 38.35 1.42 -0.14 0.01 32.00 35.00 38.00 41.00 44.00
Short stock 38.36 1.39 -0.12 -0.08 33.00 35.00 38.00 41.00 44.00
Long put 38.36 1.40 -0.14 -0.02 32.00 35.00 38.00 41.00 44.00
DWCrossover 38.75 1.32 -0.22 0.06 34.00 35.99 39.00 41.00 44.00

Table 17: Impact of the crossover method on NBasket (redemption/sales process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 82.38 2.22 0.08 0.46 72.22 76.92 82.05 87.50 94.59

Short stock 82.41 2.21 0.08 0.49 73.68 76.92 82.05 87.50 91.89
Long put 82.41 2.19 0.10 0.50 72.97 76.92 82.05 87.50 94.44
Fixed 82.38 2.25 0.06 0.44 72.22 76.92 82.05 87.50 94.59
Long put spread 82.37 2.24 0.07 0.43 72.22 76.92 82.05 87.50 94.44
DWCrossover 81.92 2.00 0.08 0.66 73.68 76.92 82.05 86.84 91.43

Table 18: Impact of the crossover method on RAxis (redemption/sales process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 0.75 0.59 0.19 -1.33 0.00 0.00 0.68 1.79 2.01

Short stock 0.74 0.59 0.20 -1.32 0.00 0.00 0.68 1.79 1.99
Long put 0.75 0.59 0.20 -1.32 0.00 0.00 0.68 1.78 2.00
Long put spread 0.75 0.59 0.18 -1.34 0.00 0.00 0.68 1.79 2.01
Fixed 0.75 0.59 0.18 -1.34 0.00 0.00 0.68 1.79 1.98
DWCrossover 0.77 0.60 0.15 -1.37 0.00 0.00 0.71 1.81 1.93

Table 19: Impact of the crossover method on RUninvested (redemption/sales process)
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Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 38.36 1.42 -0.14 -0.00 32.00 35.00 38.00 41.00 44.00

Short put 38.24 1.45 -0.13 -0.01 32.00 35.00 38.00 41.00 44.00
Long stock 38.26 1.43 -0.09 0.04 32.00 35.00 38.00 41.00 43.00
Long call spread 38.35 1.41 -0.12 -0.02 32.00 35.00 38.00 41.00 44.00
Fixed 38.46 1.38 -0.14 0.00 32.00 35.00 38.00 41.00 44.00
DWMutation 38.75 1.32 -0.22 0.06 34.00 35.99 39.00 41.00 44.00

Table 20: Impact of the mutation method on NBasket (redemption/sales process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 82.38 2.22 0.08 0.46 72.22 76.92 82.05 87.50 94.59

Short put 82.51 2.30 0.06 0.40 72.97 76.92 82.05 88.57 94.59
Long stock 82.48 2.30 0.05 0.50 72.97 76.92 82.05 87.50 94.44
Long call spread 82.40 2.22 0.04 0.43 72.22 76.92 82.05 87.50 94.44
Fixed 82.26 2.14 0.10 0.52 72.97 76.92 82.05 87.18 92.31
DWMutation 81.92 2.00 0.08 0.66 73.68 76.92 82.05 86.84 91.43

Table 21: Impact of the mutation method on RAxis (redemption/sales process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 0.75 0.59 0.19 -1.33 0.00 0.00 0.68 1.79 2.01

Long stock 0.73 0.58 0.21 -1.33 0.00 0.00 0.66 1.77 1.97
Short put 0.73 0.58 0.21 -1.33 0.00 0.00 0.66 1.78 2.01
Long call spread 0.75 0.59 0.17 -1.35 0.00 0.00 0.69 1.79 2.00
Fixed 0.76 0.59 0.17 -1.33 0.00 0.00 0.70 1.79 1.98
DWMutation 0.77 0.60 0.15 -1.37 0.00 0.00 0.71 1.81 1.93

Table 22: Impact of the mutation method on RUninvested (redemption/sales process)
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Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 38.36 1.42 -0.14 -0.00 32.00 35.00 38.00 41.00 44.00

Traditional 38.34 1.42 -0.13 -0.01 32.00 35.00 38.00 41.00 44.00
Expansive OS 38.37 1.41 -0.15 0.00 32.00 35.00 38.00 41.00 44.00

Table 23: Impact of the selection method on NBasket (redemption/sales process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 82.38 2.22 0.08 0.46 72.22 76.92 82.05 87.50 94.59

Expansive OS 82.38 2.21 0.08 0.45 72.22 76.92 82.05 87.50 94.59
Traditional 82.38 2.24 0.07 0.47 72.22 76.92 82.05 87.50 94.44

Table 24: Impact of the selection method on RAxis (redemption/sales process)

Mean Std. dev. Skew. Kurt. Min. Q1 Median Q99 Max.

All 0.75 0.59 0.19 -1.33 0.00 0.00 0.68 1.79 2.01

Traditional 0.75 0.59 0.19 -1.34 0.00 0.00 0.68 1.79 2.01
Expansive OS 0.75 0.59 0.19 -1.33 0.00 0.00 0.68 1.79 2.00

Table 25: Impact of the selection method on RUninvested (redemption/sales process)
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B.2 Figures
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Figure 20: Probability distribution of |∆DTS|
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Figure 21: Probability distribution of |∆MD|
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Figure 22: Probability distribution of NBasket
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Figure 23: Probability distribution of RAxis
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Figure 24: Probability distribution of RUninvested
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Figure 25: Relationship between the crossover rate ρCrossover, NBasket and RAxis (redemption/sales
process)
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Figure 26: Relationship between the crossover rate ρCrossover and RUninvested (redemption/sales
process)
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Figure 27: Relationship between the mutation rate ρMutation, NBasket and RAxis (redemption/sales
process)
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Figure 28: Relationship between the mutation rate ρMutation and RUninvested (redemption/sales
process)
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Figure 29: Impact of the selection method on the ∆M̄ metrics (redemption/sales process)
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Figure 30: Average z-scores W and V per crossover and mutation profiles (redemption/sales
process)
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Figure 31: Relationship between the crossover/mutation rates and the average z-score W (re-
demption/sales process)
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Figure 32: Relationship between the crossover/mutation rates and the average z-score V (redemp-
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