
WP-91-2019 I September 2019�  

Forecasting Combination: 
An Application For Exchange Rates

Working Paper I Cross asset Investment Strategy

Document for the exclusive attention of professional clients, investment services providers and any other professional of the financial industry





Forecasting Combination: 
An Application For Exchange Rates*

Abstract

Elisa Baku
Paris School of Economics, 
University Paris 1 Pantheon 
Sorbonne 
Elisa.Baku@etu.univ-paris1.fr

Edmond Lezmi 
Quantitative Research 
edmond.lezmi@amundi.com

This paper tries to forecast exchange rates by comparing 
forecasting methods that take into account cointegration 
and methods that do not. The first finding is that taking 
into account cointegration provides better forecasting 
results.

Furthermore, the factor model with cointegration provides 
the smallest forecasting errors, but when compared with 
penalized maximum likelihood, the differences are not 
always significant. In addition, we show that a forecast 
combination of all the methods used provides better 
exchange rates forecast accuracy.

Keywords: Bayesian models, cointegration, factor 
model, forecasting exchange rates, penalized maximum 
likelihood, sparse estimation.

JEL classification: C01, C53, F31, F37

*�Views expressed in this paper are those of the authors and do not necessarily reflect 
those of Amundi. The authors are very grateful to Jean-Bernard Chatelain, Catherine 
Doz, Thierry Roncalli and Ines Wilms for their helpful comments and suggestions.





About the authors

Elisa Baku

Elisa Baku joined Amundi in 2016 in the Quantitative 
Research Team as a PhD candidate. She is specialized 
in currency markets and develops macro-econometric 
models for analyzing and forecasting foreign exchange 
rates. Prior to that, she was a graduate student from Paris 
School of Economics and she has worked as an intern in 
the economics department of the American Embassy in 
Paris in 2014. 

She holds a Bachelor Degree in Finance and Accounting 
at University of Tirana, a Master’s in Economics from 
University Paris 1 Pantheon Sorbonne, and a Master’s 
in Economic Theory and Empirics from Paris School of 
Economics and University of Paris 1 Pantheon Sorbonne. 
Currently she is a PhD candidate in Macroeconomics and 
Finance at Paris School of Economics. Since 2015, she is 
teaching assistant for graduate courses in Econometrics at 
University Paris 1 Pantheon Sorbonne.

Edmond Lezmi

Edmond Lezmi joined Amundi in 2002. He is currently Head 
of Multi-Asset Quantitative Research. Prior to that, he 
was Head of Quantitative Research at Amundi Alternative 
Investments (2008-2012), a derivatives and fund structurer 
at Amundi IS (2005-2008), and Head of Market Risk (2002-
2005). Before joining Amundi, he was Head of Market 
Risk at Natixis, and an exotic FX derivatives quantitative 
developer at Société Générale. He started his working 
career with Thales in 1987 as a research engineer in signal 
processing. He holds an MSc in Stochastic processes from 
the University of Orsay.





Forecasting Combination: An Application For Exchange Rates

1 Introduction

Forecasting macroeconomic variables is very important, not only for policy makers
and monetary authorities, but also for governments. The majority of the forecast-
ing literature does not account for cointegration. Wilms and Croux (2016), to our
knowledge, are the pioneers of developing a cointegration method for high dimen-
sional time series, called the penalized maximum likelihood. Their method consists
in estimating the cointegration vectors in a sparse way1. They showed that the
sparse cointegration method provides smaller forecasting errors for interest rate and
consumption forecasting, compared to the traditional Maximum Likelihood estima-
tor.

Historically, researchers have been using the vector auto regressions (VAR) model
to forecast different macroeconomic variables. Only recently have they brought to
attention that the VAR model has some limitations such as not imposing restrictions
on the parameters used and including only a small number of variables. In order
to overcome these limitations, a widely used method, which has proven successful
in forecasting different time series, is the so-called factor model. Stock and Watson
(2002) found that better forecasting results were obtained when extracting some
factors from a large dataset and using them to augment a VAR model. Boivin
and Giannoni (2006) linked DSGE models with factor analysis, while Giannoni et
al.. (2008) merged different frequency data and used the factor model to form a
forecast for real GDP, while Doz et al. (2011) developed the theory used by the
former. Banerjee et al. (2014) applied the factor error correction model (FECM)
introduced by Banerjee and Marcellino (2009) to forecast, among other applications,
three bilateral exchange rates. They found that FECM provided lower MSE relative
to the autoregressive model. Likewise, by using dynamic factor model, Ludvigson
and Ng (2009) were able to show a link between macroeconomic fundamentals and
bond returns. Moreover, Barigozzi et al. (2016), proposed a non-stationary dynamic
factor model (DFM) for large datasets.

Alternative methods to improve forecasting accuracy, have been the prime focus
of researchers. De Mol et al. (2008) used the ridge regression and concluded that for
Bayesian regression to capture factors that explain most of the prediction’s variation,
the data should be highly collinear. Moreover, Litterman (1986) found that better
forecasting results were obtained when the bayesian shrinkage was applied to a VAR
model. Further, Banbura et al. (2010) showed that the bayesian VAR model was an
appropriate tool for large panels of data and it provided better forecasting results
than a normal VAR model. While the majority of the research has been focused
on the small sample forecasts (Geweke, 1996; Reinsel, 1983; Camba-Mendez et al.,
2003), Carriero et al. (2011) focused on forecasting all the variables in a large dataset

1Sparse estimation has been shown to perform very well (Liao and Phillips, 2015; Fan et al.,
2011; Zhou et al., 2014.). Some of the benefits of using sparse models are that they select only
the variables that have non-zero coefficients, which improves model interpretation. Moreover, they
reduce the variance that has a direct impact on the forecast performance and, lastly, they can be
applied even when the number of time series exceeds the time series length (Wilms and Croux
(2016).
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using multivariate models. They considered three different models. The first model
was a classical reduced rank regression (RR), as used by Velu et al. (1986). The
second method applied bayesian shrinkage and rank reduction restrictions at the
same time, called bayesian rank reduction (BRR), and they proposed a new method
called reduced rank posterior (RRP), which applied rank reduction on the posterior
estimates of a Bayesian VAR. They found that using shrinkage and rank reduction
in combination improved the accuracy of forecasts. RRP and BRR performed very
well in forecasting several US macroeconomic variables, such as industrial production
growth, inflation and short-term interest rate.

The ability to forecast exchange rates remains debatable among economists.
Meese and Rogoff (1983a, 1983b) demonstrated that the random walk forecasts
exchange rates out-of-sample better than the monetary models. While Giacomini
and Rossi (2010) and Rossi and Inoue (2012) found strong empirical evidence in favor
of Taylor-rule fundamentals, Rogoff and Stavrakeva (2008) found that the empirical
evidence in favor of Taylor-rule fundamentals was not robust. Among others, Chen
and Rogoff (2003) focused on the commodity currencies and showed that the US
dollar price of the commodity exports of Australia and New Zealand has an impact
on their exchange rates movements. Moreover, Ferraro et al. (2015) showed the
existence of a relationship between commodity prices and nominal exchange rates at
daily frequency. Furthermore, Kilian and Zhou (2019) provided empirical support
for the existence of the link between exchange rates, oil prices and interest rates.

Our goal in this paper is to try to forecast exchange rate movements by comparing
different forecasting methods that have been proven to provide good forecasting
accuracy when they have been used for different time series forecast. We acknowledge
that forecasting exchange rates is difficult but as Henri Poincare states:

“It is better to foresee even without certainty than to not foresee at all”
(Henri Poincare in The Foundations of Science, 1913, page 129).

Following Wilms and Croux (2016), we apply their methodology to the exchange
rates framework. The methods taken into consideration can be devised into two main
groups of forecasting methods. In the first group are the methods that account for
cointegration, such as penalized maximum likelihood estimation of the VECM and
factor model for non-stationary time series. In the second group are the methods
that do not account for cointegration such as Penalized maximum likelihood of the
VAR, , factor model for stationary time series, bayesian estimation of the VAR and
bayesian reduced rank regression.

Going further than Wilms and Croux (2016), we apply the so called “hedging”
against model risk (Raviv et al., 2016), which consists in aggregating different fore-
casts, inspired from the ensemble methods in machine learning2. Many researchers
have used the forecast combination such as Stock and Watson (2004), Hansen (2008),
Ravazzolo et al. (2007). On the exchange rates forecasts, Wright (2008) applied
bayesian model averaging (BMA), which consists in taking forecasts from different

2Ensemble methods is a machine learning technique that combines several predictive models in
order to produce the best predictive model. The “ForecastCombinations” package was used in R.
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models and weighting them by the posteriors probabilities. By using this method,
he showed positive out-of-sample forecasting results.

Furthermore, unlike other papers, we focus on forecasting exchange rates by their
own movements. When doing so, we show that substantial gains can be obtained
when accounting for cointegration and, consistent with Wilms and Croux (2016),
we found that sparse estimation provides better forecasting results. Differently from
them, the method that performs the best in terms of forecasting accurancy is the
factor model with cointegration, even though the differences with the PML are small
and not always significant. Likewise, we obtain remarkable results, when we do a
forecast combination of all the methods used.

The remainder of the paper is as follows. Section two describes the forecasting
models. Section three discusses the forecast accuracy. Section four presents the data
based on the methodology used. The empirical results will be provided in Section
five. Lastly, Section six will conclude.
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2 Forecasting models

Our objective is to forecast exchange rates based on their own movements, by com-
paring different forecasting methods. Following Wilms and Croux (2016), the fore-
casting models used for the purpose of this paper are:

• Penalized maximum likelihood (PML) estimation of the VECM of Wilms and
Croux (2016);

• Factor model for non-stationary time series of Barigozzi et al. (2017);

• Penalized maximum likelihood estimation of the VAR;

• Factor model for stationary time series of Stock and Watson (2002);

• Bayesian estimation of the VAR (BVAR) of Banbura et al. (2010);

• Bayesian reduced rank regression (BRR) of Carriero et al. (2011).

We compare the performance of the above six estimators, by performing a rolling
window forecast, where the first two estimators account for cointegration and the
other estimators do not account for cointegration3.

2.1 Penalized maximum likelihood estimation of the VECM and
VAR

Letting yt be a q-dimensional multivariate time series and assuming it follows a
VAR(p), which can be written as the following VECM representation:

∆yt =

p−1∑
i=1

Γi∆yt−i + Πyt−1 + εt, t = p+ 1, ..., T (1)

where Γi and Π are both q × q matrices, 4 and εt is assumed to follow a N q(0,Σ).
Following Wilms and Croux (2016), being able to express Π = αβ> where α and
β are q × r matrices of full column rank r, then the linear combinations given by
β>yt will be stationary and yt will then be co-integrated with cointegration rank r,
where the columns of β will be the co-integrating vectors and the elements of α will
be the adjustment coefficients.

Rewritting Equation (1) in matrix form we will end up having the following:

∆Y = ∆Y LΓ + YΠ> + E (2)

where ∆Y = (∆yp+1, ...,∆yT )>; ∆YL = (∆Xp+1, ...,∆XT )> with ∆Xt = (∆y>t−1, ...,
∆y>t−p+1); Y = (yp, ..., yT−1); Γ = (Γ1, ...,Γp− 1); and E = (εp+1, ..., εT ). The

3The methods are applied on log-transformed time series
4The former one captures the short-run effects and the latter one the rank r, 0 ≤ r ≤ q

10



Forecasting Combination: An Application For Exchange Rates

penalized negative log-likelihood for Equation (2) will be:

(3)L(Γ,Π,Ω) =
1

T
tr

((
∆Y −∆YLΓ− YΠ>

)
Ω
(

∆Y −∆YLΓ− YΠ>
)>)

− log|Ω|+λ1P1(β) + λ2P2(Γ) + λ3P3(Ω)

where Ω = Σ−1, tr(·) denotes the trace and P1, P2 and P3 are the penalties. Wilms
and Croux (2016) used L1 penalization on the cointegration vectors5 β, on the short-
run effects Γ and on the inverse error covariance matrix Ω. By doing so they are
able to have a sparse solution of Equation (3), where some elements of β, Γ and Ω
will be estimated as zero.

The goal is to select Γ, Π, Ω so as to minimize (3) subject to the constraint

Π = αβ> (4)

where the matrices α and β are not uniquely defined and the normalization condition
α
′
Ωα = Ir is imposed for identifiability purposes. To find the minimum of the

penalized negative log-likelihood in (3), one must iteratively solve for Π conditional
on Γ, Ω; for Γ conditional on Π, Ω; and for Ω conditional on Γ, Π. Solving for Π
conditional on Γ, Ω. The minimization problem for each one of the cases is shown6

in Appendix B.1.

2.2 Factor model for stationary and non-stationary time series

Factor models have been recently widely used in the macroeconomic literature. For
the purposed of this article two papers were used – Stock and Watson (2002) and
Barigozzi et al. (2017) – the former as a representative of the use of factor model
for stationary time series and the later as a representative of non-stationary time
series. Following Stock and Watson (2002), we write the dynamic factor model7 as:

yt+1 = β(L)ft + γ(L)yt + εt+1 (5)

Xi,t = λi(L)ft + ei,t (6)

where yt+1 are the series to be forecast, Xt is a N-dimensional time series of pre-
dictor variables for t = 1, ..., T , ft are the dynamic factor model for i = 1, ...N ,
ei = (e1,t, ..., eN,t) is the N × 1 idiosyncratic disturbance and λi(L) and β(L) are
lag polynomials of L. A static representation of Equation (5) and (6) will be the
following (Stock and Watson, 2002):

yt+1 = β>Ft + γ(L)yt + εt+1 (7)

5P1(β) =
∑q

i=1

∑r
j=1|βij | is known as the Lasso (Tibshirani, 1996).

6For the unpenalized case (λ1 = 0, λ2 = 0 and λ3 = 0); the objective function in Equation (3)
boils down to the one introduced by Johansen (1988) or by the iterative algorithm described by
Wilms and Croux (2016), which is described in Appendix B.1.

7The difference between the dynamic and static factor models is that the former considers that
the lags of the factors will also affect the variables
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Xt = ΛFt + et (8)

where Ft = (ft, ..., ft−q) is r × 1, Λ is (λi0, ..., λiq), and β = (β0, ..., βq). Proceeding
in this way allows us to estimate the factors using the principal components method.
Furthermore, their approach of forecasting it consists in h-step-ahead forecasts:

yht+h = αh + βh(L)Ft + γh(L)yt + εht+h (9)

where yht+h is the h-step-ahead variable to be forecast and αh is the constant term. In
order to forecast, following them, first we extract the factors from the data, then we
regress yt+1 into the estimated factors, a constant and yt. By doing so, we get the α̂h,
β̂h(L) and γ̂h(L) and are able to build the forecast on yht+h as α̂h+β̂h(L)Ft+γ̂h(L)yt.

Factor model without cointegration (Stock and Watson, 2002; Bai and Ng, 2002)
estimated the factors and their loadings by the use of principal component, while
the matrix of the lag operator is usually obtained by using the VAR model. For
the variables that are not stationary, before extracting the factors, the first dif-
ference is taken. On the other hand, Barigozzi et al. (2017) considered the case
of non-stationary variables. Under the assumptions that Ft are I(1), singular and
cointegrated8) and the idiosyncratic components are I(1) or I(0), they model Ft as
a vector error correction model (VECM)9.

2.3 Bayesian estimation of the VAR (BVAR) and BRR

When VAR is used in macroeconomic models, usually researchers have to make a
choice on the number of variables, due to the fact that VAR has a limitation on the
number of variables to be included. The Bayesian VAR model applies the bayesian
shrinkage in order to handle large VAR.

Suppose we have the following VAR(p) model:

Yt = A1Yt−1 +A2Yt−2 + ...+ApYt−p + ut (10)

where Yt = (y1,t, y2,t, ..., yN,t) is a vector of variables, Xt = (Yt−1, Yt−2, ..., Yt−p) for
t = 1, ..., T when means and trends have been removed. DefiningB = (A1, A2, ..., Ap),
the above equation can be re-written as:

Yt = B>Xt + ut (11)

Banbura et al. (2010) estimated the above model using a Bayesian VAR, by
imposing prior beliefs on the parameters, known as Minnesota prior10. The intuition
behind the Minnesota prior is that it shrinks the diagonal elements of A1 towards

8Noting c as the cointegration rank. c is at least r − q, where q is the number of shocks, that is
c = r− q+ d with 0 ≤ d < q, hence singular I(1) vectors are always cointegrated. See, Barigozzi et
al.(2017) for a full explanation on the model implementation.

9A VECM(p) with cointegration rank c can also be written as a VAR(p + 1) with r − c unit
roots. So, a VECM is easily written as a VAR model.

10Like Banbura et al. (2010), we follow the version of the Minnesota prior proposed by Litterman
with modifications made by Kadiyala and Karlsson (1997) and Sims and Zha (1998).
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one and the remaining coefficients towards zero. Consolidating in this way the idea
that more trustworthy information about one variable is given by its own recent
lags (Banbura et al., 2010). Under the Minnesota prior, the prior expectations and
variances are:

E
[
A

(i,j)
k

]
=

{
δi for j = i, k = 1
0 otherwise

V
[
A

(i,j)
k

]
=

{
φk−2 for j = i,∀k
φk−2θσ2

i σ
−2
j for j 6= i,∀k

where φ captures the overall tightness of the prior11, the factor k−2 is the rate at
which prior variance decreases with increasing lag length, while σ2

i σ
−2
j accounts for

the different scale and variability of the data. Furthermore, the parameter θ ∈ [0, 1]
controls for the fact the other variables lags are not as important as its own lags.

Kadiyala and Karlsson (1997) modified the Minnesota prior proposed by Litter-
man, by setting the θ = 1, in order to have more efficient computations and to avoid
the assumptions of fixed and diagonal residual variance matrix. Following them we
can write Equation (11) as a multivariate regression:

Y = XB + U (12)

where Y = (Y1, ..., YT )
′

is a T × N matrix of dependent variables, and X =
(X1, ..., XT )

′
is a T × M matrix of explanatory variable, where M = Np. The

matrix U = (u1, u2, ..., uT )
′

is the matrix of disturbances, which are assumed to be
independent and identically distributed across observations; We define r as the rank
of the M ×N matrix of coefficients B, where r ≤ N . The normal-inverted Wishart
prior has the form12:

B|Σ ∼ N (B0,Σ⊗ Ω0); Σ ∼ IW (ϑ0, S0) (14)

where the parameters ϑ0, S0, B0, Ω0 are such that the expectation of the Σ matrix
is equal to the fixed residual covariance matrix of the Minnesota prior, and the prior
expectation and variance of B are that of the Minnesota prior with θ = 1 (Carriero
et al., 2011).

As we stated earlier, the estimation of VAR model provides a lot of insignificant
coefficients. Another way to handle the insignificant coefficients that result from
the VAR estimation is the bayesian reduced rank (BRR), which is a combination
of bayesian VAR and reduced rank. Geweke (1996) was the first to introduce such

11When φ = 0, the prior is exactly imposed and the estimates are not influenced by the data,
while as φ goes to ∞ the posterior estimates approach the OLS estimates (Carriero et al., 2011).
De Mol et al. (2008) showed that the more variables you have the more you should shrink the φ in
order to avoid possible overfitting issues.

12The conditional posterior distributions are of the normal-inverted Wishart form as well:

B|Σ, Y ∼ N (B,Σ⊗ Ω); Σ|Y ∼ IW (ϑ, S) (13)

where the bar denotes that parameters of the posterior distribution. See Banbura et al. (2010) and
Carriero et al. (2011) for more details.
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a model, and then BRR was re-implemented by Carriero et al. (2011) for a larger
dataset. The BRR not only uses shrinkage (as the BVAR does) but also rank
reduction, such as imposing B to have a rank r, where r < N13. Such assumption
corresponds to the following parametric specification:

Y = XΨΦ + E (15)

where Ψ and Φ are M × r and r × N , respectively, matrices. Following Geweke
(1996), the normalization used to identify Ψ and Φ is (See Appendix B.2 for more
details)14:

Φ = [IrΦ
∗] (16)

2.4 Forecast Combination

Going further, we analyze different forecast combination methods, known in the lit-
erature as “hedging against model risk” in order to examine whether a combination
of all the forecasts provide better forecasting results. Following Raviv (2016), the
following forecast methods are used:

• Simple average is the simple average of all the forecasting methods (Clemen,
1989; Genre et al., 2013). The combined forecast will be then given by the
following equation:

F c =

∑N
i=1 Fi
N

(17)

where F c is the combined forecast, Fi is the forecast obtained from each one
of the six forecasting methods explained in Section 2 and N is the number of
forecasts.

• Ordinary least squares (OLS) regression, the combined forecast is obtained
as a linear function of the individual forecasts

F c = α̂+
N∑
i=1

β̂iFi (18)

where α̂ and β̂i are obtained by regressing the individual forecasts on the target
itself (Granger and Ramanathan, 1984; Raviv, 2016).

• Least absolute deviation (LAD) regression, this method estimates the α̂
and β̂i’s not by minimizing the sum of squared errors like OLS, but by using
the absolute sum of squares errors (Weiss et al., 2018) .

• Constrained Least Squares (CLS) regression adds some constraints when
minimizing the sum of squared errors i.e., constraining the β̂i to allow only for
positive solutions and to sum up to one.

13See Carriero et al. (2011) for an in depth explanation of the reduced rank regression (RR).
14For a discussion of the role of normalization in reduced rank models see, Kleibergen and van

Dijk (1998) and Hamilton et al. (2007).

14



Forecasting Combination: An Application For Exchange Rates

• Variance-based, the combined forecast is computed as follows:

F c =
1

MSEi∑N
i=1

1
MSEi

Fi (19)

where the MSEi is the mean squared error, which is computed based on out-
of-sample forecasts.

3 Forecast Accuracy

Diebold-Marino test was used to compare forecast performance among different
methods (Diebold and Mariano, 1995). The cointegration rank is estimated us-
ing the rank selection criterion, which is explained in Appendix B.3 and the order
of the VECM is chosen by the BIC criterion. The out-of-sample forecast accu-
racy is evaluated by performing rolling window forecasting, with window size S,
which is the number of time points available for estimation. Different window sizes
S ∈ {48, 96, 144} were considered. Let h be the forecast horizon. We consider
h ∈ {1, 3, 6, 12}. At each time point t = S, ..., T − h, the h-step-ahead forecasts of
Equation (1) can be written as follows:

∆ŷt+h =

p−1∑
i=1

Γ̂i∆yt+1−i + Πŷt (20)

for which the h-step-ahead multivariate forecast errors are computed: êt+h = ∆yt+h−
∆ŷt+h.

In each simulation run, the overall multivariate forecast performance is then
measured by the multivariate mean absolute forecast error (Carriero et al., 2011):

MMAFE =
1

T − h− S + 1

T−h∑
t=S

1

q

q∑
i=1

|∆y(i)
t+h −∆ŷ

(i)
t+h|

σ̂(i)
(21)

where σ̂(i) is the standard deviation of the ith time series in differences. The MMAFE
depends on the forecast horizon h. Apart from the multivariate mean absolute
forecast error, the mean absolute forecast error is computed for every individual
time series:

MAFE =
1

T − h− S + 1

T−h∑
t=S

|∆y(i)
t+h −∆ŷ

(i)
t+h|

σ̂(i)
(22)

Forecast errors are comparable among methods because the MMAFE and MAFE
are computed for the time series in difference.

4 Data and summary statistics

The data used in the analysis consists of time series of the main frequently traded
global exchange rates according to the 2013 Triennial Central Bank Survey from the
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Bank for International Settlements (BIS)15. Data were collected at a monthly fre-
quency from Bloomberg. The sample begins in December 2001 and ends in February
2016, and therefore contains a total of 171 months.

Table (4) in Appendix A.1 provides the list of all the currencies used. Exchange
rates are the month-end values of the US Dollar versus the 30 most actively traded
currencies. Some basic features of the data to help guide our empirical design are
provided in Table (4). They provide reports, means and sample ranges of the vari-
ables. The mean varies between a segment of values of −0.51 and 9.19, where the
extreme values belong to the Indonesian rupiah (IDR) and British pound (GBP),
respectively.

The log of the nominal exchange rate levels was taken before implementing the
methods discussed in Section 2. Figure (1) provides a graphical representation of
all the currencies. Observing the movement of the exchange rates over time we can
get the first intuition that the exchange rates might not be stationary.

Furthermore, Table (5) in Appendix A.2 shows the kurtosis for the exchange
rates which are lower than three for all the countries. A value of kurtosis equal
to three is considered to be the value for a normal distribution16. We proceed by
performing two normality tests; Jarque-Bera and Shapiro-Wilk. From the results
obtained, we reject the normality hypothesis of the test for all the currencies. So,
we conclude that exchange rate changes are non-Gaussian for most countries and
hence are not jointly and normally distributed.

5 Results

We firstly proceed by performing an ADF test to check whether the series are sta-
tionary or not. From Table (6) in Appendix A.2 we can conclude that the exchange
rates in level are not stationary, but their first difference is stationary17, which con-
firms that time series are integrated of order one.

The multivariate mean forecast errors (MMFE) were computed for three different
window sizes; 60, 72 and 144 18 and for four forecast horizons h = 1, 3, 6, 12, for all
the forecasting methods. The results reported in Tables (1), (2) and (3). The
lowest forecasting errors are obtained by the dynamic factor model (DFM) that
accounts for cointegration, as the values in bold indicate. The DFM that accounts
for cointegration, for the first two window sizes, is superior compared to the other
methods for all the forecast horizons. For the last window size, the results are
relatively mixed, as shown in Table (3). For the first forecast horizon, the bayesian

15The same sample was used by Baku (2018) to create the global variable.
16In this case the distribution is called platykurtic and its tails are shorter and thinner and often

its central peak is lower and broader, compared to a normal distribution.
17The p-value for the time series in levels is more than 5%, which means that we fail to reject

the null hypothesis of non-stationarity, while the p-value for the time series in differences is smaller
than 5%, so we reject the null hypothesis of non-stationarity.

18We also computed the multivariate mean forecast errors for the window size 96. The results
were very similar to window size 72, so we did not provide the results for brevity reasons.
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Figure 1: Exchange rate graphical representation
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reduced rank provides the lowest forecasting errors followed by DFM that accounts
for cointegration and VAR PML. When h is equal to two and six, the DFM and VAR
penalized maximum likelihood provide the lowest forecasting errors, while when h
is equal to 12, the factor model with and without cointegration provides the same
forecasting results. Furthermore, among the methods that do not take into account
cointegration, the Bayesian reduced rank and VAR penalized maximum likelihood
perform better in long horizons.

Table 1: MMAFE for window size 60 and forecast horizon h

h = 1 h = 3 h = 6 h = 12

Coint PML 0.92 0.91 0.92 0.87
Coint DFM 0.81* 0.82* 0.83* 0.84*
VAR PML 0.91 0.86 0.86*** 0.83***
BVAR 0.89 0.91 0.91 0.92
VAR BRR 0.89 0.91 0.91 0.91
VAR DFM 0.85 0.85 0.89 0.87

In addition, mean absolute forecast errors for each time series have been com-
puted. From the results, shown in Tables (7), (8) and (9), we can conclude that the
dynamic factor model that accounts for cointegration provides the smallest forecast-
ing errors. This result is along the same lines as the one obtained by the multivariate
mean forecast errors. Although it is important to state that the differences in terms
of the forecasting errors between the DFM with cointegration and VAR PML are
very small, for longer rolling windows they provide similar forecasting errors. Over-
all, we can conclude that taking into account cointegration will make the forecasting
errors smaller and, of the methods that do take into account cointegration the best
method is the dynamic factor model.

Table 2: MMAFE for window size 72 and forecast horizon h

h =1 h = 3 h = 6 h = 12

Coint PML 0.97 0.90 0.91 0.82
Coint DFM 0.83** 0.82* 0.83* 0.77*
VAR PML 1.00 0.83** 0.85 0.77*
BVAR 0.90 0.95 0.93 0.85
VAR BRR 0.89 0.95 0.92 0.85
VAR DFM 0.86 0.88 0.88 0.81

Moreover, we have implemented different forecast combination models, explained
in Section 2.4. We did the forecast combination with and without the worst fore-
casting method, which was the maximum likelihood without cointegration. For
reasons of brevity we have provided the results only for the window size of 60. Table
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Table 3: MMAFE for window size 144 and forecast horizon h

h = 1 h = 3 h = 6 h = 12

Coint PML 0.71 0.72 0.80 0.81
Coint DFM 0.70 0.71* 0.76* 0.77*
VAR PML 0.70 0.71 0.76 0.78
BVAR 0.71 0.88 0.88 0.90
VAR BRR 0.70 0.88 0.87 0.90
VAR DFM 0.69 0.74 0.78 0.77

(11) in Appendix C.1 shows the results for all the methods and for all the different
forecasting horizons that were considered. As shown, the least absolute deviation
(LAD) forecast method provides the smallest forecast errors, followed by ordinary
least squares (OLS). Furthermore, graphical representations of the out-of-sample
forecast are provided in Appendix A.6. Again for reasons of brevity we have only
shown the graphical representations for three forecasting methods: LAD forecast
combination, PML with cointegration and BVAR. Figures (2) and (3) show the
out-of-sample forecasts for four commodities currencies, two for developed curren-
cies – AUD, CAD – and two for emerging currencies – BRL, RUB. As shown the
best forecasting method is the LAD. Furthermore, the out-of-sample forecasts for
EUR, GBP, CHF and JPY are provided in Figures (4) and (5). The best forecast is
provided by the LAD forecast combination method, while the forecast provided by
BVAR comes with a lag for all these currencies. Lastly, two out-of-sample forecasts
for the emerging currencies are shown in Figure (6). For the Turkish lira (TRY),
the best forecasting method is PML with cointegration, while LAD is for Mexican
peso (MXN).

Conclusively, we show that when forecasting highly collinear time series, account-
ing for cointegration provides substantial gains, and the sparse cointegration method
achieves better forecasting results compared to more traditional methods. Further-
more, we show that even better forecasting results are obtained by implementing a
forecast combination of all the forecasting methods used.

6 Conclusion

In this paper, we compare different exchange rate forecasting methods. The meth-
ods can be divided into two groups, that takes into account cointegration and that
does not take into account cointegration. We conclude that taking cointegration into
account provides better forecasting results and, the factor model followed by the pe-
nalized maximum likelihood method are the best performers. Moreover, this article
confirms that sparsity provides better forecasting results. Furthermore, we combine
the forecasts provided by all the methods implemented, in order to see whether a
forecast combination of these methods can provide better forecasting results than
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individual model forecasts. We confirm that the LAD forecast combination provides
better results, followed by OLS forecast combination.

Future research should be done in using other penalizations in the penalized
likelihood method in order to see whether there could be additional gains in the
forecast accuracy. Furthermore, it would be interesting to see whether the results
will hold if a different sample is taken for forecasting exchange rates.
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A Appendix

A.1 List of variables

Table 4: Summary statistics of the most traded exchange rates

Iso Code Currency name N Mean St. Dev. Min Max

BRL Brazilian real 171 0.82 0.24 0.44 1.39
RUB Russian ruble 171 3.46 0.24 3.15 4.32
ZAR South African rand 171 2.11 0.23 1.73 2.77
TRY Turkish lira 171 0.49 0.22 0.15 1.11
AUD Australian dollar 171 0.21 0.19 −0.09 0.68
CZK Czech koruna 171 3.09 0.19 2.72 3.61
COP Colombian peso 171 7.70 0.17 7.47 8.10
NZD New Zealand dollar 171 0.37 0.17 0.13 0.88
CHF Swiss franc 171 0.21 0.19 −0.09 0.68
JPY Japanese yen 171 4.64 0.15 4.33 4.90
PLN Polish zloty 171 1.17 0.15 0.72 1.44
MXN Mexican peso 171 0.82 0.24 0.44 1.39
CAD Canadian dollar 171 0.15 0.14 −0.06 0.47
INR Indian rupee 171 3.90 0.14 3.67 4.23
HUF Hungarian forint 171 5.37 0.14 5.01 5.68
CLP Chilean peso 171 6.33 0.13 6.08 6.62
SEK Swedish krona 171 1.99 0.13 1.78 2.37
NOK Norwegian krone 171 1.86 0.13 1.63 2.21
SGD Singapore dollar 171 0.38 0.13 0.19 0.62
IDR Indonesian rupiah 171 9.19 0.13 9.02 9.59
EUR Euro 171 −0.23 0.12 −0.46 0.15
DKK Danish krone 171 1.78 0.12 1.55 2.16
THB Thai baht 171 3.56 0.12 3.38 3.79
PEN Peruvian sol 171 1.12 0.10 0.94 1.29
GBP British pound 171 −0.51 0.10 −0.73 −0.33
KRW South Korean won 171 7.01 0.10 6.80 7.34
ILS Israeli new shekel 171 1.39 0.10 1.17 1.59
PHP Philippine peso 171 3.86 0.10 3.70 4.03
MYR Malaysian ringgit 171 1.25 0.09 1.09 1.48
TWD New Taiwan dollar 171 3.46 0.06 3.35 3.56

Source: BIS (2013).
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A.2 Additional results

Table 5: Normality test

Exchange Rate Kurtosis Shapiro-Wilk Jarque-Bera

SGD −1.340 0.000 0.000
PEN −1.320 0.000 0.003
PHP −1.228 0.000 0.001
ILS −1.201 0.000 0.005
THB −1.199 0.000 0.001
TWD −1.105 0.000 0.011
COP −0.938 0.000 0.004
MYR −0.910 0.000 0.030
CLP −0.875 0.000 0.002
JPY −0.834 0.000 0.001
GBP −0.813 0.000 0.004
CHF −0.574 0.000 0.032
BRL −0.561 0.000 0.016
INR −0.505 0.000 0.000
CAD −0.486 0.000 0.000
AUD −0.317 0.000 0.026
ZAR −0.211 0.000 0.000
CZK −0.193 0.000 0.008
HUF −0.108 0.014 0.003
NOK −0.013 0.000 0.001
KRW 0.027 0.000 0.000
MXN 0.066 0.000 0.008
PLN 0.112 0.000 0.003
SEK 0.215 0.000 0.000
IDR 0.434 0.000 0.000
TRY 0.513 0.000 0.000
NZD 0.838 0.000 0.000
DKK 0.994 0.000 0.000
EUR 0.998 0.000 0.000
RUB 3.985 0.000 0.000

For period: December 2001 to February 2016.
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Table 6: Stationarity test

Exchange Rate Level (p-values) Difference (p-values)

GBP 0.216 0.01
ILS 0.222 0.01
SEK 0.270 0.01
CHF 0.319 0.01
HUF 0.351 0.01
NZD 0.401 0.01
KRW 0.407 0.01
MXN 0.411 0.01
EUR 0.436 0.01
DKK 0.439 0.01
PLN 0.573 0.01
IDR 0.615 0.01
INR 0.642 0.01
PHP 0.650 0.01
ZAR 0.696 0.01
AUD 0.749 0.01
TWD 0.753 0.01
CZK 0.818 0.01
NOK 0.863 0.01
CLP 0.897 0.01
JPY 0.938 0.01
CAD 0.945 0.01
TRY 0.950 0.01
BRL 0.968 0.01
SGD 0.974 0.01
COP 0.980 0.01
THB 0.981 0.01
PEN 0.990 0.01
RUB 0.990 0.01
MYR 0.990 0.01
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B Appendix

B.1 Algorithm for the minimization problem of the PML

When Γ and Ω are fixed, the minimization problem in (3) with Π = αβ> is equivalent
to:(

α̂, β̂
)
|Γ,Ω = arg min

α,β

1

T
tr
(

(∆Y −∆YLΓ− Y βα>)Ω(∆Y −∆YLΓ− Y βα>)>
)

+λ1P1(β)
(23)

which boils down to a penalized reduced rank regression (Chen and Huang, 2012).
We first estimate α conditional on β, next we estimate β conditional on α.

For fixed β, the minimization problem in (5) reduces to:

α̂|Γ,Ω, β = arg min
α

1

T
tr
(

(∆Y −∆YLΓ− Y βα>)Ω(∆Y −∆YLΓ− Y βα>)>
)
(24)

s.t. α>Ωα = Ir, which is a weighted procrustes problem (Lissitz et al., 1976). This
weighted procrustes problem for α can be seen as an unweighted procrustes problem
for α∗ = Ω−1/2α. The solution is:

α̂ = Ω−1/2V U> (25)

where U and V are obtained from the singular value decomposition of:

β̂Y >(∆Y −∆YLΓ)Ω1/2 = UDV > (26)

where Chen and Huang (2012) ony consider the case Ω = I, and use a procrustes
problem to solve for α. A weighted procrustes problem takes the covariance structure
into account.

For fixed α, the minimization problem in (5) reduces to:

β̂|Γ,Ω, α = arg min
β

1

T
tr
(

(∆Y −∆YLΓ− Y βα>)Ω(∆Y −∆YLΓ− Y βα>)>
)

+λ1P1(β)

(27)

Since α∗>α∗ = Ir, there exists a matrix α∗⊥ with orthonormal columns such that
(α∗, α∗⊥) is an orthogonal matrix. Then, with Ỹ = ∆Y −∆YLΓ, we obtain:

tr
(

(Ỹ − Y βα>)Ω(Ỹ − Y βα>)>
)

=
∥∥∥(Ỹ − Y βα>)Ω1/2

∥∥∥2

=
∥∥∥(Ỹ Ω1/2 − Y βα∗>

)∥∥∥2

=
∥∥∥(Ỹ Ω1/2 − Y βα∗>

)(
α∗, α∗⊥

)∥∥∥2

=
∥∥∥Ỹ Ω1/2α∗ − Y β

∥∥∥2
+
∥∥∥Ỹ Ω1/2α∗⊥

∥∥∥2
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where ‖·‖ denotes the Frobenius norm for a matrix. Since the second term on the
left-hand-side does not involve β, the minimization problem reduces to:

β̂|Γ,Ω, α = arg min
β

1

T
tr
(

(Ỹ Ω1/2α∗ − Y β)(Ỹ Ω1/2α∗ − Y β)>
)

+ λ1P1(β) (28)

which is a penalized multivariate least squares regression of Ỹ Ω1/2α∗ on Y .

When solving for Γ conditional on Π, Ω, the minimization problem in (3) is a
penalized multivariate regression of (∆Y − YΠ>) on ∆YL (Rothman et al., 2010).
When solving for Ω conditional on Γ, Π, the minimization problem in (3) is a
penalized covariance estimation (Friedman et al., 2008).

B.2 Bayesian reduced rank

A proper prior given the above normalization is:

|Σ|−(N+υ0+1) exp

[
−1

2
tr
(
S0Σ−1

)]
exp

[
−τ

2

2

(
tr
(

Φ∗
′
Φ∗
)

+ tr
(

Ψ
′
Ψ
))]

(29)

namely a product of an independent Wishart distribution for Σ with υ0 degrees
of freedom and matrix parameter S0, and independent N (0, τ−2) shrinkage priors
for each element of the coefficient matrices Φ∗ and Ψ. The conditional posterior
distribution of Σ is

Σ |( Φ∗,Ψ, X, Y ) ∼ IW [T + υ, S0 + (Y −XB)>(Y −XB)] (30)

The conditional posterior distributions of the coefficients Φ∗, Ψ, are multivariate
normals. In particular, the conditional posterior distribution of Φ∗ is:

vec(Φ∗)|(Ψ,Σ, X, Y ) ∼ N
(

ΠΦ· vec(Φ̂∗),ΠΦ

)
(31)

where

Φ̂∗ = (Ψ
′
X
′
XΨ)−1Ψ

′
X
′
Y1Σ12(Σ22)−1 − Σ12(Σ22)−1 +

(Ψ
′
X
′
XΨ)−1Ψ

′
X
′

ΠΦ = [(Σ22)−1 ⊗ (Ψ
′
X
′
XΨ)−1 + τ2Ir(N−r)]

−1

where Y = [Y1Y2] is a partitioning of Y into its first r and last N − r columns and
where Σij denotes the partitioning of Σ−1 into its first r and last N − r rows and
columns.

The conditional posterior distribution of Ψ is:

vec(Ψ)|(Φ,Σ, X, Y ) ∼ N
(

ΠΨ· vec(Ψ̂),ΠΨ

)
(32)

where:

Ψ̂ = B̂
[
Φ+ + Φ0Σ̃21(Σ̃11)−1

]
ΠΨ =

[
Σ̃11 ⊗X ′X + τ2IMr

]−1
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where B̂ is the OLS estimator, Φ+ is the generalized inverse of Φ, Φ0 is column-wise

orthogonal to Φ+, and Σ̃ij denotes the partitioning of Σ̃−1 =
(

[Φ+Φ0]
′
Σ[Φ+Φ0]

)−1

into its first r and last N − r rows and columns 19.

B.3 Cointegration rank

To determine the cointegration rank we followed Bunea et al. (2011) and Wilms and
Croux (2016). The cointegration rank r was choosen after an iterative procedure
based on the rank selection criterion (RSC). The starting point is an initial value
of the cointegration rank rrank = q, for which, Γ̂ is obtained. Bunea et al. (2011)
argued that r̂ is given by the number of eigenvalues of the matrix ∆Ỹ >P∆Ỹ that
exceeds the following threshold µ:

r̃ = max{r : λr(∆Ỹ
>P∆Ỹ ) ≥ µ} (33)

where ∆Ỹ = ∆Y − ∆YLΓ̂ and P = Y (Y >Y )−Y > the projection matrix onto the
column space of Y . Taking l = rank|Y | and assuming that l < T , then the threshold
µ will be equal to µ = 2S2(q + l) (Bunea et al., 2011), where

S2 =

∥∥∥∆Ỹ − P∆Ỹ
∥∥∥2

Tq − lq
(34)

This procedure was prevented from repeating when the cointegration rank in two
iterations was unchanged.

C Appendix

C.1 Estimated parameters

Table 7: TC-MAFE for window size 60 and forecast horizon h

TC-MAFE1 TC-MAFE3 TC-MAFE6 TC-MAFE12

Coint PML 0.96 0.90 0.93 0.91
Coint DFM 0.81 0.83 0.80 0.83
VAR PML 0.90 0.79 0.82 0.82
BVAR 0.88 0.94 0.91 0.97
VAR BRR 0.88 0.94 0.89 0.96
VAR DFM 0.83 0.83 0.84 0.86

19See Geweke (1996) and Carriero et al. (2011) for more details on the computations.
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Table 8: TC-MAFE for window size 72 and forecast hozizon h

TC-MAFE1 TC-MAFE3 TC-MAFEC6 TC-MAFE12

Coint PML 1.00 1.02 0.97 0.80
Coint DFM 0.82 0.82 0.83 0.77
VAR PML 0.87 0.82 0.84 0.77
BVAR 0.87 1.01 0.94 0.89
VAR BRR 0.87 1.01 0.92 0.89
VAR DFM 0.88 0.95 0.92 0.83

Table 9: TC-MAFE for window size 144 and forecast hozizon h

TC-MAFE1 TC-MAFE3 TC-MAFE6 TC-MAFE12

Coint PML 0.70 0.66 0.82 0.75
Coint DFM 0.68 0.68 0.74 0.75
VAR PML 0.68 0.68 0.74 0.75
BVAR 0.67 0.93 0.79 0.98
VAR BRR 0.69 0.91 0.83 0.98
VAR DFM 0.69 0.76 0.81 0.77
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Table 10: Forecast Combination

Method AUD CAD BRL RUB EUR

Simple 0.0813 0.0468 0.0671 0.0841 0.0317
OLS 0.0311 0.0213 0.0342 0.0354 0.0227
CLS 0.0309 0.0222 0.0339 0.0358 0.0227
LAD 0.0302 0.0205 0.0331 0.0341 0.0219
Variance based 0.0438 0.0313 0.0485 0.0530 0.0346

Method GBP CHF JPY TRY MXN

Simple 0.0469 0.0531 0.0317 0.0638 0.0570
OLS 0.0202 0.0265 0.0227 0.0265 0.0242
CLS 0.0204 0.0264 0.0227 0.0271 0.0242
LAD 0.0198 0.0253 0.0219 0.0261 0.0236
Variance based 0.0281 0.0365 0.0292 0.0382 0.0363

Table 11: Mean Absolute Forecast Errors For LAD

Currency Value

AUD 0.5825
CAD 0.6339
BRL 0.6078
RUB 0.5893
EUR 0.6254
GBP 0.6698
CHF 0.6304
JPY 0.6836
TRY 0.6085
MXN 0.5854

C.2 Graphs

C.3 Commodity currencies
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Figure 2: Developed markets
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Figure 3: Emerging markets
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C.4 Developed currencies

Figure 4: EUR and GBP
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Figure 5: CHF and JPY
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C.5 Emerging currencies

Figure 6: TRY and MXN
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