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is more complex in the fixed-income space, partly because of 
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small lot sizes. If we consider bonds, the difference between 
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the use of mixed-integer optimisation techniques and show 
that it is straightforward to implement in either corporate 
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1 Introduction

Fixed-income exchange-traded funds are a kind of exchange-traded fund (ETF) that invests
in bonds such as treasuries, corporate bonds, or convertibles1. Similarly to bond mutual
funds, they hold a portfolio of bonds and offer different strategies and holding periods.
Besides the reduced costs for investors, bond ETFs provide exposure to the bond market
with the ease and transparency of stock trading. Unlike individual bonds or bond mutual
funds2, they trade throughout the day on major stock exchanges and even in times of
distress.

There exists active fixed income ETFs, but the majority of them are passive. For the
latter, the main objective is to minimize active risk compared to a reference index and
exhibit the same risk/return metrics. Those metrics can include various risk factors such as
active weights, modified duration, yield to maturity (or yield to worst if the bond embeds
an option), and duration-times-spread (DTS). They are computed either globally or across
sectors, issuers, maturity pillars, bonds, and ratings. The target is to minimize active
exposure to duration and credit risks while maximizing the portfolio liquidity compared to
its benchmark: duration, credit, and liquidity being the main bond price drivers. As to the
first, interest rates move depending on the state of the economy. If interest rates rise, yields
on outstanding bonds decline relative to new bond issues that will consequently be paying
higher coupons. This is referred to as duration risk. Second, corporate bonds are part of
the business environment. The capacity of the issuing firm to be successful and be able to
respect its debt obligations is another determinant of prices. This is referred to as credit
risk. Third, the functioning of the bond market itself plays a role. For corporate bonds in
particular the difficulties to trade have a considerable impact on the value of a bond. This
is liquidity risk.

ETF’s liquidity on exchange and in the secondary market is essential to display tight
spreads and reduce the total cost of ownership for investors. It also participates in enhancing
the attractiveness of some ETFs compared to others. Consequently, fixed-income ETF
portfolio managers may have to comply with market-makers’ constraints. Indeed, market
makers create ETF units by delivering a basket of underlying securities to the ETF issuer
in exchange for a block of ETF units with the same market value. In a redemption process,
the market maker exchanges ETF units with the ETF provider for an equivalent basket
of underlying securities from the ETF. Since authorized participant market makers (AP)
already own bonds inventory to hedge intra-day exposure to ETF, they may be “axed”.
They are more interested to including in their wish list some bonds of the portfolio because
they do not need to buy them in the market to provide the basket to the portfolio manager
for the creation or redemption. In this case, AP may then provide fund managers with their
constraints on the bonds to be bought or sold. These constraints, referred to hereafter as
axes constraints, may impose, if possible, that bonds are part of an authorized list A and
that traded quantities do not exceed an allowed quantity per bond.

Investment guidelines may impose constraints on the sector, country, currency, rating,
or issuer by setting a maximum deviation threshold or an exclusion process. The deviation
can be set at a global level. For instance, a global constraint could be no more than 5
bps in deviation per sector. The deviation can be set when calculating a contribution to
risk. For example, no more than 1.7 bps of deviation in the contribution to duration per

1They can marginally invest in future contract and use FX swap and FX forwards for hedged share
classes.

2Individual bonds are sold over the counter. Bond mutual funds are traded in the best case at one price
per day.
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maturity pillar. In ESG-oriented funds, constraints on ESG scores and carbon metrics are
mandatory. They may set a minimal investment weight in green or sustainable bonds. Last
but not least, constraints on turnover or of the number of trades can add up.

Ben Slimane (2021) describes how to implement genetic algorithms in the context of bond
index tracking and shows that they can be an industrial solution for passive bond manage-
ment even though the entry cost to be familiar with these algorithms is high. Indeed, the
stability and convergence of investment solutions require thousands of tests before proposing
automation to fund managers. In this paper, we use mixed-integer programming instead
through the branch-and-bound or cutting planes algorithms to handle additional objectives
and constraints on the fly. After showing in Section Two that bond-index tracking can be
solved by means of mixed-integer linear programming, we tackle in Section Three the theory
behind it. In the last section, we describe the tool used by ETF portfolio managers to help
them build and rebalance passive index funds through some examples for different scenarios
and different types of objective functions and constraints.

2 Bond-index tracking is a MILP

In Ben Slimane (2021), the genetic-proposed solution matches three risk metrics per sector3:
modified duration per maturity bucket, duration-times-spread4, and weight. The solution
applies penalties for liquidity and axes constraints. The liquidity is proxied by the product
of the clean price and the liquidity score developed by Ben Slimane and De Jong (2017). The
lower this value, the more liquid the bond. The axes component is the number of changes
in the quantities of bonds that do not belong to axes A. The challenge of handling discrete
quantities of bonds has dictated the recourse to genetic algorithms. Bonds, unlike equities,
cannot be traded generally at one unit of quantity5. Each bond has its minimum tradable
amount, under which one cannot buy or sell a quantity of that bond (for example, EUR 100
000). Above this minimum tradable amount, lot size is the incremental nominal amount
traded (for example, EUR 1 000). The quantity of a chosen bond i can be written as

Qi = MTi + liLTi (1)

where MTi and LTi are the minimum tradable amount and the lot size of bond i, and li is
a natural number.

After thousands of runs using different self-adaptive or deterministic mechanisms, four
intrinsic parameters of the genetic algorithms6 were calibrated to lower the number of trans-
actions, maximize the number of bonds on the axis and minimize the uninvested amount
of subscriptions or redemptions. In the same framework of sector matching, considering
additional metrics to match or constraints to satisfy suppose to recalibrate the four param-
eters. What about matching globally or differently the risk metrics? One may match credit
risk at the sector level and simultaneously track the duration risk at the portfolio level.
Testing all combinations of risk metrics and constraints to find the best genetic parameters
might be time-consuming and might not even lead to optimal solutions in reasonable times.
Consequently, we must consider off-the-shelf algorithms to manage tracking objectives and
constraints.

3Or country if the reference portfolio is a government bond index.
4When the reference portfolio bears credit risk. DTS measures the systematic exposure to credit risk by

quantifying sensitivity to a shift in the yield spread(Ben Dor et al., 2007)
5Tables 10 on page 23 and 11 on page 24 display the breakdowns for the minimum lot size and minimum

tradable amount in the MSCI ACWI Index and the Global Aggregate ex-ABS Index.
6Population size, termination criteria, crossover rate, and mutation rate

8



Bond Portfolio Optimisation and Mixed Integer Programming

All the metrics we track are L1-norm risk measures. Any active risk measure, that relates
to a metric M (e.g. MD) with regard a feature f (e.g. sector or maturity bucket), can be
written as:

RM

(
x | b, f

)
=

∣∣∣∣∣∣
∑
i∈b

(xi − bi)Miδi

∣∣∣∣∣∣
where δi = 1 if Bond i has the feature f , otherwise 0. The objective function is to minimise
a linear combination of active risk measures. The combination may be equally weighted or
weighted to emphasise some of the risk components. All the constraints we verify are linear
(e.g. the sum of weights) or ruled by an L1-norm (e.g. the absolute deviation per issuer).
Transforming the weights into quantities leads to linear or L1-norm equations, as shown
in appendix A.2.1 on page 21. These quantities are functions of integer variables as seen
earlier in Equation (1). All of the above are arguments for the use of Mixed Integer Linear
Programming (MILP). If the L2-norm were to be considered, Mixed Integer Quadratic Pro-
gramming (MIQP) would be the solution. However, since bond indices contain thousands of
securities7, we reach here the numerical limits of quadratic programming8. Indeed, accord-
ing to Roncalli (2023), quadratic programming algorithms are efficient when the dimension
of the problem is relatively small, say, when n ≤ 5000. The point is not the convergence of
the algorithm, but the manipulation of the Hessian matrix Q of the quadratic form where
n2 floating-point numbers are stored.

3 Mixed Integer Linear Programming algorithms

A Mixed Integer Linear Programming (MILP) problem is a mathematical optimisation in
which some or all the variables are integers, and the objective function and the constraints
are linear. A MILP problem has the following form:

x? = arg min cTx (2)

s.t.

 Mx ≤m
x ≥ 0
# {i : xi ∈ N} ≥ 1

where c ∈ Rn,m ∈ Rk are vectors and M ∈ Rk×n is a matrix.

L1-norm functions are not linear. Thanks to the absolute value trick9, we transform
them into linear functions by introducing intermediate real variables. The dimension of the
problem is however augmented by the number of these new variables.

Integer variables make an optimisation problem non-convex therefore, harder to solve
than standard linear programming problems. Memory and solution time may exponentially
rise as we add more integer variables. Many combinations of integer values are verified,
and each combination requires the solution of a standard linear problem (LP). We generally
solve MILP in two steps. First, the problem is made continuous by removing the integral
constraint on variables. The new “relaxed” problem is convex and is solved in a polynomial
time. Then divide-and-conquer algorithms take over to perform a systematic and eventually

7As of 31/03/2023, the Bloomberg Global Aggregate Total Return Index has 29 222 securities.
8Alternatively, we can subdivide the universe according to bond categories (corporate, government bonds,

supra, and agencies) for aggregate indices and repeat optimisation for each group separately to reduce the
dimension of each sub-problem.

9See appendix A.2.2 on page 21
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exhaustive search. In the following subsections, we expose three algorithms used in MILP
and illustrate them with simple examples for ease of comprehension.

3.1 Branch-and-Bound

Branch-and-Bound (BnB) is a tree search method proposed by Land and Doig (1960),
proven to reach the optimal solution by systematically exploring the set of possible solutions.
The basic idea is to recursively divide the initial problem into smaller subproblems using a
branching strategy. At each step, the algorithm divides the search space into at least two
smaller subspaces to explore. It then evaluates each subspace to determine if it is possible to
find an optimal solution there. If an optimal solution is found in a subspace, the algorithm
sets it as the best-known solution. Otherwise, the algorithm does not explore that subspace
any further and moves to another subspace. BnB also uses a bounding technique to reduce
the search space by eliminating subspaces that cannot contain an optimal solution. Each
branch is checked against upper and lower estimated bounds on the optimal solution and
is discarded if it cannot produce a better solution than the best one found so far. This
technique helps to avoid wasting time exploring unpromising subspaces.

When we apply BnB to an integer programming problem, we use it in conjunction with
the standard non-integer approach. Hereafter a simple maximization problem solved with
BnB:

(x?, y?) = arg max f(x, y) = 5x+ 8y (3)

s.t.

 5x+ 9y ≤ 45
x+ y ≤ 6
x, y ∈ N

The resolution of a problem with BnB is described as a search through a tree, where
the root node corresponds to the original problem, and each other node corresponds to a
subproblem of the original problem. Given a node N of the tree, the children of N are
subproblems derived from N by imposing a new single constraint for each subproblem.
Thus, the descendants of N are the subproblems, which satisfy the same constraints as N
and additionally a number of others.

We begin the resolution of Problem (3) by relaxing the integer constraints. The problem

becomes then a LP without integer constraints. The relaxed solutions are then x
(1)
rel = 2.25

and y
(1)
rel = 3.75, for which f(x

(1)
rel, y

(1)
rel) = 41.25. The first node contains the relaxed and

the rounded-down solutions (x
(1)
rd = 2 and y

(1)
rd = 3). An upper and lower bounds10 are

associated with this node, U (1) = 41.25 and L(1) = 34. The lower bound is the value of f at
the rounded-down solution. The optimal integer solution will be between these two bounds.

The first step in BnB is to create two solution subsets from the relaxed solution. Ac-
cording to Achterberg et al. (2005), the easiest and most common branching strategy in-
corporated into general MIP solvers is the branching on a variable. It consists of choosing
a variable x̄i with fractional part in the non-integer solution and adding the constraints
xi ≥ dx̄ie and xi ≤ bx̄ic. In our case, we choose to retrieve the variable with the highest

fractional part. It is y as {x(1)rel} = 0.25 and {y(1)rel} = 0.75. We then branch on variable y.

10When the problem minimises a function, relaxed solutions are rounded up, and upper and lower bounds
are reversed.
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The y search space (N) is divided into y ≤ 3 and y ≥ 4. We solve the relaxed LP (4) with
the new constraint added at each of these nodes.

(x?, y?) = arg max f(x, y) = 5x+ 8y

s.t.


5x+ 9y ≤ 45
x+ y ≤ 6
x, y ≥ 0
y ≤ 3

and

(x?, y?) = arg max f(x, y) = 5x+ 8y

s.t.


5x+ 9y ≤ 45
x+ y ≤ 6
x, y ≥ 0
y ≥ 4

(4)

We fill in nodes 2 and 3 with their bounds: x
(2)
rel = 3 and y

(2)
rel = 3, U (2) = 39 and x

(3)
rel = 1.8

and y
(3)
rel = 4, U (3) = 41. The lower bounds L(2) and L(3) are both equal to U (2) = 39

because the relaxed solution of node 2 is totally integer and U (2) > L(1). Next, We repeat
in node 3 the steps previously performed.

Table 1: BnB different nodes

Node Parent Additional
Relaxed sol. Rounded sol.

U (N) L(N) Node

N Node constraint x
(N)
rel y

(N)
rel x

(N)
rd y

(N)
rd Sol.

1 2.25 3.75 2 3 41.25 34 1
2 1 y ≤ 3 3 3 3 3 39 39 2
3 1 y ≥ 4 1.8 4 1 4 41 39 2
4 3 x ≤ 1 1 4.44 1 4 40.55 39 2
5 3 x ≥ 2 39 2
6 4 y ≤ 4 1 4 1 4 37 39 2
7 4 y ≥ 5 0 5 0 5 40 40 7

Table 1 shows the different steps performed to reach the integer solution. We report for
each node, its parent node, the added constraint besides those applied to its parent nodes,
the relaxed and rounded-down solutions. The upper and lower bounds, and the node where
the current integer solution can be found are shown in the last columns. At node 5, the
problem is infeasible. Node 7 shows the optimal integer solution as U (7) = L(7). Thus, it is
not possible to achieve any higher value by further branching from this node.

3.2 Cutting plane algorithm

A cutting plane, proposed by Gomory (1960), is an inequality constraint added to the LP,
having the following properties: (1) It is not satisfied by the non-integer optimal solution
of the old LP, and (2) all the feasible integer solutions of the old LP remain feasible in the
new LP. Hence, the plane cuts off part of the feasible region which does not contain any
integer feasible solution. The cutting process is repeated until the optimal solution found
is also integer. This algorithm is mainly used when the constraints set is too large or when
the inequality constraints are insufficient to yield an integer solution. A cutting plane can
be derived from different sources, such as the problem geometry or the structure of the
objective function. It can also be computed as a by-product of the simplex algorithm for
solving LPs. We illustrate this last point with Problem 3.

In Table 2, we report the simplex tableau for the resolution of Problem 3. The optimal
solution is the same as above (x?, y?) = (9

4 ,
15
4 ). To build a cutting plane, we pick usually

11
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Table 2: Problem 3 associated simplex tableau

Base
Variables Slack variables

RHS
x y s1 s2

Initial Table
s1 5 9 1 0 45
s2 1 1 0 1 6

−5 −8 0 0 0

First iteration

y
5

9
1

5

9
0 5

s2
4

9
0 −1

9
1 1

z −5

9
0

8

9
0 40

Second iteration

y 0 1
1

4
−5

4

15

4

x 1 0 −1

4

9

4

9

4

z 0 0
3

4

5

4

165

4

a row from the last iteration with the largest fractional of RHS. So let’s consider the first
row. We have:

1

4
s1 −

5

4
s2 =

15

4
(5)

If we separate all coeffcients into integer and fractional parts and keep the fractional parts
on the left, Equation (5) becomes

1

4
s1 +

3

4
s2 −

3

4
= 3 + 2s2 (6)

If all the variables are integers, the right-hand side of Equation (6) is integer, and so must

be the left-hand side (LHS). Since s1, s2 ≥ 0, so
1

4
s1 +

3

4
s2 ≥ 0 then LHS ≥ −3

4
. Hence,

LHS must be at least 0. Using the definitions of the slack variables in the LHS equation, we
deduce the cutting plane as function of x and y:

1

4
s1 +

3

4
s2 −

3

4
≥ 0⇒ 1

4
(45− 5x− 9y)1 +

3

4
(6− x− y)− 3

4
≥ 0

⇒ 2x+ 3y ≤ 15 (7)

Figure 1 gives a geometric illustration of our problem. We plot the space of feasible solutions
in green and emphasize the non-integer solution with a red dot. The search space is delimited
by the green and orange lines, associated with the two constraints of the problem and the
first quadrant as variables are positive. The hatched area is the area that contains the
non-integer solution (x?, y?), cut off by the cutting plane from the feasible region. We verify
that all possible integer solutions (black dots) before applying the cutting remain possible
after the cutting.
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Figure 1: Geometric illustration of cutting planes
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4
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x
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Next, we introduce a new slack variable s3 =
1

4
s1 +

3

4
s2 −

3

4
and we solve a new LP

problem (8). The objective function11 and the two first constraints are retrieved from Table
2, to which we add the cutting plane constraint.

(x?, y?, s?1, s
?
2, s

?
3) = arg min

3

4
s1 +

5

4
s2 (8)

s.t.


y +

1

4
s1 −

5

4
s2 =

15

4

x− 1

4
s1 +

9

4
s2 =

9

4
1

4
s1 +

3

4
s2 − s3 =

3

4

We report in Table 3 the results of the iterations using the simplex method. The optimal
solution has integer coordinates (x = 0, y = 5, s1 = 0, s2 = 1, s3 = 0) and is equal to the
solution found by the BnB algorithm.

3.3 Branch-and-Cut

Branch-and-Cut (BnC) is a variant of Branch-and-Bound, first suggested by Padberg and
Rinaldi (1991) to solve the Travelling Salesman problem. It uses the same heuristic in the
branching step but uses cutting planes when bounding to tighten the bounds on the optimal
solution in each branch of the search tree. The rationale is to significantly reduce the
branches to be explored to improve the algorithm performance. Using the same example
as above, we add the constraint (7) of the cutting plane to the relaxed LP (4). Table 4
shows that the integer solution is reached in only three iterations, compared to the seven
iterations of the BnB method. Balas et al. (1996) argued that applying cutting planes in a
branch-and-cut framework provides a powerful algorithm for solving general MILP problems.

When the cutting plane is applied at the top node of the search tree, BnC becomes Cut-
and-Branch (CnB). In our case, the solution is reached in only 1 iteration using (CnB).

11The canonical form is a minimization
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Table 3: Problem 8 associated simplex tableau

Basis
Variables

RHS
x y s1 s2 s3

Initial table

y 0 1
1

4
−5

4
0

15

4

x 1 0 −1

4

9

4
0

9

4

s3 0 0
1

4

3

4
1

3

4

z 0 0
3

4

5

4
0 0

Last iteration

y
2

3
1 0 0

1

3
5

s2
1

3
0 0 1 −1

3
1

s1 −1 0 1 0 −3 0

z
1

3
0 0 1

8

3

5

4

Table 4: BnC different nodes

Node Parent Additional
Relaxed sol. Rounded sol.

U (N) L(N) Node

N Node constraints x
(N)
rel y

(N)
rel x

(N)
rd y

(N)
rd Sol.

1 2.25 3.75 2 3 41.25 34 1
2 1 y ≤ 3 + Cut. 3 3 3 3 39 39 2
3 1 y ≥ 4 + Cut. 0 5 0 5 40 40 3
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4 Illustrations

We make use of the FICO Xpress optimiser to solve bond-tracking problems. This solver is
part of The FICO Xpress Optimisation Suite, widely used in academia and industry, such
as production scheduling, transportation, supply chain management, telecommunications,
finance, and personnel planning. The most popular application of the FICO Xpress optimiser
is for Mixed Integer Programs (MIP). Usually, and depending on how hard the problem is,
the optimiser solves MIP in four stages: (1) Presolving, (2) Solving the initial LP relaxation,
(3) Heuristics and (4) Cutting, and (5) Branch-and-bound tree search. Presolving reduces
the problem’s initial size by dropping unnecessary constraints and variables. It is often the
most crucial part, as the reduction in size can cause a significant difference in solution time.
Heuristics are rules applied on every node or each k nodes during the tree search to help
find a feasible solution. They can be either simple rounding of the continuous solution, local
searches, or a combination of these.

Besides the techniques discussed above, the solver uses sophisticated branch variable
selection techniques such as pseudo costs12 or strong branching13. Finally, the Xpress opti-
miser is multi-threaded and utilizes all computer cores. Parallel processing is an attractive
way to speed optimisation as different nodes in the MIP tree search can be handled inde-
pendently.

Table 5 illustrates the time in seconds for Xpress and an open-source solver CBC14

to solve the same optimisation problem. We present here 4 cases of optimisations in a
euro corporate and a global government bond portfolios with different AUM and the same
simulated size in two different directions. Xpress is more efficient15 whether we simulate
subscription or redemption in a broad or a small portfolio. With both solvers, the level of
difficulty decreases with the portfolio size. All other things being equal, redemption requires
more time than subscription because of additional no short-selling and minimum tradable
quantity holding constraints.

Table 5: Differences between FICO Xpress and CBC

Portfolio Type AUM Simulated Size # of bonds
Solve time (seconds)

(M e) (M e) in universe Xpress CBC

Euro Corp. Subscription 1 100 10 2 631 0.19 10.32
Euro Corp. Redemption 1 100 10 1 735 0.19 31.69
Global Gov Subscription 55 10 996 2.29 89.59
Global Gov Redemption 55 10 955 12.76 > 2 500

For the corporate portfolio, we seek to minimize, with regard to the reference portfolio, the
differences in DTS, weight, and yield at the sector level and the modified duration per each
couple of sector and maturity pillar under the constraints of Table 6. Global constraints refer
to those checked at the portfolio level. Constraints of absolute deviations or contribution to
MD or DTS deviations are verified at the indicated level.

12Pseudo cost is an estimated cost of moving a variable either up or down by a unit amount. This cost
is multiplied by the distance a variable has to move to reach the next integer value, which provides an
estimated change in the objective function.

13Strong branching involves testing which candidate variable improves the objective function the most
before branching on them.

14COIN-OR Branch and Cut is an active open-source project from COmputational INfrastructure for
Operation Research.

15FICO Xpress runs on a dedicated server whereas CBC runs on a local machine.
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Table 6: Euro Corporate constraints

Type Constraint Limit
Maximum

Subscription Redemption

Global
DTS (bps) 2.72 2.72 2.23
MD (Yr × 100) 1.75 0.24 1.75

Absolute deviation
Sector 1 (%) 0.15 0.11 0.14
Sector 2 (%) 0.21 0.15 0.19
Issuer (%) 0.16 0.16 0.16

Contrib. to MD deviation

Sector 1 (Yr × 100) 1.05 0.70 1.02
Sector 2 (Yr × 100) 2.39 1.49 1.82
Issuer (Yr × 100) 1.28 1.07 1.23
Pillar (Yr × 100) 3.93 2.15 3.69
Pillar × Country (Yr × 100) 2.06 1.04 2.00

Contrib. to DTS deviation
Sector 1 (Yr × 100) 6.02 5.86 5.11
Sector 2 (Yr × 100) 8.66 7.64 6.64

For instance, no more than 0.16% of drift is acceptable per issuer. Besides these restric-
tions, any solution must satisfy trade nominals multiple of each bond minimum tradables
with at least EUR 50 000 per bond and leave at most EUR 50 000 of cash uninvested. To
avoid concentration, a maximum of 3% is set per issuer of traded weight after adjustment.
The maximum column reports the maximum drift for each item after optimisations. Except
for DTS constraints, the optimiser seems to have less freedom when dealing with redemp-
tion. The maximum drifts, even within the lines, are often higher than the ones obtained
for the subscription.

Table 7: Euro Corporate optimisation results

Metric Subscription Redemption

Total number of variables 2 631 3 464
of which integer variables 2 631 1 732
of which binary variables 0 1 732

Inequality constraints 4 299 8 596
of which positivity 2 631 3 464
of which binary-integer association 0 3 464
of which set-up constraints 1 668 1 668

Number of trades 57 76

Table 7 shows the difference in set-up between the two optimisations where the total
number of variables and inequality constraints are reported. The total number of involved
variables regarding subscription equals the number of bonds in the universe. It is double
that number for redemptions16 as a binary variable is attached to each integer variable. A
binary variable is a variable with only two values (0 or 1). It ensures that the minimum
remaining quantity after sale is zero or the minimum tradable. Let qi and ti be the current
quantity and the minimum tradable of Bond i. Let xi

17 be the sought multiplier of ti and

16The number of integer variables is below the number of bonds in the universe. A pre-process is performed
to avoid under-allocating issuers (when selling) and over-allocating issuers (when purchasing) with regard
the reference portfolio.

17We constraint xi ≥ 0
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bi a binary variable. xi and bi satisfy the following inequalities:
xi ≤

qi
ti
− bi

xi ≥ (1− bi)
qi
ti

(9)

Indeed, when no quantity remains (bi = 0), Equation (9) give xi =
qi
ti

as a solution. When

a quantity should remain (bi = 1), we obtain the condition xi ≤
qi
ti
− 1. Equation (9) adds

as a result 3 464 constraints to redemption optimisation as two constraints are associated
with each integer variable. Only 1 668 constraints are common to both optimisations if we
exclude positivity and Equation (9) constraints.

Table 8: Global Govies constraints

Type Constraint Limit
Maximum

Subscription Redemption

Trades Number 100 100 100

Global MD (Yr × 100) 0.80 0.79 0.28

Absolute deviation
Country (%) 0.10 0.10 0.09
Currency (%) 0.10 0.10 0.09
Bond (%) 0.50 0.50 0.39

Contrib. to MD deviation
Country (Yr × 100) 0.73 0.72 0.62
Pillar (Yr × 100) 0.28 0.26 0.28
Pillar × Country (Yr × 100) 0.29 0.24 0.27

Regarding the global government bond portfolio, we minimize, with regard to the ref-
erence portfolio, the differences in weight and yield at the portfolio level and the modified
duration per each couple of country and maturity pillar. Table 8 gives the additional con-
straints. Here, no more DTS or sector constraints but currency and country constraints.
Generally, the minimum tradable amounts associated with government bonds are too low
compared to corporate bonds. For instance, German government bonds can be traded at
EUR 0.01. In our optimisation, we set a minimum tradable amount of at least 5 000 and
restrict the number of trades not to exceed 100. This last constraint requires another set of
binary variables.

Let ci be a binary attached to xi. The underlying idea is to count using ci the number of
non-null xi. Let Pi and Nav be the dirty price of Bond i and the portfolio net asset value.
xi and ci satisfy the following inequalities:

 Pitixi ≤ ciNav∑
i ci = 100

(10)

In Equation (10), the first constraint indicates that the mark-to-market of Bond i cannot
exceed the net asset value of the portfolio. ci equals 0 implies that xi is 0, and xi above 0
entails ci equals 1. However, ci equals 1 does not force xi to be non-null. Hence, the equality
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constraint on the sum over ci limits the number of trades to no more18 than 100.

Considering constraints of Equations (9) and (10) lead to double and triple subscription
and redemption variables, as shown in Table 9. From 2 489 and 4 089 inequality constraints,
only 925 and 790 are related to the set-up if we exclude those of the number of trades. If we
exclude those of the absolute deviation by bond, 143 constraints appear to be in common
in the two optimisations.

Table 9: Global Govies optimisation results

Metric Subscription Redemption

Total number of variables 1 564 1 941
of which integer variables 782 647
of which binary variables 782 1 294

Equality constraints 1 1
Inequality constraints 2 489 4 025

of which positivity 782 1 294
of which binary-integer association 0 1 294
of which number of trades constraints 782 647
of which other set-up constraints 925 790

Number of trades 100 100

5 Conclusion

Compared to alternative methods such as genetic algorithms, the interest in using the mixed-
integer optimisation technique is that it can be easily modified to change the objective
functions or the applied constraints. No preliminary tests are needed here to assess the con-
vergence of the investment solutions. Nevertheless, depending on the portfolio structure and
constraints tightness, fund managers may relax some constraints if they make the problem
infeasible to guarantee the existence of at least one solution reachable by the optimiser.

Another key element of the success of the mixed-integer algorithm is its scalability to
the level of portfolio nominal: it is suitable for both small and large portfolios, albeit with
a difference in resolution time. From our point of view, bond optimisation through MI is an
industrial solution for passive bond management with a low entry cost to be familiar with,
handle any additional requirements, and maintain.
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A Appendix

A.1 Notations

We use the following notations:

• b is the reference (or benchmark) bond portfolio;

• x is a portfolio solution candidate;

• x0 is the current bond portfolio;

• DTSi, MDi, Y LDi, LTPi and Pi are the duration-times-spread price, modified dura-
tion, yield, liquidity-times-price, and the dirty price of Bond i;

• ∆Qi (x) = Qi (x) − Qi

(
x0
)

is the change in quantity of Bond i in Portfolio x with
respect to its quantity in the current portfolio x0;

• Cash (x) is the amount of cash of Portfolio x;

• NAV (x) is the net asset value of Portfolio x:

NAV (x) =

nx∑
i=1

Pi ·Qi (x) + Cash (x)

• Adjustment = NAV (x)−NAV
(
x0
)

is the amount of adjustment;

• xi is the weight of Bond i in Portfolio x:

xi =
Pi ·Qi (x)

NAV (x)

• RM

(
x | b

)
is the global active risk measure related to metric M:

RM

(
x | b

)
=

∣∣∣∣∣∣
∑
i∈b

(xi − bi)Mi

∣∣∣∣∣∣
• RM

(
x | b, f

)
is the active risk measure related to metric M with regard feature f :

RM

(
x | b, f

)
=

∣∣∣∣∣∣
∑
i∈b

(xi − bi)Miδi

∣∣∣∣∣∣
where δi = 1 when Bond i has the feature f otherwise 0.

A.2 Mathematical results
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A.2.1 Risk measures: From weights to quantities

Globally, the active risk related to a metric19 M is equal to:

RM

(
x | b

)
=

∣∣∣∣∣∣
∑
i∈b

(xi − bi) ·Mi

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈b

Pi ·Qi (x) ·Mi

NAV (x)
− biMi

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
i∈b

Pi ·
(
Qi

(
x0
)

+ ∆Qi (x)
)
·Mi

NAV (x)
− biMi

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈b

Pi ·∆Qi (x) ·Mi

NAV (x)
−
∑
i∈b

(
bi −

Pi ·Qi

(
x0
)

NAV (x)

)
·Mi

∣∣∣∣∣∣
=

∣∣∣AM
T ∆Q− cM

∣∣∣
where ∆Q designs the vector of changed quantities, AM =

(
Pi ·Mi

NAV (x)

)
is a vector element

of Rn and cM =
∑

i∈b

(
bi −

Pi ·Qi

(
x0
)

NAV (x)

)
·Mi is constant20 depending on the reference and

the initial portfolios.

We obtain similar formula when considering a standalone feature (for example sector,
currency, rating, sector X currency, ...). We have:

RM

(
x | b, f

)
=

∣∣∣∣∣∣
∑
i∈b

(xi − bi) ·Mi · δi

∣∣∣∣∣∣ =
∣∣∣AM(f)

T
∆Q− cM (f)

∣∣∣
where AM(f) =

(
Pi ·Mi · δi
NAV (x)

)
is a vector element of Rn, δi = 1 when Bond i has the feature

br otherwise 0. cM (f) =
∑

i∈b

(
bi −

Pi ·Qi

(
x0
)

NAV (x)

)
·Mi ·δi is constant of feature f depending

on the reference and the initial portfolios.

A.2.2 From L1-norm to linear functions

Suppose we track a risk metric M at the portfolio level by minimizing RM

(
x | b

)
. In

Appendix A.2.1, we show that the active risk measure can be written as function of the

vector of changed quantities ∆Q. We have: RM

(
x | b

)
=
∣∣∣AM

T ∆Q− cM
∣∣∣

19For instance, the metric could be any weightable metric: MD, MD per maturity bucket, DTS, or yield.
When the considered metric is the weight, Mi = 1

20Once we set the Adjustment, NAV (x) is constant
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Minimizing RM

(
x | b

)
⇐⇒ Minimizing τ s.t.

∣∣∣AM
T ∆Q− cM

∣∣∣ ≤ τ
⇐⇒


Minimizing τ

s.t.

{
AM

T ∆Q− cM ≤ τ
AM

T ∆Q− cM ≥ −τ

⇐⇒


Minimizing τ

s.t.

{
AM

T ∆Q− τ ≤ cM
−AM

T ∆Q− τ ≤ −cM

⇐⇒ Minimizing cT y s.t. My ≤ L (11)

where y = (∆Q, τ)T , c = (0, . . . , 0︸ ︷︷ ︸
n times

, 1)T ∈ Rn+1,L = (cM ,−cM )T ∈ R2 and

M =

(
AM

T −1

−AM
T −1

)
is matrix element of R2×(n+1).

When tracking the same risk metric at the sector level, we minimize the
∑

sRM

(
x | b, s

)
.

Let NS be the number of considered sectors. The problem is equivalent to Problem (11)
where y = (∆Q, τ1, τ2, . . . , τNS ), c = (0, . . . , 0︸ ︷︷ ︸

n times

, 1, . . . , 1︸ ︷︷ ︸
NS times

)T are vectors elements of Rn+NS .

L = (cM (s1), . . . , cM (sNS ),−cM (s1), . . . ,−cM (sNS ))T is a vector element of R2NS , and

M =



AM(s1)
T −1 0 . . . 0

AM(s2)
T

0 −1 . . . 0
...

...
...

...
...

AM(sNS )
T

0 0 . . . −1

−AM(s1)
T −1 0 . . . 0

−AM(s2)
T

0 −1 . . . 0
...

...
...

...
...

−AM(sNS )
T

0 0 . . . −1


is matrix element of R2NS×(n+NS).

A.3 Tables

Table 10 displays how the MSCI ACWI Index is categorised by stock exchange country and
lot size. For instance, in Brazilian stock exchanges, 78 stocks are traded at the minimum
lot size of 100. Notably, 93.3% of the stocks have a lot size of either 1 (32.4%) or 100
(60.9%). Stocks traded in Europe have a minimum lot size of 1, while those in the US are
100. Meanwhile, different lot sizes are present in the Hong Kong stock exchange.

Table 11 shows how the Global Aggregate Bond ex-ABS Index is classified by minimum
tradable amount and currency. For example, 163 bonds denominated in EUR have a mini-
mum tradable of 0.01. Bonds are mainly traded with a minimum tradable of 1 000 (21.0%),
2 000 (25.7%), 100 000 (25.2%) and 200 000 (11.0%). 2 000 is mainly associated with
USD-denominated bonds, while 100 000 is the benchmark for EUR-denominated corporate
bonds.
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