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This paper investigates the possible impact of ESG Risk when 
incorporated into front office driven Fundamental Market Risk 
Measurement approaches. The main principle is, that ESG risk 
is implicitly embedded in observable market risk factors, like 
share prices and credit spreads, and interprets the ESG risk of an 
equity portfolio as an additional jump component to an ordinary 
GBM process. Thereby, the interdependency of economic entities 
over different industry sectors is modelled dedicatedly, by using 
two correlation matrices, for the continuous part and the jump 
part. These are used by a Gaussian Copula to generate respective 
correlated equity return movements over time. Further, hazard 
rates of possible jumps are taken as exogenously given, they are 
directly derived from Environmental Rating data. Thereby, the 
hazard rate and the mapped environmental rating carry both 
the interpretation of the Expected Number of Adverse Jumps 
during 250 trading days. It is also shown, portfolio risk can be 
additively decomposed to the single position level, and each 
position level into the contribution of (1) Ordinary Market Risk, 
(2) Jump Correlation Risk, and (3) Pure Hazard Rate Jump Risk. 
In order to calibrate the model, we propose to clearly distinguish 
between Systematic Environmental risk - which is caused by the 
product - and Specific Environmental risk - that is caused by the 
production process. Further, we view a Company as the sum of 
its Economic Entities, where the activities of each entity belongs 
to one single economic sector. Each economic entity stands for 
a jump component in the jump diffusion model. The simulation 
results show that on a 250 trading day horizon Environmental 
Risk is on a diversified portfolio level only relevant for longer 
time horizons (e.g. greater than 50 days), or in case of stressed 
scenarios. Our simulations indicate, that environmental rating 
based Exclusion Lists and Exposure Limits on companies with low 
environmental rating, would already do the job of managing or - 
more precisely - efficiently restricting current ESG risk. Finally, 
we derive modification factors based on  the Weighted Average 
Portfolio Hazard Rate and the Weighted Average Portfolio Jump-
Correlation, that enable the user for example to adjust a Historical 
VaR simulation appropriately to consider ESG Risk.
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1 Motivation

This working paper is motivated by the current struggle to restrict the climate change by es-
tablishing and adhere to criteria that promote primarily Environmental, but also Social and
Governmental, aspects. These aspects are usually abbreviated by ESG. Due to the urgency of
the topic, there is currently a large amount of terms and definitions, that partly refer to the same
topic, but differ in their meaning and content, e.g. there is still no standard definition of ESG Risk
and Sustainable Investment available. Besides these qualitative aspects, there is a need on how
to enhance existing quantitative concepts of risk measurement and performance measurement, to
account for ESG driven risk and performance. This is the main focus of the paper, while also
trying to give some overview of the theme. Thereby, the paper tries to incorporate ESG risk into
existing front office driven Fundamental Market Risk Models.

This is done instead of establishing an independent -– rating based -– model, as it was introduced
by the banking industry for its dedicated credit risk exposure. This does not mean that ESG
Ratings are neglected, instead they play an important role to calibrate our models properly. Fur-
ther, we do not go for accounting figure driven approaches like discounting future EBIT figures or
the company value – impacted by CO2 Price increase or CO2 Tax, cf. Friedl et al., 2021 for an
overview.

By Fundamental Market Risk Models, we refer to models that are front office driven and use
a pricing formula of the asset that is based on risk factors that are directly observable at the cap-
ital markets, like Share Prices, Interest Rates and Credit Spreads. We also separate our approach
from models that use economic indicators or constructed CAPM-like indices to explain observable
market risk factors by statistical regression. For example the equity share price or equity return
could be explained by several independent economic indicators via regression. Roncalli et al., 2020
and Görgen et al., 2019 provide an extended Capital Asset Pricing Model, where the return over
the risk free rate of the classical CAPM is not only explained by the return of the market portfo-
lio, but also by an index they refer to as the Brown-Minus-Green return index (BMG). The risk
measurement approach of MSCI Barra is an example for a statistical regression model that is very
suitable to incorporate the BMG index as an explaining variable, while MSCI Risk Metrics would
be a model we consider of the type fundamental, and this fundamental way we follow in our paper.

The paper starts to review the framework in which our approach is embedded, and then briefly
touches how to incorporate ESG risk into a Normal Distribution. The main part of the paper is
concerned with our view of how ESG risk is reflected by existing market risk factors like equity
share prices and credit spreads, whereby we will concentrate in this paper on equity portfolios.
Finally, a simulation study compares the developed concept of Jump Diffusion for different ESG
rating and cross company correlation scenarios with ordinary Geometric Brownian Motion mod-
elling. This is done for the risk factor ”equity price” of an equity portfolio, covering 49 members
of the EuroStoxx501. While our approach differs remarkably from those of Agliardi and Karydas,
we have the same starting point which is the jump diffusion model for equity or asset prices, which
enables in principle to reconcile between the different concepts.

Finally, based on the investigation of the simulation results, we provide some analytical properties
of the model like additive risk decomposition and delta-sensitivity, as well as a rule of thumb that
tries to avoid a regular full Monte Carlo simulation as much as possible, but just to modify ordinary
VaR figures, dependent on the Weighted Average Portfolio Hazard Rate, and the Weighted Average

1Agliardi and Agliardi, 2021 use a model very similar to our jump diffusion, in order to consider carbon emission
risk for the pricing of defaultable bonds. For the calibration of the needed hazard rate they refer to Karydas and
Xepapadeas, 2019. While for our paper exogenous calibration of the model - based on given ESG rating data – is a
main topic. Further, we want to extend the risk scope from carbon risk to environmental risk and even ESG risk.
The idea to go for a jump diffusion process for equity returns was actually already proposed by Merton, 1976.
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Portfolio Correlation. The result should serve to enable the user to clearly distinguish how ESG
risk will impact market risk. This impact may vary, depending on whether we are in a Transition
Phase to more sustainable investment driven markets, or whether such a transition is finalized.
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2 Framework of the Model

2.1 Definition of a Company

What is produced by Company c ∈ {1, ..., n}, its products/services or Activities, distribute
to the economic sectors s ∈ {1, ..., k}2, that form some kind of equivalent classes insofar the
companies therein produce the same product. More precisely, we introduce the term Economic
Entity, which is part of company c, and whose economic activities belong to exactly one industry
sector s. A company c is thus made up by its economic entities {c1, . . . , ck} with respective
economic activities and company sales share Q(cs) each. Each economic entity operates in exactly
one economic sector s ∈ {1, . . . , k}. If we refer to all n · k many economic entities that exist in
the considered market, then we use the notation e ∈ {1, ..., n · k}. In case we want to identify to
which sector and company an economic entity e belongs, we can write e(c, s) and then we have the
identity e(c, s) = cs. In case there is only one sector in which company c acts, then we have even
the identity e(c, s) = c1 = c. For the aggregate sales share Q(c) of the company over all sectors it
operates in via its economic entities, we have:

Q(c) =

k∑
s=1

Q(cs) = 1 with Q(cs) ≥ 0 (2.1)

Hence, for some economic sectors there may be no activity of the company, and the number of
possible sectors is equal for all companies. Further, this is the Definition of a Company as the
sum of its activities/products they sell to clients. This definition follows the idea given by the
EU Taxonomy concept, where a company is analyzed according to its economic activities3. We
will need this concept, for the model we use for Monte Carlo simulation, cf. Section 3.3

We assume within each (equivalent) class of economic entities (which is the industry sector) the
same impact on ESG by the activities/products of the economic entities therein. Note, from a
theoretical point of view, we find it useful to distinguish between this primary environmental im-
pact caused by the product, and the secondary environmental impact caused by the production
process4. It leads us to the notion of Systematic and Specific Environmental Risk. This is
the environmental part of ESG risk, where we are mainly interested in.

Let us consider the example of Crude Oil production, while this is very problematic in view of
the environment and climate, a difference within this industry sector can be made, by how effi-
cient and ESG compliant an economic entity uses the necessary resources to create this product.
This leads to the term Best-In-Class, and the respective approaches to measure this feature: like
minimized Power Consumption, Greenhouse Gas Emission, minimal use of Water and Waste Recy-
cling – during the production process. We will often abbreviate Best-In-Class by BiC in the sequel.

Thereby, one needs to be aware that BiC should ideally be a relative measure within the considered
class. That is to say, it is5 “[. . . ] reflecting the ESG performance of a company compared to the
average performance of its industry.”. The impact of the products of the industry class on the
environment is absolute and systematic, as far as the respective industry sector is concerned, as

2Sometimes we will also use the index variables i and j to denote the economic sector, instead of s. But this
will be mentioned explicitly.

3The European Commission states: ”The EU taxonomy is a classification system, establishing a list of en-
vironmentally sustainable economic activities. [. . . ] The EU taxonomy would provide companies, investors and
policymakers with appropriate definitions for which economic activities can be considered environmentally sustain-
able.”, cf. EU, n.d.-a

4Product and Production Process environmental impact is related to the notion of Downstream and Upstream
impact on environment. Upstream is everything that is needed before the company starts its core production
process, and Downstream is what comes after the company has completed the product, cf. Funk C M, n.d. for a
good and structured explanation.

5Amundi ESG Rating Methodology, July 2020, p. 8.
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it is equal for all companies that produce this same product/service.

In this sense an electric car is not the same product as a car that uses gasoline, even though
both are cars. As concerns ESG rating approaches, that are mainly based on the Best-In-Class
concept, we observed that even though they mainly focus on the production process, there is no
strict separation as we propose it above, instead they bring product information into the rating,
in case the product is supposed to be a Sustainable Activity6. A good example is the Automobile
Industry, where “Green Car” is an additional 5-th rating criteria, besides Energy & Emissions,
Water Management, BioDiversity & Pollution, Supply Chain. In this respect, they consider this
product information a company specific feature. As a possible example consider a car manufac-
turer, whose production process alone (specific risk) would lead to a bad rating, while the product
is completely Green - finally yielding a rating that is some notches better. Another interesting
example is the industry sector of Transportation: the product/service is just movement, while the
production process is using for example train or ship, and the main topic is how the movement is
achieved, that is the production process.

A possible interpretation of this notion of systematic and specific ESG risk is, that the impact
of the economic activity/product on environment is Systematic ESG risk, while being Best-
In-Class minimizes the company’s Specific ESG risk7. On the other hand, there are industry
sectors where the main ESG risk is in the production process, instead of the product. Electricity
and Transport are examples, one can produce electricity with wind, water or by burning coal, to
cite the most controversial productions processes in this sector. These specifics are to be taken
into account in course of the risk model calibration.

We are of the opinion that the ESG vulnerability of a product and its impact on company returns
and environment, that is systematic ESG risk for the industry sector, will play a more important
role in future as concerns possible adverse impacts on the company value. This should be reflected
in a clear separation between systematic and specific ESG risk, and lead to a separate rating for
product related (systematic) ESG risk.

Even though we are of the opinion that a strict separation between systematic ESG risk and
specific ESG risk in the rating process is desirable, we observe that this is not perfectly the case
in reality, but ratings cover primarily specific indicators that are mixed up to some extend by
systematic components. We will come back to this issue in course of our model calibration.

2.2 Definition of ESG Risk

Based on the outline of the last section we explain two possible approaches to define ESG risk,
and a possible synthesis of these two definitions. First is to say that ESG risk separates into the
components

1. Systematic ESG Risk, that is related to the product or economic activity and

2. The Company Specific ESG Risk, that is related to the production process.

Instead of sticking to systematic and specific risk, one can view ESG risk from a completely
different angle, driven by what is the Source of ESG risk. This leads to the notion of a possible
negative impact of

1. the Transition to an ESG compliant state of the world, on the return of financial invest-
ments, mainly caused by political decisions (e.g. introduction of carbon tax), and the

6In addition to the hybrid Best-In-Class approach, the Asset Management industry applies exclusion lists, in
order to restrict the systematic ESG risk impact of their investments. Examples are the Tobacco industry or the
Military industry.

7MSCI, n.d. states: “Companies are rated on a AAA-CCC scale relative to the standards and performance of
their industry peers”.
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2. negative impact of the change of ESG Factors on financial investments (e.g. climate
catastrophe or water pollution).

If we compare the notion of systematic and specific ESG risk with ESG transition risk and physi-
cal risk, we observe that transition risk is made up by systematic (product/activity) and specific
(process) risk, while physical risk is independent from transition risk and an additional impact,
which depends on the geographic location of the company and its industry sector, as some industry
sectors are more exposed to physical risk (e.g. Reinsurance Companies). We further note that
current rating approaches are more in line with this second notion of ESG risk above.

One can bring the two notions of ESG risk together by separating the sources of risk into a
systematic and specific source, leading to

1. Transition Risk, caused by political decision, is related to

(a) the product (systematic risk), and to

(b) the production process (specific risk)

2. Similarly, Physical Risk can be caused by

(a) the product or by

(b) the production process

The separation of transition risk into a product driven and a production process driven part can
serve as a starting point to refine industry sector specific stress scenarios. Industry sector specific
scenarios are considered in course of the second part of our simulation study, that is based on the
notion of transition- and physical risk.

Within this paper, we focus on the environmental part of ESG risk, but the principle of our ap-
proach extends easily to the whole ESG scope. We model the stochastic return with a continuous
and a discontinuous jump component. The jump component focuses on substantial changes of
observable risk factors that drive the portfolio return, while gradual changes are covered by the
continuous part. The hazard rate of the jump is directly linked to the observed E- or ESG rating
of the considered company. Similar to a Credit Rating there are ESG risk rating agencies like
MSCI and Systainalytics that provide ESG Rating Levels. In this paper we heavily rely on the
existence of such exogenously given rating data, to calibrate the jump part of our stochastic model.
For example the 7 possible MSCI ESG rating levels are {AAA,AA,A,BBB,BB,B,CCC}8. Fol-
lowing this principle, we assume for this paper the availability of rating data of 7 rating classes
{A,B,C,D,E, F,G} for the rating types/themes listed below:

1. Aggregated Environmental Rating

2. Environmental Rating related to the Production Process (specific risk)

3. Environmental Rating related to the Product (systematic risk)

4. Transition Risk Rating

5. Physical Risk Rating

As far as systematic environmental risk is concerned, we use the CO2 Intensity Industry Sector
Average to derive a systematic environmental rating and subsequently we link the respective in-
dustry sector hazard rate to this rating. This will be explained in detail by Section 3.3.1. As
regards rating data for transition risk, physical risk and company specific Best-In-Class rating,
these kind of data are readily provided by external ESG rating agencies. Some market participants

8Cf. MSCI, n.d.
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also maintain respective inhouse rating research9.

Karydas and Xepapadeas, 2019 calculate the Environmental Risk Premium for equity required by
the markets within a macroeconomic portfolio optimization environment, where their model port-
folio consists of General Equity Assets and Brown Equity Assets and a Risk Free investment. The
needed equity valuation formula is the present value of all future dividends, and the discounting is
based on a stochastic pricing kernel, which is derived from the utility function of the representative
investor. For this they model the environmental hazard rate endogenously by a mean reverting
SDE, with an average hazard rate parameter λ̄E- the respective stochastic process swings around.
Thereby, they combine physical risk and transition risk into one expected hazard rate parameter
of the SDE. More precisely, they derive the following linear relationship, they use to calibrate the
hazard rate parameter:

λ̄E = λ̃E + ξ · Λ
δ · ϕ

ν · nB

With ξ and λ̃E the slope and constant of the linear relation, Λ the climate sensitivity, δ the possible
outgoing radiation from earth, ϕ the emission intensity, ν the expenditure share for environment,
and finally nB = KB

KB+KG
the ratio of brown risky assets in percent of total risky assets. Further,

ϕ
ν · nB = Et are the carbon emissions, cf. Karydas and Xepapadeas, 2019, Section 3.4 and 4.2.2
for details.

Compared to this approach, our model takes the hazard rate as exogenously given or directly
linked to the ESG- or E rating of the company, and we dedicatedly model the correlation struc-
ture between companies and industry sectors in course of our Monte Carlo simulation. As concerns
the needed correlation structure, the work of Adenot et al., 2022 gives useful insight on how to
analyze and visualize such dependencies based on Upstream Cascading Effects. We will come
back to this topic in course of our simulation framework in Section 3.3.1.

The asset management industry and regulators suggest to measure ESG Factors (and in partic-
ular the E factors) by key ratios, like Carbon Footprint. For a pure equity portfolio, the Equity
Ownership Approach of carbon footprint is a good measure, where the ”Company Value” is the
market capitalization of the company. If we allow for multi asset portfolios the company value
would comprise of equity, debt and cash, and is called the company’s enterprise value10. This more
general carbon footprint of a portfolio ptf with portfolio market value f(ptf) is defined by the
Sustainable Financial Disclosure Regulation (SFDR) Level 2 as given by Equation 2.2. Thereby,
the portfolio consists of n-many financial assets ac with market value f(ac) each, and portfolio
weights wac

. These are related to companies c ∈ {1, ..., n}, with company enterprise value f(c)
and company carbon emissions in tCO2 denoted by CrbEm(c)11:

CrbFtp(ptf) =

∑n
c=1 f(ac) ·

CrbEm(c)
f(c)

f(ptf)
with f(ac) ≤ f(c) (2.2)

⇐⇒ CrbFtp(ptf) =

n∑
c=1

wac
· CrbEm(c)

f(c)

This definition measures the share of carbon emissions that can be attributed to our portfolio in-
vestments, relative to the portfolio value. The second formula gives the interpretation of Weighted
Average Portfolio Carbon Emissions in tCO2/M.EUR. Definition 2.2 restricts the scope of assets
for which CrbFtp can be measured: Assets that are in scope, need to reflect the equity capital or

9For our paper we used the Amundi ESG rating.
10Cf. EU, n.d.-c Appendix 1. The level 2 regulation of SFDR defines ”enterprise value means the sum, at fiscal

year-end, of the market capitalisation of ordinary shares, the market capitalisation of preferred shares, and the
book value of total debt and non-controlling interests, without the deduction of cash or cash equivalents”.

11Cf. Funk C M, n.d., p. 9-10.
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the debt capital, that is, equity and bonds, and direct derivatives on them via the delta equiva-
lent12.

Different from the ESG risk definition above, but closely related and important, in order to prepare
the way to sustainable investments is the notion of Principal Adverse Impact (PAI). This is
the negative impact of an investment on ESG factors. Limits on PAI are one means to restrict
future ESG risk. For example, one can limit the investment in tobacco-related companies, or
the investment in crude-oil related companies, or may limit the carbon footprint of the portfolio.
Thus, systematic ESG risk and exclusion lists are related to PAI, cf. Section 2.113.

2.3 Definition of Sustainable Investment Strategy

Apart from the definition of ESG risk in the finance industry, there is also a discussion of what is a
Sustainable Investment Strategy. Some argue this is already the case if PAI is considered, by
setting up rules that only allow for a certain percentage share of non ESG compliant investments
(e.g. <5% tobacco, or <10% military weapons). Normally, this is made sure by Exclusion
Rules that relate to concerned companies. A more direct definition would be to set up limits
on -– for example – carbon intensity, or to minimize the carbon footprint (cf. Equation 2.2)
prior to an intended investment into a given industry branch. In the latter case, the investor
would focus on the Best-In-Class companies (as regards carbon footprint) of the industry branch
under consideration, or whether the investment would increase or decrease his portfolio average
carbon footprint. In this context, we want to explicitly introduce our definition of a Sustainable
Investment (SI). An investment, or more specific, the investment into a company equity share
(the respective equity portfolio position) is sustainable, if for all covered economic entities we have:

1. Revenues from Brown Activities are no more than (for example) 15%. Or equivalently:
Green and Grey Activities > 85%.

2. The company adheres to best E/S practices as measured by appropriate ESG subratings.

3. The Governance rating is worst F.

4. No severe Principal Adverse Impact (PAI) is caused by the investment in the company.

(a) As measured by its CO2 intensity, the economic entity is not part of the (for example)
15% worst in the applicable industry sector.

(b) No Controversial Weapons involvement of the considered company.

(c) No Controversies as regards Biodiversity and Pollution and Water.

(d) No Social controversies, e.g. as measured by applicable Social rating.

Thereby, the first 2 criteria are related to the activities, the third criteria is the good governance
practice, and the last criteria is related to DNSH (do not significantly harm) other sustainable tar-
gets. This approach combines the definition of SFDR and Taxonomy. Both start with sustainable
activities and apply the DNSH principle. While SFDR has its focus on good governance practice,
SFDR is more concerned with social safeguards.

12The Level 2 regulation of SFDR states:
”
For the purposes of the assessment of principal adverse impacts by

financial market participants, an investment in an investee company or an entity includes direct holdings of capital
instruments issued by those entities and any other exposure to those entities through derivatives or otherwise.”, cf.
EU, n.d.-b, Sec. 4 (3). The carbon emissions referred to in formula 2.2 are scope 1, 2 and 3 emissions.

13Among other things, latest AIFMD/UCITS EU Regulation requires the Investment Process of an Asset Manager
to take explicitly into account PAI.
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2.4 Financial Instrument Valuation and ESG Factors

We consider asset a with observable risk factors (r1, . . . , rκ) and the valuation formula fa to
calculate the present value fa(r1, . . . , rκ) of asset a. For example, a corporate Zero Bond z with
one year time to maturity and credit spread cs as well as the credit risk free rate rf we have

fz(rf , cs) =
100

1 + rf + cs
(2.3)

In order to ease the approach and to arrive at an efficient valuation method, given the background
to integrate ESG risk, and the lack of precision we face anyway, one could consider a linear
approximation of the return distribution, also called Delta-Normal approach. This keeps a normal
distribution approach, and accelerates the calculation. The market value changes of each asset in
the portfolio are thus approximated by its Total Differential, dependent on the main risk factors
of each asset:

dfa(r1, ...rκ) =
dfa(r1, ...rκ)

dr1
· r1 ·

dr1
r1

+ ...+
dfa(r1, ...rκ)

drκ
· rκ · drκ

rκ
(2.4)

Thereby, infinitesimally small changes or returns dri/ri are considered, that are approximated
in reality by daily risk factor returns, and the dfa/dri are the relevant Deltas of the respective
financial instrument.

In case of substantial non-linear behavior of the portfolio with respect to selected risk factors, e.g.
in case of option strategies or overlay management, one could enhance Equation 2.4 by second
order derivatives (Gammas), or even use a full valuation. This is at the cost of loosing the normal
distribution property of risk factor returns. Thus, the non-linear enhancement calls for quantile
approximation like Cornish Fisher or a Monte-Carlo simulation.

There is also a vivid discussion in the financial industry of how to separate and quantify ESG risk
from the usual risk factors, like equity prices and interest rates. For explaining purposes only, let’s
now assume there is a regression, linear explanation respectively, for each daily risk factor return
ri on independent explaining economic variables xj with j ∈ I. Please note, these will not play
an explicit role in the model explained later, because we are of the opinion such a decomposition
is purely statistical (without fundamental justification) and thus not stable enough over time.

dri
ri

=
∑
j∈I

βj ·
dxj

xj
+ const (2.5)

For the ease of notation, we omit to express the obvious dependence of the sensitivities β and the
index set I on the asset under consideration. If ESG factors impact the valuation of the asset
then there is an index subset esg ⊂ I with xj ∈ esg the respective explaining variables. Please
note, we do not specify the explaining variables by intention, because at the one hand, this is by
itself a substantial task, and on the other and – for the purpose of this paper – we do not need to
specify these variables.

Having said this, and taking the concrete example of carbon footprint: a possible explaining
variable may be the deviation of carbon emissions from the planned trend needed to keep the
climate within bearable changes, and the sensitivities of the explaining variables may depend on
the branches or classes we have considered earlier. Further, the variables and its sensitivities will
be driven by political decisions (which is actually transition risk) and may thus show discontinuous
behavior, that should be modelled by a jump process, similar to credit risk.

Concerning the linear decomposition of the risk factors into independent explaining variables we
can then separate equation 2.5 as follows:

dri
ri

=
∑
j /∈esg

βj ·
dxj

xj
+
∑
j∈esg

βj ·
dxj

xj
(2.6)
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We employ this decomposition just to explain ways to modify the distribution of the risk factors
ri appropriately to account for ESG risk, and how these modifications can be calibrated based on
backtesting, cf. Section 3.1 where we modify the Delta-Normal approach, as well as Equation 2.7.
We will not try to model these hidden factors explicitly.

2.5 Calibrate The Hazard Rate with ESG Rating

No matter, whether we try to keep a Normal distribution, or whether we want to go for a more
advanced approach, the main topic is how to account for ESG risk when fixing the parameter
values of the distribution of risk factors. This can depend on the systematic and specific ESG
risk driving the risk factor under consideration, and alternatively one could derive the parameters
based on the transition risk and physical risk impact, or even combine these two approaches, cf.
Section 2.2 “Definition of ESG Risk”.

Let us assume available numerical rating scores RSc for the systematic part and for the specific
part of ESG risk, or alternatively for transition risk and physical risk. Physical risk impact is (at
least in the short and mid term) independent from transition risk, and systematic and specific
risk are independent by definition14. The reason for the independence of transition- and physical
risk is, that in particular the climate reacts very slow and only in the very long term to political
decisions that manifest transition risk. This independence is important for the theoretical validity
of formula 2.8 below. We then consider a partition of the interval of possible rating scores as
defined in Section 2.2.

A ESG rating class with very little ESG risk, for a given company, may even lead to an increased ex-
pected value of its daily return, i.e. µ(Resg) > 0 and a decreased variance, i.e. σ2(Resg) < 0 given
the ESG adjusted risk model. Note thereby, while from a practitioners point of view σ2(Resg) < 0
opens an interesting calibration scope, from a modelling point of view this is not possible with the
above assumption of independent explaining variables in Equation 2.6, as correlations are then
zero. Note, the use of expected value and variance as the only parameters of the distribution
restricts the user to a Normal distribution. More generally, this is not at all clear, because given
a jump process one has the respective intensity rate being affected by the ESG rating, and this is
the root of our proposed approach.

If we take for example the systematic and specific ESG risk view, then the concrete definition and
hence the calibration of the risk model would depend on the rating score (rating class) of a given
company c taking into account specific as well as systematic ESG risk/ESG rating. For example:
the necessary mapping for a Normal distribution

M : (RScsys(c), RScspec(c)) −→ (µ(Rc
esg), σ(R

c
esg)) (2.7)

can be recalibrated based on backtesting results of the risk model. Likewise, the jump intensity λ
of a jump process, can be made up by the systematic and specific component of ESG risk.

M : (RScsys(c), RScspec(c)) −→ λc,sys + λc,spec = λc (2.8)

given the independence of systematic and specific ESG risk. Whereby, our starting point is the
systematic part of risk, and the specific part plays an offsetting role, that is, decreasing or in-
creasing the hazard rate, dependent on whether the company or entity under consideration is
Best-In-Class or rather Worst-In-Class.

14Note, to assume the independence of systematic and specific risk is in our framework equivalent with the
precondition that environmental risk caused by the product is independent from environmental risk caused by the
production process. We argue that this assumption does not violate the reality to an extend that would cause the
simulation results to be unreliable.
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For our simulation study based on a jump diffusion process (Geometric Brownian Motion enhanced
by a Poisson component) we will model the jump intensity based on both, transition risk and
physical risk contribution, as well as systematic and specific risk, and compare the parametrization.
The synthesis of these two definitions of risk in course of a simulation study is left to a planned
future paper, where we intend to investigate a Fixed Income portfolio.
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3 Impact On Risk Factor Distribution

Initially, we will briefly consider the case of a Delta Normal distribution approach and then we
have a look at the impact on Historical simulation. Finally, and most importantly, we will develop
our proposal of a jump diffusion process to analytically model the impact of ESG risk on the return
distribution, and fundamentally explain our view, why ESG risk is part of existing risk factors.
Thereby, we will be also able to quantify the impact of ESG risk on the overall portfolio risk, more
precisely, how ESG rating (via the jump-intensity and company/sector correlations) influences the
return distribution of the portfolio. The necessary return distribution will be obtained via Monte
Carlo simulation, cf. Section 4. The results of the simulation will also serve to derive some rule
of thumb of how to modify ordinary risk figures (given the Average Portfolio Hazard Rate and
the Average Portfolio Jump Correlation). Thereby, the intention is to restrict the need of Monte
Carlo simulation as far as possible.

3.1 Delta Normal Approach

We keep the Normal distribution based on Equation 2.4, and just modify the expected value and
variance. Further, at this stage of the paper, we assume a constant correlation structure of the
risk factor returns. More precisely, assume a correction factor that tells how to adjust the ex-
pected value and variance of the valuation formula fa(r1, ..., rκ) of asset a based on its risk factors
r1, ..., rκ. Note, given the linear decomposition of dfa(r1, ..., rκ) in Equation 2.4, the distribution
function of changes is Normal for all financial instruments in the portfolio, and thus, the changes
in market value of the portfolio are normally distributed.

A correction factor as mentioned above can be obtained by several approaches, for example:

1. via appropriately calibrated ESG rating, as given by mapping M in Equations 2.7 and 2.8,
yielding a factor on asset level.

2. via regression, without and with explaining ESG variables, as given in Equations 2.5 and
2.6, yielding a correction factor on the more granular risk factor level.

3. via a quantile based ratio, as derived in detail by our rule of thumb proposal in Section 4.4,
yielding again a factor on asset level.

We want to show in more detail how approach 3 above can be applied. For this consider again
the linear decomposition dfa of asset valuation fa:

dfa(r1, ..., rκ) =

κ∑
i=1

dfa
dri

· ri ·
dri
ri

Together with the Standard Normal quantile qpϕ (e.g. the one sided quantile with p = 0.95, which

gives the 95% confidence VaR) we can write the quantile of the asset return dfa/fa as15:

qpt (dfa/fa) = µ(dfa/fa)− qpϕ · σ(dfa/fa) ·
√
t

Given the Value-at-Risk ratio qR(λa, 1) from Equation 4.6 for a 1-element portfolio, we obtain the
E risk adjusted Value-at-Risk of the return of asset a as

qR(λa, 1) · qpt (dfa/fa) = qR(λa, 1) · µ(dfa/fa)− qpϕ · qR(λa, 1) · σ(dfa/fa) ·
√
t

Hence, we can use qR(λa, 1)·E(dfa/fa) and qR(λa, 1)
2·V (dfa/fa) as the environmental risk adjusted

expectation and variance of the Delta-Normal approach. That is for the expected value,

µesg(dfa/fa) =
1

fa
· qR(λa, 1) · E(dfa) =

1

fa
· E
(
dfa
dri

· ri ·
dri
ri

· qR(λa, 1)

)
15We omit to show explicitly the dependency on (r1, ..., rκ)
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=
1

fa
·

κ∑
i=1

dfa
dri

· ri · E
(
dri
ri

)
· qR(λa, 1)

and for the variance:

σ2
esg(dfa/fa) =

1

f2
a

· qR(λa, 1)
2 · V (dfa) =

1

f2
a

· V

(
κ∑

i=1

dfa
dri

· ri ·
dri
ri

· qR(λa, 1)

)
(3.1)

=
1

f2
a

·
(
dfa
dr1

· r1, ...,
dfa
drκ

· rκ
)
·

 σ2
1 · qR(λa, 1)

2 · · · σ1κ · qR(λa, 1)
2

...
. . .

...
σκ1 · qR(λa, 1)

2 · · · σ2
κ · qR(λa, 1)

2

 ·


df
dr1

· r1
...

dfa
drκ

· rκ



As our paper, is focused on equity portfolios, we now consider n-many equity positions i ∈
{1, ..., n} and portfolio weights w = (w1, ..., wn)

T . In this case the valuation formula collapses
to fa(r1, ..., rκ) = fa(ri) = ri, where frisk factor ri is the equity share price Si of position i. Sim-
ilarly, dfa/fa becomes dSi/Si, which is the equity return. Thus, the E adjusted equity portfolio
expected return and variance of return are:

E(rptf,esg) = E

(
n∑

i=1

wi ·
dSi

Si
· qR(λi, 1)

)
=

n∑
i=1

wi · E
(
dSi

Si

)
· qR(λi, 1) (3.2)

V (rptf,esg) = V

(
n∑

i=1

wi ·
dSi

Si
· qR(λi, 1)

)
= wT · (3.3)


σ2
1

(
dS1

S1

)
· qR(λ1, 1)

2 · · · σ1n · qR(λ1, 1) · qR(λn, 1)

...
. . .

...

σn1 · qR(λn, 1) · qR(λ1, 1) · · · σ2
n

(
dSn

Sn

)
· qR(λn, 1)

2

 · w

Where the environmental risk adjusted covariance between equity return i and equity return j is

σesg
ij = σij · qR(λi, 1) · qR(λj , 1)

This keeps the correlation structure of the portfolio constant, because we have

corresgij =
σij · qR(λi, 1) · qR(λj , 1)

σi · qR(λi, 1) · σj · qR(λj , 1)
= corrij

Obviously, one can also modify the correlation structure appropriately, if backtesting results of
the portfolio risk may deem this reasonable.

For the general case of a not only equity portfolio, we suggest to use the vector of modified asset
volatilities (cf. Equation 3.1) together with the correlation matrix, instead of the covariance matrix
and portfolio weights. This representation deals better with the complexity of the formula. We
finally obtain the variance of portfolio return, using again the correlation matrix, which we keep
invariant. Note, the correlation structure can also be modified appropriately, as mentioned above:

V (rptf,esg) = V

(
n∑

a=1

wa ·
dfa
fa

· qR(λa, 1)

)
= (3.4)

(
w1 · σesg

(
df1
f1

)
, · · · , wn · σesg

(
dfn
fn

))
·

 1 · · · corr1n
...

. . .
...

corrn1 · · · 1

 ·


w1 · σesg

(
df1
f1

)
...

wn · σesg

(
dfn
fn

)

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Finally, we note, that Equations 3.1 to 3.4 that cover the term dfa/fa · qR(λa, 1) also give a
hint, of how to modify the risk factor returns of a Historical simulation in order to obtain an
environmental risk adjusted Value-at-Risk from Historical simulation – instead of modifying the
Historical Value-at-Risk figure ex post.

3.2 Historical Simulation Approach

From a conceptional point of view, there is no need to modify the approach of Historical Simu-
lation, because historical return movements should already incorporate ESG risk. Moreover, the
emphasis on more recent returns with Decay Factors is common to current approaches.

On the other hand, we argue that historical returns do not sufficiently reflect ESG risk as its
impact is new, developing very fast and a rather rare but relatively extreme event, in particu-
lar at the beginning and during the transition phase to a more sustainable economy. When the
transition is about to be finalized, the events can become more likely with diminishing impact
each16. Currently, ESG risk will be to a substantial degree a transition risk, properly modeled by
a jump process. Implying, that one should modify historical returns, or the risk figures calculated
from historical returns, appropriately. Alternatively, one could just try to modify the result from
Delta-Normal approach.

What we propose, when modifying Historical VaR or Delta-Normal VaR, is to employ a factor
derived from the Weighted Average Hazard Rate and the Jump Correlation Structure of
the portfolio under consideration. We infer this rule of thumb by comparing the equity return
distribution obtained by jump diffusion Monte Carlo simulation with a Monte Carlo simulation
that restricts to a pure Geometric Brownian Motion, and consider the ratio of the two resulting
Value-at-Risk figures. This will also mitigate an imanent drawback of historical simulation, as
it fails to be able to model the correlation behaviour dedicatedly, because historical simulation
is restricted to the historically observed correlation. Cf. Section 4.4 for details on the rule of thumb.

3.3 Monte Carlo Simulation Approach

3.3.1 Framework of the Jump Diffusion Model

It was already outlined that we suggest to view ESG risk as embedded in observable market risk
factors. The reason is quite straightforward: in case ESG risk affects a company under consider-
ation, its share prices, credit spreads and other observable risk factors will move accordingly.

In this section, we want to formalize analytically how ESG risk can be embedded explicitly into
a given risk factor. Thereby, we will focus on equity portfolios, that is to say, the single equities,
more precisely their equity returns, are by themselves the risk factors. Further, we apply one-
dimensional Geometric Brownian Motion (GBM) to a single equity share and embed ESG risk via
an appropriately parametrized jump component, more precisely, a Poison process with its haz-
ard rate. In addition, we model with a deterministic function to which extent the jumps occurs,
i.e. whether there is a 100% loss triggered by the jump or some percentage loss smaller than 100%.

Other risk factors, like credit spread, may call for another diffusion part, e.g. a mean-reversion
process, but the main principle of combining a continuous process with a jump will stay the same.
It is worth to mention, that within our approach of Monte Carlo simulation of risk factors that are
explicit part of fundamental valuation formulas – our next step of research on Bond Portfolios
will try to discount expected future cash flows (under the original probability measure) by a factor

16From a model point of view this would require higher hazard rates with lower Jump-Given-Event.
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that covers the stochastic evolution of the risk free rate and the credit spread17. Where the E risk
of the risk free rate is related to the respective government/country, and the E risk of the credit
spread is related to the issuing company. This way we bring the hazard rate via the SDE of the
credit spread explicitly into the pricing formula. This Reduced Form market risk factor approach
differs substantially from the Structural Approach of Agliardi and Agliardi, 2021. In their model,
which is in the spirit of Merton, 1974, the default of the company (and its issued bonds) occurs
as soon as the company value crosses a certain threshold. Thus, they express the bond price as
a function of the company value (or equity price, under additional assumptions), together with
the hazard rate that influences the equity price behavior under the jump diffusion model. Using
this structural framework and the generalized Lemma of Ito they then derive explicit valuation
formulas for bonds and equities, that incorporate the hazard rate.

At this point, it is important to discuss the general framework of the parameter estimation
we follow. We use (1) historical return time series to estimate the drift, volatility and correlation
of the continuous part of the process and then add (2) a jump component – mainly parametrized
by fundamental and logic considerations. With this approach we assume that currently ESG risk
- and in particular the E part - is still only marginally reflected in historical portfolio returns,
as transition risk and the perception of Adverse Impact risk is new and developing very fast (cf.
Section 2.2 and Section 3.2). If this assumption were violated, we would need to introduce a
compensator (e.g. a volatility and correlation reduction) to properly estimate drift, volatility and
correlation of the continuous part, in order to avoid double-counting of risk. As regards the ap-
proach of calibration based on the notion of systematic and specific risk, we touched already
in Equation 2.8 the possibility to derive the hazard rate of the jump process from available ESG
rating data, with a mapping function:

1. An economic entity (cf. Section 2.1 “Definition of a Company”) is element of a sector/branch
whose products are equally exposed to systematic ESG risk. What we consider the systematic
component λsys. In this sense, they form an equivalent class. The loss, the share price of
the company may experience – given an adverse ESG event – is assumed to equal the share
Q(cs) of the economic entity cs of company c dedicated to sector/branch s, multiplied by a
factor ξ representing the magnitude of the jump. The easiest case would be a factor of 1.
The magnitude could also be factor ≤ 1, depending on the ESG rating of the company.

2. Within this class, the economic entity of the company may compensate the systematic hazard
rate, in case it is Best-In-Class, by using resources optimally during the production process
or in a perfectly sustainable manner. We denote this the specific component λspec. For
example: a mining company that meets its energy demand completely by renewable energy.
Moreover, being Best-In-Class may even lead to reduced correlation with other companies
in the class, easing the diversification effect of this company.

3. The disjoint classes may impact each other. For example, an environmental risk from the
oil industry can negatively impact the fishing sector. This is an example of a uni-directional
dependency, cf. also Adenot et al., 2022. We suggest to model this via the hazard rate.
Others are mutual dependencies and we suggest to model these via the correlation structure.

4. We further postulate a strong economic (not environmental) correlation between economic
entities of the same company.

As regards the applied approach of calibration based on the notion of transition and physical
risk, the above points 3 and 4 are identically applicable, while we need to replace 1 and 2 by simply

17Alternatively, we will apply a widely used linear approximation, using Key Rate Durations and the Spread
Duration to calculate the change of the bond price.
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1. The probability of a transition risk event an economic entity is exposed to, as measured by
the Best-In-Class E rating and modelled via the transition hazard rate λTrs is increased
by the independent

2. Physical risk impact, that is the probability of adverse physical risk impact, modelled via
the physical hazard rate λPhy, to become the compound hazard rate.

3. As the risk figure is made up by probability of event and impact of event, we incorporate
the loss the share price of the company may experience given an adverse ESG event. It is
equal to the share Q(cs) of the company c dedicated to sector/branch s under consideration,
multiplied by a factor ξ representing the magnitude of the jump.

It is worth to note, that here we do not require the mathematical independence of economic
entities, as each economic entity is in this sense a random variable, whose dependencies with other
entities is modeled via the correlated simulation.

3.3.2 Hazard Rate Modelling

In order to comply with the requirements outlined above, we model each equity share price in a
given portfolio with a jump diffusion process, with Geometric Brownian Motion, that is enhanced
by a sum of Poisson processes. Each jump process relates to the share of a company that is
dedicated to a sector/branch, and these economic entities are added up, cf. Eq. 2.1.

Given a pure equity portfolio, we have the special case of an asset ac of company c, whose val-
uation formula fa(r1, ..., rκ) depends on only one risk factor rc = Sc, which is the equity share
price. Further, we have the identity fa(Sc) = Sc. For this reason, and because the notation of Sc

to model the equity price behavior is very common, we use Sc,t for the equity price of company c
at time t ≥ 0.

The above mentioned separation of a company into economic entities is reasonable if one wants
to model the jump correlation even down to the entity level or if economic entities of a company
act in completely different industry sectors. Given the current data availability and status of
economic transition we argue that being able to model the dependency between companies - in
view of environmental transition risk – is already a very good step into the correct direction. On
a single company level, we collapse the sum of single processes into one jump component, whose
hazard rate is then determined by applicable company ESG rating. It is important to note, that a
simple addition of Poisson components (the entities) without correlated simulation, would require
their independence which is not given in general.

In order to account for unidirectional dependencies we consider the index set UD(ci). This means,
that all companies/sectors that uni-directionally influence the economic entity ci of company c in
sector i ∈ {1, ..., k} are covered by this index-set18. There are two possibilities to account for such
unidirectional impact: One is to force a jump of the impacted entity in case a jump occurs with
the impacting company and not to increase the hazard rate of the impacted entity. The other
approach is just to increase the hazard rate of the potentially impacted sector/entity, in order to
avoid a “manual” intervention into the flow of the stochastic process. The second approach is
what we propose below.

dSc,t = µc · Sc,t · dt+ σc · Sc,t · dWc,t − Sc,t ·
k∑

i=1

Q(ci) · dJci,t (3.5)

18For example, an oil producing company whose sea-platform would pollute the sea, has potential adverse impact
on the fishing sector in this area. Another example is air transportation: if airlines need to increase prices due to
increased carbon emission cost, possibly caused by carbon tax, this would impact travel agencies.
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with 19

dWc,t ∼ N(0, dt)

dJci,t =

dNci,t∑
j=1

ξ(λci) = dNci,t · ξ(λci)

dNci,t =

(
≥ 1 with pci =

(
λci +

∑
j∈UD(ci)

λj

)
· dt+ o2(λdt)

0 with 1− pci

)

where the jump size ξ(λci) is a deterministic function that increases monotonically with the hazard
rate20. Further,

E(dNci,t) ≈

λci +
∑

j∈UD(ci)

λj

 · dt,
k∑

i=1

Q(ci) = 1

Given the formula above, it is obvious that with each jump, the company equity share price
does not necessarily go to zero completely, but is reduced in its maximum by the share that is
contributed by the jump size ξ(λci) of the economic entity where the jump occurred. A natural
extension of this approach would be: not to take the jump magnitude as a deterministic function
of λ, but to consider a real compound Poisson process, where the altitude of the jump follows a
continuous random variable.

Concerning the definition of the hazard rate λci of economic entity ci that acts in industry sector
i we have for both of our parametrization alternatives:

λci = λci,sys + λci,spec ≥ 0 with λci,sys ≥ 0 ∧ λci,spec > −λci,sys

λci = λci,Trs + λci,Phy ≥ 0 with λci,Trs ≥ 0 ∧ λci,Phy ≥ 0

For our simulation study we will assume k = 1 and UD(ci) = ∅ ∀ci. This is: each company acts
only in one industry sector, and it is not influenced unidirectionally, i.e. Equation 3.5 simplifies
to21

dSc,t = µc · Sc,t · dt+ σc · Sc,t · dWc,t − Sc,t · ξ(λc) · dNc,t (3.6)

As already mentioned, we face the situation that currently available ESG ratings focus on the
hybrid Best-In-Class approach, which is a relative measure. Thus, the user may need to establish
by himself an inhouse rating for what we call the systematic part of ESG risk, in case he wants
to apply this approach. For this paper we focused on the environmental part of ESG using the
Average Scope 1-3 Carbon Emission of the industry sector the company belongs to, to derive
the systematic rating score in Table 2. In detail, the logic given by Table 1 applies. A similar
rationale is used by Adenot et al., 2022 in their Section 3.2.

19Cf. Appendix A.1 for an explanation of o2(λdt).
20We went for an increasing function, as we wanted to emphasize the impact of environmental risk in course

of a transition phase that is at its beginning. At the end of a transition phase or after the transition is more or
less completed, one would rather consider higher hazard rates with smaller jumps, and lower hazard rates with
bigger jumps. Implying some smoothing of the jump component. This does not change our approach but just the
deterministic function of jump size we apply.

21Cf. Appendix A.3 for a quantitative discussion of this model and why it was choosen.
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Average CO2 intensity RScsys
< 0.5 A
< 2 B
< 4 C
< 10 D
< 20 E
< 40 F
≥ 40 G

Table 1: Systematic ESG Rating Derivation

If we assume sufficiently many members for an arbitrarily given industry sector, we are able to
eliminate the single company (or specific) risk impact, by using the Average Carbon Emission over
all members, because single company impact on industry emissions is then negligible. Unfortu-
nately, we had no access to full Scope 3 data that covers the carbon emission of the product, which
is due to a lack of data availability. But this would be important to cover the post-production
environmental harm of the product. A notable exception, where the data were available in prin-
ciple, is the Automobile sector. The future emissions of the cars this industry sector produces
are relevant as regards our environment (PAI risk), and thus causes (political) transition risk.
This brings us to the Product Carbon Footprint, which is a measure that covers the carbon
emissions over the whole life of a product, starting with Upstream, incorporating the production
process as well as Downstream, which is: distribution, use and disposal of the product22.

Before we come to the specific E rating, we would like to shade some light on our understanding
of the terms Upstream, Downstream and Scope123 emissions. Upstream refers to the material
inputs needed for production, while Downstream is the opposite end, where products that have
been produced are distributed. Scope 1 emissions are directly caused by Downstream activities.
Scope 2 emissions are indirect and caused by the Upstream activities use of Energy, which is the
collection of necessary material. In contrast, Scope 3 emissions for Upstream is everything not
covered by Scope 2 AND Indirect Downstream emissions. These indirect Downstream emissions
should per definition cover the emissions of the product and what is needed at the and of product
life.

The logic for the specific environmental rating we use for the single equity positions is given in
Table 2, cf. also the Table 10 of static portfolio data in the Appendix.

22Cf. Funk C M, n.d., p.3.
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RScsys λsys RScspec λspec

A 0.05
250 A -0.75 × λsys

B 0.1
250 B -0.25× λsys

C 0.25
250 C 0

D 0.5
250 D 0.25 × λsys + λsys,D

E 1
250 E 1 × λsys + λsys,E

F 2
250 F 3 × λsys + λsys,F

G 4
250 G 5 × λsys + λsys,G

Table 2: SysSpec Hazard Rate Derivation

We find it intuitive to link the ESG rating/rating score to the Expected Number of Events
per Time. More precisely, note Table 2, of how ESG rating scores and the expected number of
adverse events can be linked. In order to derive this table as a possible calibration example, we
used dt = 1day and thus, the expected number of adverse events during 1y time horizon – implied
by systematic ESG risk – should approximately equal λsys · 250d. Concretely, for a G rating, we
expect 4 events during 1y. The specific hazard rate is modelled as a negative or positive offset,
based on the company specific transition risk rating23. In case, one uses 10d time-steps the above
systematic hazard rates need to be multiplied by 10. Note, Table 2 is just an example and its
values may vary with the industry sector under consideration, more precisely the impact of the
systematic and specific hazard rate may change. We refer to our considerations in Section 2.1,
where we cited examples of industry sectors, for which the main part of ESG risk is with the
production process and not the product itself.

Using transition and physical risk the starting point of calibration could look like the Table 3:

RScTrs λTrs RScPhy λPhy

A 0.05
250 A 0.02

250

B 0.1
250 B 0.04

250

C 0.25
250 C 0.125

250

D 0.5
250 D 0.25

250

E 1
250 E 0.5

250

F 2
250 F 1

250

G 4
250 G 2

250

Table 3: TrsPhy Hazard Rate Derivation

23This is the transition risk rating whose availability we postulate in Section 2.2. It measures the exposure of a
company to transition risks and its ability to manage such risks
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One can easily recognize, while both approaches have the same starting point with identical
transition or systematic hazard rate, Table 2 applies -– for weak ratings – a more aggressive start
to model the hazard rate. As it attributes a higher event probability to weak rating quality,
while Table 3 proposes a more equalized and moderate impact of physical risk. Further, specific
ESG hazard rate plays a relative offsetting role, while physical E(SG) hazard rate is an increasing
component.

3.3.3 Modelling ESG Dependencies with the Correlation Matrix

We now turn to the dependency structure, correlation structure of the proposed model, respec-
tively. For this, we consider an investment universe that covers our “Financial World”. This can
be an equity share index, like S&P500, or any arbitrary fixed set of equities. At this stage such
equities can be listed economic entities or companies.

The correlation structure of the continuous part, reflected by the Wiener Process dWt, is standard
and well explained in the literature. In summary, this is the correlated simulation of a vector of
normally distributed variables based on Cholesky decomposition or the Gauss algorithm. Thereby,
the correlations can be derived from historic return time series analysis24. In this paper, we focus
on the correlation structure of the jump part and how it can be modeled with aGaussian Copula.
Nevertheless, for the sake of completion, the generation of the continuous part is

1. Consider a vector Z of i.i.d standard normal variables that is Z ∼ N(0, Id), and a given
Covariance Matrix Σgbm.

2. From Σgbm construct via Cholesky decomposition the lower triangle matrix ALT , with
Σgbm = ALT ·AT

LT .

3. Finally, use Xgbm = (µ+ALT · Z) ∼ N(µ,Σgbm)

As concerns the jump part, in the most general case of our model, we have n · k many economic
entities e ∈ {1, ..., n · k}. The algorithmic approach is as follows:

1. Consider a vector Z of i.i.d. standard normal variables, that is Z ∼ N(0, Id), and a given
covariance matrix ΣJ

25.

2. From ΣJ construct via Cholesky decomposition the lower triangle matrix ALT .

3. Set Y = ALT · Z =⇒ Y ∼ N(0,ΣJ), with CDF ΦΣJ
(y)

4. For step 6, note the distribution functions Fe of univariate Poisson random variables XJe ∼
Fe(xe, λe) with e = 1, ..., n · k.

5. Set (u1, ..., un·k) = (Φ1(y1), ...,Φn·k(yn·k)) ∈ [0, 1]nk - where Φe(ye) ∈ [0, 1] is the normal
distribution function of N(0, σ2(ye)).

6. To finally obtain a correlated vector of Poisson random variables set

(a) XJ = (XJ1, ..., XJk·n) = (F−1
1 (U1), ..., F

−1
n·k(Un·k))

24As far as the possible double counting of risk is concerned we refer to our respective outline in Section 3.3.1
25It is important to note, the needed covariance matrix is obtained by multiplying the correlation matrix with

the two volatility vectors, whereby the volatility vectors are made up by the volatility of the Poisson variables
and not the volatility of the continuous part, the historical return time series, respectively. The needed 10-day or
1-day volatility for each asset equals the square root of the 10-day or 1-day hazard rate, because the hazard rate is
expected value and variance of the poisson distribution. For our simulation performed here, this is the 10d hazard
rate, cf. Section 4
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Note, the Gaussian Copula function C(∗) is not explicitly visible in the above algorithm. In our
case we formally have with the searched multivariate Poisson distribution function F (∗) and its
marginal distribution functions F1, ..., Fnk

26:

F (x1, ..., xnk) = C(F1(x1), ..., Fnk(xnk))

with C(u1, ..., unk) = ΦΣJ
(Φ−1

1 (u1), ...,Φ
−1
nk (unk))

As we are of the opinion that current historic correlation is not an appropriate source for the
covariance matrix ΣJ . We now want to show, how the dependence structure can be derived, based
on fundamental and logic considerations. For this, we fix two arbitrary companies c, d ∈ {1, ..., n}
and two arbitrary economic sectors i, j ∈ {1, ..., k}. Then we can identify 4 economic entities
e ∈ {1, ..., n · k} as e(c, i) = ci, e(c, j) = cj , e(d, i) = di and e(d, j) = dj . We further denote by Si

the set that covers all economic entities acting in sector i, i.e. we have ci, di ∈ Si and cj , dj ∈ Sj .
We also consider the 1-dimensional Best-In-Class index sets BiCi ⫅ Si and BiCj ⫅ Sj , as well
as the set of Related Sectors of 2-dimensional index sets (SixSj)R, i.e. for all pairwise related
sectors we build the respective cross-product. The correlations shown below will be used in course
of our simulations as the Moderate Correlation scenario, together with two further scenarios of
No Correlation and High Correlation. They are a starting point and subject to adjustment -–
in course of backtesting and recalibration. It can be enhanced by reviewing articles on industry
sector dependency structure, as it is investigated in more detail by Adenot et al., 2022, who also
distinguishes between bilateral and unidirectional dependencies.

Definition 3.1. Logic of Correlations

1. If (ci, di ∈ Si) ∧ (ci /∈ BiCi ∧ di /∈ BiCi) =⇒ corr(ci, di) = 0.8

2. If (ci, di ∈ Si) ∧ (ci ∈ BiCi ∨ di ∈ BiCi)) =⇒ corr(ci, di) = 0.2

3. If (ci, dj) ∈ (SixSj)R ∧ (ci /∈ BiCi ∧ dj /∈ BiCj) =⇒ corr(ci, dj) = 0.4

4. If (ci, dj) ∈ (SixSj)R ∧ (ci ∈ BiCi ∨ dj ∈ BiCj) =⇒ corr(ci, dj) = 0.1

5. If ci, cj ∈ c =⇒ corr(ci, cj) = 0.9
economic entities ci, cj of the same company c are highly dependent

6. Else corr(ci, dj) = 0

The above logic can even be enhanced by the role of a Worst-In-Class index set WiCi of an arbi-
trary sector i. Where all economic entities e(∗, i) ∈ WiCi are subject to increased correlation.

Finishing this reasoning, we address the question of how one can determine the constituents of
BiC and WiC. A relative measure would be to use the z-score of deviations from the average rat-
ing score of the sector. A possible absolute measure could be carbon emissions, or more generally:
Green House Gas emissions, in tCO2/year or tGHG/year of the economic entities.

Having established the conceptional framework of the Monte Carlo simulation, in particular how
the hazard rates depend on available exogenous ESG rating, and how we model the dependency
structure of industry sectors via the correlation matrix, we could now turn to the actual simulation.
But before we do this, we want to outline some analytical measures of risk factor sensitivities that
are relevant for the equity prices we simulate. This is because, investment professionals often use
sensitivities and risk decomposition to assess financial instruments quickly, and because the main
principle of this paper is to be very close to data and concepts that are familiar to the investment
front office.

26Cf. Roncalli, 2020, pp. 715, for a more detailed outline on Copulas.
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3.4 Analytical Properties of the Model

In this section we will give some analytical properties of the model, as concerns the sensitivity
of expected return to changes in the hazard rate, as well as a decomposition of portfolio risk
values into ordinary market risk and ESG risk contribution down to the position level. As for our
simulation, we again assume k = 1 and UD = ∅, that is, the company acts in only one industry
sector and there is no unidirectional influence by other industry sectors.

3.4.1 Single Asset Analytics

Under the real world probability measure P the jump process of Equation 3.6 for the equity
value Sc,t of company c has the closed form solution given by Equation 3.7, where we have
now additionally allowed for dividends denoted by the dividend return q. Please be referred to
Appendix A.3 for the proof and discussion of this closed form solution.

Sc,t = Sc,0 · e(µP−q− 1
2σ

2)·t+σ·Wt+ln(1−ξ(λ))·Nt (3.7)

Concerning the analytical results, we are interested in a so called Greek- or Delta-Value, that
shows equity price sensitivity with respect to the hazard rate, by only using factors directly ob-
servable at the market and without trying to explain the equity return over the risk free rate by
an extended CAPM27, or statistically by other explaining economic variables.

Above Equation 3.7 is a Forward Measure for simulation needs. What we need is a Backward
Measure that calculates back to the current price, starting from a given expected end value of the
equity share price, or alternatively the expected return. For the expected return we consider28:

ln

(
Sc,t

Sc,0

)
= µP t− qt− 1

2
σ2t+ σWt + ln(1− ξ(λ))Nt (3.8)

and apply the expectation operator under the real probability measure P :

=⇒ EP (r(Sc,t)) = EP

(
∆Sc,t

Sc,t

)
= EP

(
Sc,t − Sc,0

Sc,0

)
(3.9)

≈ EP

(
ln

(
Sc,t

Sc,0

))
= µP t− qt− 1

2
σ2t+ λln(1− ξ(λ))t

because EP (Nt) = λt. Note, under the risk neutral probability measure Q we would consider a
modified (but equivalent) SDE using a Compensated Poisson Process N̂t = Nt − λt with the
drift term corrected respectively, together with the risk free rate rf instead of µP , that is:

dSc,t = (rf − q − ξ(λ) · λ) · dt+ σ · dWt − ξ(λ) · d(Nt − λt)

and thus

ln

(
Sc,t

Sc,0

)
= rf t− qt− 1

2
σ2t+ σWt + ln(1− ξ(λ))Nt

The risk neutral expectation under Q then is

EQ

(
ln

(
Sc,t

Sc,0

))
= rf t− qt− 1

2
σ2t+ λln(1− ξ(λ))t

Instead, the variance is invariant, i.e. identical for both probability measures, and depends on the
hazard rate level of environmental rating, where we define for the ease of notation the parameter
function gξ(λ) = ln(1− ξ(λ)):

V (r(Sc,t)) = V

(
ln

(
Sc,t

Sc,0

))
= σ2 · t+ λgξ(λ)

2 · t = Vgbm(r(Sc,t)) + Vesg(r(Sc,t)) (3.10)

27Cf. Karydas and Xepapadeas, 2019 and Roncalli et al., 2020
28C.f. Wikipedia, n.d., explanation on compound Poisson process.
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=⇒ dV (r(Sc,t))

dλ
=

dVesg(r(Sc,t))

dλ
=

(
gξ(λ)

2 + 2λ · d

dλ
gξ(λ)

)
· t

We will now derive the important Hazard Rate Sensitivity of the expected equity return
EP (r(Sc,t)) = EP (∆Sc,t/Sc,0).

d

dλ
EP (r(Sc,t)) =

d

dλ
(λgξ(λ) · t) =

(
gξ(λ) + λ · d

dλ
gξ(λ)

)
· t (3.11)

In Section 4 we use for the jump size a piecewise linear function in course of the simulation
ξ(λ) = Min(m · λ+ ξmin, ξmax) which is:

ξ(λ) =

{
m · λ+ ξmin, if ≤ ξmax

ξmax, Otherwise

With this definition of the jump size, the hazard rate sensitivity in Equation 3.11 becomes

d

dλ
EP (r(Sc,t)) ={

(ln(1− (mλ+ ξmin))− mλ
1−(mλ+ξmin)

) · t, if λ ≤ ξmax−ξmin

m

ln(1− ξmax) · t, if λ > ξmax−ξmin

m )

As one can expect, the sensitivity of the time discrete equity return becomes linearly more negative
with increasing hazard rate and time, as long as λ ≤ (ξmax−ξmin)/m = ∆ξ/m. Increasing λ and t
reduce the expected return. Which implies that investors will require a respective risk premium to
compensate. For a dedicated analysis of this risk premium we refer to Karydas and Xepapadeas,
2019 and Roncalli et al., 2020 for two different CAPM related approaches. Afterwards λ > ∆ξ/m,
in the area of constant maximum jump size that is independent from λ, a further increase of the
hazard rate itself is irrelevant, but the sensitivity becomes still more negative with increasing time
horizon t.

The interesting part is where the jump size does no longer grow with λ. As the jump size needs
to stay below 1, it is clear that ξ(λ) needs to converge to some ξmax ≤ 1. The piecewise linear
function is just a sharp pragmatic approach to model this. If we had taken a smoother, completely
differentiable jump size like29

ξ(λ) = ξmin +∆ξ · (1− e−mλ), with ∆ξ = ξmax − ξmin

we would have received
d

dλ
EP (r(Sc,t)) =

(
ln(1− ξmax +∆ξe−mλ)− mλ ·∆ξ · e−mλ

1− ξmax +∆ξe−mλ

)
· t

and if we let the hazard rate go to zero and infinity:

λ −→ ∞ :
d

dλ
EP (r(Sc,t)) = ln(1− ξmax) · t

λ −→ 0 :
d

dλ
EP (r(Sc,t)) = ln(1− ξmin) · t

29For this function the exponential distribution function was appropriately transformed.
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3.4.2 Portfolio Analytics

For the portfolio analytics we will consider the covariance matrix and thus the portfolio variance
and its decomposition into ordinary market risk contribution and ESG risk contribution, as given
by the jump part. We will further consider the additive decomposition of portfolio variance and
portfolio Value-at-Risk on position level. In summary, we are able to decompose additively to
position level and each position level into its risk contributors: Continuous Market Risk and ESG
Market Risk.

For this we start with the following definition of covariance between equities Sc and Sd of companies
c, d. More precisely, we consider the covariance between returns r(Sc,t) and r(Sd,t) with:

r(Sc,t) =
∆Sc,t

Sc,0
=

Sc,t − Sc,0

Sc,0
≈ ln

(
Sc,t

Sc,0

)
.

The same holds for r(Sd,t), and we thus analyse

Cov(r(Sc,t), r(Sd,t)) = E ([r(Sc,t)− E(r(Sc,t))] · [r(Sd,t)− E(r(Sd,t))])

We can directly insert the values of Equations 3.8 and 3.9 for r(Sc,t) and r(Sd,t) and their expected
value. After some basic rearrangements, we obtain our main risk decomposition result30:

Cov(r(Sc,t), r(Sd,t)) = (3.12)

σcσd · Corr(Wc,t,Wd,t) · t︸ ︷︷ ︸
GBM Market Risk=:Covgbm

c,d (t)

+
√

λcλd · ln(1− ξ(λc)) · ln(1− ξ(λd)) · Corr(Nc,t, Nd,t) · t︸ ︷︷ ︸
Jump by ESG Risk=:Covesg

c,d (t)

Thereby, in course of our calibration, Corr(Wc,t,Wd,t) and Corr(Nc,t, Nd,t) are the historical re-
turn correlations and expert guess correlations explained in Section 3.3.3 and Definition 3.1, cf.
also Table 4 in Section 4. We note, that the hazard rate as well as the jump size increase the
covariance of equity returns. We also note, that Equation 3.12 becomes the single asset variance
in Equation 3.10 if c = d.

In the next subsection we will use the term Covgbmc,d (t) and Covesgc,d (t) for the additive decomposition
of each covariance matrix entry into the ordinary GBM and jump ESG component as given by
Equation 3.12, and Σgbm

c,d (t),Σesg
c,d (t) for the respective matrices.

3.4.3 Additive Portfolio VaR and Volatility Decomposition

As concerns the Value-at-Risk we suggest to use the Incremental VaR for the additive portfolio
risk decomposition to position level. The Incremental VaR is defined as follows:

IncrV aR(Sc) =
V aR(ptf)− V aR(ptf \ {Sc})∑n

d=1(V aR(ptf)− V aR(ptf \ {Sd}))
· V aR(ptf) (3.13)

The additive decomposition then reduces to a n-many application of the Monte Carlo simulation
for each equity asset Sc, c ∈ {1, ..., n}, i.e. to calculate the portfolio VaR as if equity position c
was liquidated and its value distributed pro rata to the remaining positions.

As we have done our simulations in a way that allows to separate the GBM return component from
the jump part return multiplicatively (cf. Equation 4.3), and because we have done simulations
for the NoCorr (independent) case and the GBM case, we have in fact two possibilities to further
decompose each position level VaR contribution into its jump part and what is caused by non zero
correlation. The correlation part is a measure of industry sector interdependencies, for example

30For this we just used E(W∗,t) = 0, E(N∗,t) = λt and Cov(X,Y ) = E(XY ) − E(X)E(Y ) for (X,Y ) =
(Wc,t,Wd,t) and (X,Y ) = (Nc,t − λct,Nd,t − λdt).
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caused by the value chain. That is to say, firstly (1) we could go to the roots and use multiplicative
manipulation of the returns as given by equation 4.3, and secondly (2) we can use the formula
given by Equation 3.13. For this, we can extend trivially to decompose V aR := V aR(ptf), and
V aR(Sc) := V aR(ptf \ {Sc}) as follows:

V aR = V aRgbm
GBM Risk

+ (V aR− V aRNoCorr)
Jump Corr Risk

+ (V aRNoCorr − V aRgbm)
Pure Jump Risk

V aR(Sc) = V aRgbm(Sc)
GBM Risk

+ (V aR(Sc)− V aRNoCorr(Sc))
Jump Corr Risk

+ (V aRNoCorr(Sc)− V aRgbm(Sc))
Pure Jump Risk

now in order to infere ∆V aR(Sc) = V aR− V aR(Sc) define:

1. The Market Risk Contribution:

∆V aRgbm(Sc) = V aRgbm − V aRgbm(Sc)

2. The Jump Correlation Risk Contribution:

∆V aRΣJ
= V aR− V aRNoCorr, ∆V aRΣJ

(Sc) = V aR(Sc)− V aRNoCorr(Sc)

3. The Pure Jump Risk Contribution:

∆V aRJ = V aRNoCorr − V aRgbm, ∆V aRJ(Sc) = V aRNoCorr(Sc)− V aRgbm(Sc)

Then the trivially extended risk contribution, which is the Single Position Incremental VaR
IncrV aR(Sc) of Equation 3.13, can be decomposed into components (1) Market Risk (GBM), (2)
Risk by Jump Correlation, and (3) Risk by the Hazard Rate (Jump) only, as follows:(

∆V aRgbm(Sc)∑n
d=1 ∆V aR(Sd)

+
∆V aRΣJ

−∆V aRΣJ
(Sc)∑n

d=1 ∆V aR(Sd)
+

∆V aRJ −∆V aRJ(Sc)∑n
d=1 ∆V aR(Sd)

)
· V aR (3.14)

As regards the Portfolio Volatility, we know by Equation 3.12 that we can write the Portfolio
Variance for any t ≥ 0 as

σ2
ptf (w, t) := Vptf (w, t) =

wT ·

Vgbm(r(S1,t)) + Vesg(r(S1,t)) · · · Covgbm1,n (t) + Covesg1,n (t)
...

. . .
...

Covgbmn,1 (t) + Covesgn,1 (t) · · · Vgbm(r(Sn,t)) + Vesg(r(Sn,t))

 · w (3.15)

= wT · Σgbm
c,d (t) · w + wT · Σesg

c,d (t) · w

⇐⇒ σ2
ptf (w) =

n∑
c=1

wc

n∑
d=1

wd(Covgbmc,d (t) + Covesgc,d (t))

=

n∑
c=1

n∑
d=1

wcwd · Covgbmc,d (t) +

n∑
c=1

n∑
d=1

wcwd · Covesgc,d (t) = σ2
gbm(w, t) + σ2

esg(w, t)

We now consider the first derivative of the portfolio return variance for the above two components
gbm and esg with respect to a single equity weight wq, q ∈ {1, ..., n}:

dσ2
ptf (w, t)

dwq
= 2 · σgbm(w, t) · dσgbm(w, t)

dwq
+ 2 · σesg(w, t) ·

dσesg(w, t)

dwq
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After some rearrangements and summing up over all possible wq (done separately for the gbm and
esg part) one can show the following formula of Additive Volatility Decomposition31:

σptf (w, t) =

n∑
c=1

wc ·
dσgbm(w, t)

dwc︸ ︷︷ ︸
GBM Market Risk

+

n∑
c=1

wc ·
dσesg(w, t)

dwc︸ ︷︷ ︸
ESG Jump Risk

(3.16)

Which gives the separation of portfolio return volatility on position level, and each position level
into its risk types gbm and esg.

For the needed first derivative of σ∗(w, t) (* stands for esg or gbm) we consider the matrix repre-
sentation in Equation 3.15 and calculate for each q ∈ {1, ..., n}:

dσ∗(w, t)

dwq
≈ σ∗(w1, ..., wq, ..., wn, t)− σ∗(w1, ..., wq −∆wq, ..., wn, t)

∆wq

as a numerical approximation.

After these results on risk decomposition on position level and level of risk type (Ordinary GBM
Market Risk and ESG Market Risk) we now turn to our Monte Carlo simulation, where we
investigate in particular the impact of different hazard rates and correlation scenarios between
industry sectors and companies.

31Cf. Davis and Menchero, 2010 for an ordinary portfolio position decomposition, not covering the separation
into a gbm and esg component
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4 Simulation Study - EuroStoxx50 Equity Portfolio

For the simulation study we consider 49 member companies c ∈ {1, ..., 49} of the EuroStoxx50
index. In order to simplify the equation structure, we assume all companies c as only comprising
of one economic entity, and thus acting in exactly one economic sector i, that is: e(c, i) = c.

As concerns Equation 3.5, we introduce for each given equity share price Sc the deterministic jump
magnitude (ξc|dNt,c = 1)32.

dSc,t

Sc,t
= µc · dt+ σc · dWc,t − dJc,t (4.1)

dJc,t =

dNc,t∑
j=1

ξc = dNc,t · ξc

With dSc,t = Sc,t+dt − Sc,t we obtain the recursive formula for our computational simulation

Sc,t+dt = Sc,t · (1 + µc · dt+ σc · dWc,t − dJc,t)

⇐⇒ Sc,t+dt = Sc,t ·

1 + E(rt→(t+dt),c) + σ(rt→(t+dt),c) · ωc,t︸ ︷︷ ︸
x̄c,t

− dNc,t · ξc︸ ︷︷ ︸
x̂c,t

 ,

with ωc,t ∼ N(0, 1), dt = 10d, x̄c,t ∼ N(E(r10d,c), σ
2(r10d,c)) dNc,t ∼ Po(λ1d

c · dt)

⇐⇒ Sc,t+dt = Sc,t · (1 + x̄c,t − x̂c,t) (4.2)

Where the 1-day λ is the compound hazard rate, cf. Table 2, Table 3, as well as Tables 11
and 10. The vector (ω1, . . . , ω49)t is based on historical return correlations, while the vector
(dN1, ..., dN49)t relies on expert guess correlations, as given by the logic of Definition 3.1, cf. also
Equation 3.12 of covariance decomposition. The last equation is just an easier notation and tells
how we implemented the recursive formula in the VBA-Excel simulation approach. Note, one
can in an approximate way consider the following multiplicative separation of Equation 4.2 which
eases the simulation and improves comparability between different scenarios, as it allows to keep
the GBM component once simulated and just varying the jump part:

Sc,t+dt = Sc,t · (1 + x̄c,t − x̂c,t)

x̄c,t·x̂c,t≈0
≈ Sc,t · (1 + x̄c,t) · (1− x̂c,t) = Sc,t · (1 + x̄c,t − x̂c,t · (1 + x̄c,t)) (4.3)

The last term shows the approximation error: x̂c,t · (1+ x̄c,t). Thus, there is only in case of a jump
(x̂c,t ̸= 0) a biasing impact, that slightly increases the jump size. As x̄c,t ∼ N(E(r10d,c), σ

2(r10d,c))
we consider the highest expected value of our EuroStoxx50 portfolio which is 0.008 rounded up.
This implies a maximum expected bias of 1.008, which is very moderate and does not flaw the
simulation results

If we define with Rs,c,t = 1 + x̄c,t − x̂c,t the above return of equity c for Scenario s ∈ {1, ..., n}
during the time interval [t, t + dt] for t ∈ {10, 20, ..., 250}, then our simulation approach yields
25-many matrices R11,t · · · R1k,t

...
. . .

...
Rn1,t · · · Rnk,t

 ∈ Rnxk

32Cf. also Roncalli, 2020, pp. 827, for a discussion of the technical aspects of a Monte Carlo simulation for a
1-dim jump diffusion.
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of n-many scenarios for k-many equities in the portfolio. In our case we have n = 1000 and
k = 49. This is aggregated with the vector of portfolio weights as follows, for each simulation day
t ∈ {10, 20, ..., 250}, resulting in a simulation matrix of 25 column vectors on portfolio level:R11,t · · · R1k,t

...
. . .

...
Rn1,t · · · Rnk,t

 · w t∈{10,20,...,250}−→

Rptf
1,t=10
...

Rptf
n,t=10

 ,

Rptf
1,t=20
...

Rptf
n,t=20

 , · · · ,

Rptf
1,t=250
...

Rptf
n,t=250


Thereby, we will base our analysis of the Transition Density, the Value-at-Risk impact and the
derivation of the rule of thumb on t ∈ {10, 50, 150, 250}.

The jump size ξ(λ) we employ for our simulation is a deterministic function dependent on the
hazard rate and evolves increasing linearly with the hazard rate33:

Figure 1: Possible Functions of Jump Size:
Upward: ξc(λc) = Min(3 · λc + 0.1, 0.4), ξc(λc) = 0.1 + 0.3 · (1− e−25λc)

Downward: ξc(λc) = Max(0.4− 3 · λc, 0.1), ξc(λc) = 0.4− 0.3 · (1− e−25λc)

Please note, for the simulation we decided to go for dt = 10d instead of dt = 1d. This is because
we not only want to cover the usual market risk time horizon of 20d Value-at-Risk, but up to 250d
in order to cover the more credit risk like stochastic behavior of environmental risk. Having such
a long time horizon, we decided to reduce the time steps in order to keep the computational effort
reasonable. Thus, one needs to multiply the daily hazard rates – in the columns of systematic
hazard rates and transition hazard rates in Tables 2, 3 - by 10, and accordingly one needs to use
10-day values for the expected return and volatility of the continuous part, cf. the static data in
Tables shown by Figures 11 and 10 in the Appendix. The necessary time steps then reduce from

33This is because we are of the opinion, that the current transition process to a sustainable economy is at its
beginning. When this process approaches its end – or later stages – it is also possible to assume the opposite: a
linearly decreasing relationship ξ(λ) = Max(−mλ+ξmax, ξmin). This would lead to a smoother behavior. That is,
big jumps with low probability and more small jumps. Note, such a change in the paradigm would have significant
impact on the rule of thumb regression function.
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250 to 25, at the cost of a less smooth empirical transition density. Note further, that we kept
the portfolio weights constant after each 10d time step, which implies that for example losses that
were caused by adverse jumps are reinvested as such to keep the portfolio weights constant.

Below we will investigate the impact of the current level of hazard rates as well as the impact of
the stressed level, and both for three scenarios of correlations: No Correlation, the Moderate Level
of Correlation – as suggested by Definition 3.1, and High Correlations - between industry sectors.

We apply the correlation scenarios shown in Table 4, given the Dependency Type of companies,
that is: whether they belong to the same industry sector, whether they are Best-In-Class within
their sector, whether two industry sectors are related (e.g. via the Supply Chain), and finally
whether they are Best-In-Class of two related sectors, or whether there is no special relation
(”Else”). The correlation matrices of Figure 12 and 13 in the Appendix show the moderate and
high correlation dependency structure for the EuroStoxx50 portfolio we investigate in this paper34.

DependencyType NoCorr ModerateCorr HighCorr
Sector 0 0.8 0.9

SectorBiC 0 0.2 0.6
Related 0 0.4 0.75

RelatedBiC 0 0.1 0.5
Else 0 0 0.4

Table 4: Correlation Scenarios

4.1 Simulation Based on the Notion of Systematic and Specific Envi-
ronmental Risk

In Figure 10 in the Appendix, we show our process parameterization depending on the sustainable
rating, as concerns the implied hazard rates by systematic risk and specific risk for: normal and
stressed conditions. The level of stress, or the likelihood of an adverse jump, respectively, is
indicated by green, yellow, amber or even red color. How the stress scenario is generated out of
our pragmatic systematic E rating approach, based on the Average Sector CO2 Intensity, and for
the specific E rating, is described by Table 5:

Avg Sector Stressed Avg Sector Implied BiC Stressed BiC
CO2 Intensity CO2 Intensity Sys E-Rating Spec E-Rating Spec E-Rating

< 0.5 < 0.5/7 → A A C
< 2 < 2/7 → B B D
< 4 < 4/7 → C C E
< 10 < 10/7 → D D F
< 20 < 20/7 → E E G
< 40 < 40/7 → F F G
≥ 40 ≥ 40/7 → G G G

Table 5: Logic of Stress Scenario

34In the Appendix we differentiate 4 related Blue Sectors, and 3 related Green sectors - with covered BiC
companies. In addition we have highlighted there the sector of Materials, but we did not establish a relation of this
industry sector with other sectors.
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Based on the given rating, as defined by the logic in Table 5, the application of the relationship
defined by Table 2 gives the hazard rates. Thereby, the logic is, that under stressed conditions
it is more difficult for a company to stay below the CO2 Intensity levels that have been reduced
by factor 7. The concrete choice of factor 7 was somehow arbitrarily taken by us, to provide a
substantial stress scenario.

Concerning the level of stressed hazard rates, one can recognize by comparison of the Static Data
tables in the Appendix, given by Figures 10 and 11, that we have here more aggressive and more
red colored hazard rates, compared with the approach based on transition and physical risk35.

It is worth to note, that what we have not considered so far, is to distinguish by industry sec-
tor specific stress scenarios, because some products and production processes may be more
exposed to the sources of risk: transition risk and physical risk, depending on the industry sector.
We will address this topic in the next section, where we outline the Monte Carlo simulation based
on the notion of transition and physical risk. Actually, future research will consider a synthesis of
the two notions of risk, by separating industry sector transition risk scenarios by their systematic
(product impact) and specific (production process impact) component, cf. the table of Figure 5.

Before we assess the impact on the Transition Density over days 10d, 50d, 150d and 250d -
separated for normal and stressed hazard rates. We want to show, for an eased comparison, how
the 99%-Value-At-Risk changes over the time horizon - for the two hazard rate scenarios, the
three different correlation scenarios and ordinary Brownian Motion. First with a table giving the
concrete figures and afterwards we depict a respective VaR chart.

Figure 2: Value at Risk: Scenario Overview vs GBM

It can be seen - for the stressed hazard rates - that our moderate correlation proposal in Definition
3.1 gives a notable but not big increase in VaR, while a high correlation environment makes a
substantial difference, compared to no correlation. The VaR curve converges to the complete
portfolio loss, implying that differences due to higher correlation become smaller with higher
hazard rates. One can also conclude that changes in correlation have more impact in a high hazard
rate environment, while under moderate hazard rates the impact is small even for high correlation.
In both cases GBM underestimates the VaR substantially, but for moderate hazard
rates only from a time horizon of 50 days on.

35Cf. also the discussion at Tables 2 and 3.

36



Figure 3: Value at Risk: Scenario Overview vs GBM

4.1.1 Current Market Hazard Rates with Correlation Scenarios

Under the current ESG ratings and respective moderate hazard rates, there would be a notable -
even though not substantial - impact of sustainability risk. That is, just a few jumps in the process,
as can be seen from the comparison of Transition Density, cf. the density charts given in Appendix
C. The more jumps impact the equity portfolio return, the more goes the Transition Density to
the left, relative to the GBM case. As expected, the effect becomes remarkably emphasized for
longer time horizons. Again, as already expected from the VaR chart, correlation has only a
small influence on the Transition Density for the moderate current hazard rates.

4.1.2 Stressed Hazard Rates with Correlation Scenarios

Given the stressed ESG rating scenario and respective higher hazard rates, the picture changes
dramatically: there would be a substantial impact of sustainability risk, that is a remarkably
increased amount of jumps in the process, compared to the current level of hazard rates, as can
be inferred from the comparison of the Transition Densities in Appendix C and the upper part
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of the VaR chart in Figure 3. The correlation too, has now a substantial impact – even for short
time horizon of 10d and 50d.

4.2 Simulation Based on the Notion of Transition and Physical Envi-
ronmental Risk

With Figure 11 in the Appendix we show our process parametrization depending on the sustain-
able rating, as concerns the implied hazard rates by transition risk and physical risk for: normal
and stressed conditions. The level of stress, or the likelihood of an adverse jump, respectively, is
again indicated by green, yellow, amber or even red color. The modified levels of environmental
and physical rating we need for the stress scenario are based on the current rating level and derived
as explained below in detail.

The current rating level for transition risk is obtained by using the Best-In-Class environmen-
tal sub-rating. The current rating level of physical risk is obtained by applying the physical risk
score36. This physical risk score is then mapped to a physical rating as shown by Table 6. In con-
trast to the previous Section on systematic and specific environmental risk simulation, we engage
here industry sector specific stress scenarios, more precisely:

The stressed physical risk rating depends (1) on whether the main location of the company
is a high physical risk or low physical risk country, as well as (2) whether the applicable industry
sector has high physical risk exposure or low. For this, we apply a two stage stress factors ≤ 1 to
the ordinary physical rating score37, in order to make it more difficult to obtain the corresponding
rating, as shown by Table 6.

The country stress factor depends on two sets of countries within the EuroStoxx50 country scope:
{IT,ES,NL} for countries with higher physical risk exposure and the rest with lower exposure.
Our industry sector stress factor is admittedly very pragmatic and just considers insurance
companies that are quite straightforwardly impacted by their client physical risk. Future work
should be dedicated to extend the respective sector coverage. Thus, only insurance companies face
a high industry sector specific stress factor, all others are low.

Physical Implied Current Physical Risk Physical Risk
Risk Physical Country Stress Factor Industry Sector Stress Factor
Score Rating High/Low High/Low
< 0.15 A 1/3, 2/3 3/4, 1
< 0.3 B 1/3, 2/3 3/4, 1
< 0.45 C 1/3, 2/3 3/4, 1
< 0.6 D 1/3, 2/3 3/4, 1
< 0.75 E 1/3, 2/3 3/4, 1
< 0.9 F 1/3, 2/3 3/4, 1

∈ [0.9, 1] G ∈ [0.3, 1], ∈ [0.6, 1] 3/4, 1

Table 6: Logic of Physical Scenario, depending on Country and Industry Sector Physical Risk
Exposure

For the stressed transition risk rating (measured by the environmental rating), we compared
the carbon price impact data on industry sectors given by Adenot et al., 2022 in Figure 3 and
Table 5 of their paper, with the sensitivity of the industry sector to the Brown-Minus-Green Index

36Cf. Section 2.2, where we have explained the ESG rating availability we require for this study
37first factor is by country and then by industry sector.
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(BMG Index) of Roncalli et al., 2020 as measured by the βbmg-sensitivity of their extended CAPM
model, as given by Figure 24 of their paper, to assess the respective environmental/transition risk
exposure. What we inferred from this comparison is aggregated in Table 7, that distinguishes 3
impact classes of Moderate, Significant and Intensive impact of transition risk stress scenario on
industry sector.

The right hand column of Table 7 shows how we mapped the EuroStoxx50 industry sectors to
the three classes of transition risk exposure, based on the information given by the carbon price
impact and βbmg sensitivity. An industry sector that faces Intensive exposure will experience a 3
Notch downgrade under the stress scenario, while sectors with Significant and Moderate exposure
will experience a 2 Notch, 1 Notch downgrade, respectively, as shown by Table 8. Cf. also the
table of Static Simulation Data given by Figure 11 in the Appendix, where we have highlighted
the application of this principle by red, orange and green colored company names in the respective
industry sectors.

Stress Impact Carbon Price Environmental Our EuroStoxx 50
Classes Impact βbmg Impact Sector Classification

Moderate
Health Care Health Care Health Care

Information Tech Information Tech Consumer Serv
Communication Communication Diversified Finan

Financials Financials Banks
Real Estate Insurance

Pharma/Biotech
Semiconductors
SoftwareServies

TeleCommnunication
Significant

Consumer Descret Consumer Descret Consumer Durables
Consumer Staples Consumer Staples Food Staples Retailing

Industrials Automobiles/Components
Household/PersGoods

Retailing
Transportation

Intensive
Utilities Industrials Capital Goods
Materials Utilities Utilities
Energy Real Estate Real Estate

Materials Materials
Energy Energy

Food/Breverage/Tobacco

Table 7: Stress Scenario Impact On Industry Sectors
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Normal Stressed E- Rating Stressed E-Rating Stressed E-Rating
E-Rating Industry Sector Industry Sector Industry Sector
Score Intensively Exposed Significantly Exposed Moderately Exposed
A D C B
B E D C
C F E D
D G F E
E G G F
F G G G
G G G G

Table 8: Logic of Industry Sector Specific Transition Risk Scenario, depending on Industry
Sector Transition Exposure

We admit, this provides only little granularity to distinguish how exposed an industry sector or a
country is to transition risk or physical risk. But it gives the basic principle as a starting point
and is sufficient for the simulation study to show the Nature of ESG Risk. A more granular
classification could be based on Figure 8 of Adenot et al., 2022, where they give the sector carbon
intensity based on the World-Input-Output Database (WIOD) sectors, that are more granular
than what we use in this paper.

4.2.1 Current Market Hazard Rates with Correlation Scenarios

As the current level of hazard rates together with the correlation scenarios of the transition risk
and physical risk approach equals what we have already investigated in the previous section for
systematic and specific environmental risk, we do not outline the same results here again, but
refer to the results of Section 4.1.1. Instead we focus on the industry sector specific stress testing
in the next Section.

4.2.2 Stressed Hazard Rates with Correlation Scenarios

From a stress level point of view, what we use here – as measured by the weighted avg portfolio
hazard rate of λptf = 0.11 – is roughly in the middle between the intensive stress scenario of
the previous section on systematic and specific risk with λptf = 0.19, and the current level of
λptf = 0.02. This is confirmed by the VaR chart of Figure 4 that gives a remarkable but less
pronounced result compared to what is shown by Figure 3 for the systematic/specific case. As
concerns the Transition Densities (cf. respective density charts in Appendix D) also for this hazard
rate Level there is a substantial shift to the left – compared to the GBM case – from a time horizon
of 50 days on, for all levels of correlation. While only the high correlation level makes a notable
(but not substantial) difference from a 100 day time horizon on, which is also confirmed by the
VaR chart of Figure 4.
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Figure 4: Value at Risk: Scenario Overview vs GBM for Transition - Physical Risk View

4.3 Synthesis of Systematic and Specific Environmental Risk with the
Transition Risk Concept

Concluding the parameterization and simulation we want to explain, how the transition risk driven
view of environmental risk can be combined with the systematic/specific separation of environ-
mental industry sector risk. This is, separation by product and production process. To illustrate,
we decompose Table 7 – that covers the industry sector specific stress scenarios of transition risk
- into product related and production process related risk.
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Figure 5: Decomposed Stress Scenario Impact

In order to highlight the impact of our decomposition we have underlined some industry sectors
where the transition risk changes, based on whether we consider product related or production
related transition impact. We have further added in brackets some hints as to why certain sectors
where classified respectively.
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4.4 Rule Of Thumb Proposal

In light of the simulation results, we now investigate the following ratio of Value-at-Risk figures,
given a portfolio of n-many equity positions,

ρV aR(ξ, λptf ,ΣJ , d) =
V aRξ,ΣJ

Jump.GBM,99(d, λptf )

V aRGBM,99(d)

over the whole time horizon of 10d, . . . , 250d, as a multiplicative measure of how a VaR figure
that is based on ordinary risk measurement changes, given additional ESG impact – as measured
by the jump diffusion. Thereby, we indicate by the superscript ξ,ΣJ that Loss-Given-Jump, and
industry sector dependency – as measured by the jump part correlation matrix ΣJ ∈ Rnxn (cf.
Table 4 and the simulation algorithm in Section 3.3.3) – influence the upper VaR in addition to
the main driver, which is the Weighted Average Portfolio Hazard Rate λptf and the Time Horizon
d.

Figure 6 shows the evolution of the proposed ratio over the time horizon of 250d – for selected
representative portfolio hazard rates, and the Moderate correlation scenario. We can see that for
all hazard rates the ratios are stable around the median with a slight upward trend. For the High
correlation scenario in Figure 7, we can see that for low and mid hazard rate level the volatility
around median is again small, while for high hazard rate we have higher deviation from median
and a clear negative slope. The latter is due to the fact, that for high hazard rate and high
correlation, the VaR curve increases at the beginning (low hazard rates) very steeply compared to
GBM, while it has to flatten strongly afterwards, as both need to converge to a max loss of 100%,
cf. Figure 3.

Figure 6: Median Ratio over Time for selected Hazard Rates and given Moderate Jump
Correlation
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Figure 7: Median Ratio over Time for selected Hazard Rates and given High Jump Correlation

This suggests to apply the following measure as a multiplicative rule of thumb factor to modify
ordinary VaR figures appropriately, to obtain an ESG-adjusted VaR value, depending on the
Weighted Average Hazard Rate of the Portfolio.

ρV aR(ξ, λptf ,ΣJ) = Median
d=10,...,250

(ρV aR(ξ, λptf ,ΣJ , d)) (4.4)

= Median
d=10,...,250

(
V aRξ,ΣJ

Jump.GBM,99(d, λptf )

V aRGBM,99(d)

)

In Figure 8 and Figure 9 we show this median measure depending on the Weighted Average Port-
folio Hazard Rate and find a high explanatory power for a quadratic evolution, also to extrapolate
for even higher hazard rates. No matter, whether we consider the Zero, Moderate or High cor-
relation level, there is a high quadratic explanatory power of R2 ≥ 98%. On the other hand,
the influence of correlation as a second explaining variable is not negligible. This is obvious
from the notable distance between the solid blue and dotted grey and dotted orange line of Figure
8. They show the quadratic regression of our defined median measure for Zero and Moderate
correlation, while the solid blue line is the regression function for the High correlation level38.

38In order to ensure the polynomial regression to start exactly at a ratio of 1 for a hazard rate of zero (=GBM)
we had to perform a restricted regression. That is, forcing the coefficient b0 to 1, cf. Appendix A.2 for details.
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Figure 8: Median Ratio Regression dependent on Weighted Avg Portf Hazard Rate and
Weighted Avg Portf Correlation

Figure 9: Table of Applicable VaR-Ratios to calculate JumpGBM VaR from Normal GBM VaR
for the EuroStoxx50 portfolio

In addition, Figure 8 shows that one can even obtain from a NoCorr simulation and its regression
function (orange dotted line) the simulation results under the HighCorr scenario – over all levels
of hazard rates, as shown by the orange dashed line, that is very close to the solid blue line. The
dashed orange line was obtained from the orange dotted line, by modifying the NoCorr regression
function by a appropriately defined adjustment factor, as derived below.

In order to capture the impact of the correlation level in addition to the hazard rate level,
we modify the NoCorr regression function as such to arrive as good as possible at the Moderate
and High correlation VaR regression functions, using the Weighted Average Portfolio Jump
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Correlation, cf. last two right hand columns of Figure 9. For this, let

wT
+ =

√
2

(n− 1)
· (
√
w1, ...,

√
wn)

be the vector of modified portfolio weights. These weights are choosen to ensure that multiplying
this vector with the modified correlation matrix below gives a well-defined Weighted Average
Portfolio Correlation. For this it is important to note, that the modified correlation matrix CJ,∗
has n2/2−n/2 many non-trivial entries. Further, we note that portfolio weights go quadratic into
the applied vector-matrix multiplication wTCJw, and for this reason we apply the square root to
the vector entries wi. More precisely, we have

n2

2
− n

2
=

(n− 1)n

2

With only n-many portfolio weights wi, that replace the scaling with 1/n that would be done
for an ordinary statistical mean calculation, the necessary scaling to be performed, in addition to
what the weights contribute as a scaling is:

n
(n−1)n

2

=
2

(n− 1)

What is left, is to define the modified correlation matrix39

CJ,∗ =

 0 · · · 0
...

. . .
...

Corr(ij) · · · 0


That is, we set the diagonal and upper triangle of the correlation matrix to zero, in order to avoid
later double and redundant counting of correlation figures. The place holder ”*” stands for the No
Corr (nc), Moderate Corr (mc) or High Corr (hc) level. We can now introduce our Measure
of the Weighted Avg Ptf Correlation as:

κ(w,CJ) = wT
+ · CJ · w+ ∈ [−1, 1] (4.5)

Based on this weighted avg correlation value of the portfolio we consider the following ratios:

ρptfnc,hc =
1 + κ(w,CJ,hc)

1 + κ(w,CJ,nc)
and ρptfmc,hc =

1 + κ(w,CJ,mc)

1 + κ(w,CJ,nc)

This definition ensures that ρptfnc,nc = 1 ∧ ρptfnc,∗ ≥ 040. The ratio is applied to the orange
dotted line of Figure 8 which is the quadratic regression equation of the No Correlation level:
ancλ

2
ptf + bncλptf + cnc, in order to obtain a good approximation of the high correlation regression

function (solid blue line) without the need of a correlated Monte Carlo simulation. For the dashed
orange line we have:

qR(λptf , ρptf ) = ρptfnc,hc · (anc · λ
2
ptf + bnc · λptf ) + cnc (4.6)

= ρptfnc,hcanc · λ
2
ptf + ρptfnc,hcbnc · λptf + cnc

In our case we have ρnc,hc = 1.403, ρmc,hc = 1.338.

In summary, we conclude that taking into account the two main driver of environmental marked
risk - Weighted Average Portfolio Hazard Rate and Weighted Average Portfolio Jump Correlation

39Cf. 12 in the Appendix for the EuroStoxx50 moderate and high correlation matrix
40If the correlation matrix is positive semidefinite then we have ρptfnc,∗ ≥ 1
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we are able to derive a Stable Rule of Thumb that can be used to sufficiently approximate jump
GBM VaR figures from ordinary GBM over different hazard rates, different time horizons (even up
to 250d) and different correlation levels for a given equity portfolio, in our case the EuroStoxx50.
It gives also the possibility to define stress scenarios for the portfolio based on the risk factors
hazard rate and ESG correlation, as shown by Figure 9.

In general, we assume that the derived modification factors are subject to changes, even though
they proved to be very stable for the EuroStoxx50, over different time horizons and levels of hazard
rate and correlation. We thus, propose to use for all portfolios that are mapped to a Benchmark
the Benchmark Portfolio in the NoCorr and GBM case and calculate the modification factors
as outlined above, e.g. on a quarterly basis, instead of a regular daily Monte Carlo simulation. For
Absolute Return portfolios we suggest to set up a Model Portfolio and then to go for a similar
process.

From an algorithmic point of view, this is, instead of performing a correlated Copula Monte
Carlo simulation: Consider the ordered sequence of p-many selected hazard rates (λptf

1 , ..., λptf
p )

that build our regression support of the independent variable dimension. For these do a NoCorr41

Monte Carlo simulation over the needed time horizon e.g. d ∈ H = {10, 50, 100} Days to get the
calculation basis. Then the regression points to be explained are given with the corresponding
sequence of medians (

λptf
1 , ρV aR(ξ, λptf

1 , Id)
)
, ...,

(
λptf
p , ρV aR(ξ, λptf

p , Id)
)

Finally, the obtained quadratic regression function qR(λptf , ρptf ) is parameterized as outlined
by Equation 4.6, based on Weighted Avg Ptf Hazard Rate λptf and Weighted Avg Ptf Jump
Correlation Factor ρptf , to get the portfolio-customized modification factors that correspond to
what is shown by the table of Figure 9. Thus, the needed modification factors for ordinary, Normal
distribution based, VaR figures are given by the quadratic regression function qR(λptf , ρptf ).

41NoCorr implies ΣJ = Id ∈ Rnxn
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5 Conclusion and Further work

We tried to outline a possible approach of how to integrate ESG risk into existing common fun-
damental market risk measurement approaches. The main principle is that ESG risk is implicitly
embedded in observable market risk factors, like share prices and credit spreads, and interprets
ESG risk as an additional jump component explaining the future behavior of these risk factors.
Mathematically, this paper extends continuous Brownian Motion by a sum of jump components,
and models dedicatedly the interdependency of economic entities over different industry sectors
by using two correlation matrices for the continuous and jump part. These are used by a Gaussian
Copula to generate respective correlated equity return movements over time. Further, hazard
rates of possible jumps are taken as exogenously given, directly derived from environmental rating
data. Thereby, the hazard rate and the mapped E rating carry both the interpretation of the
Expected Number of Adverse Jumps during 250 trading days.

As the JGBM model has an explicit solution, we are able to provide in Section 3.4 some analytical
properties of the model on single equity return Level as well as portfolio level. These are primarily:
Hazard Rate Sensitivity, and Additive Risk Decomposition on risk type (GBM Market Risk vs
Environmental Jump Risk) and position level.

In order to calibrate the model, and to reflect market reality properly, we propose to clearly distin-
guish between systematic (the product) and specific (the production process) ESG risk. Further,
we view a company as the sum of its economic entities, where the activities of each entity belongs
to one single economic sector. Each economic entity stands for a jump component in the jump
diffusion model. For the simulation study of this paper, we assumed that each company is made
up of exactly one economic entity.

As concerns the currently observable Best-In-Class rating approaches there is no clear separation
between systematic and specific ESG risk, but Green Product information is taken into account
directly as an additional variable (depending on the industry sector) in course of an otherwise pro-
duction process oriented rating methodology. We thus investigated two approaches to calibrate
the model: (1) systematic and specific risk, and (2) transition and physical risk – as an alternative
calibration approach, that is more in line with current ESG rating methodology.

In view of this, it is worth to note that we apply industry sector specific stress scenarios
based on the notion of transition and physical risk. In contrast, we have not yet differentiated
between sectors as concerns systematic and specific environmental risk. In fact, future research
will have a look at the separation of transition risk into its systematic product driven component
and its specific component related to the production process, as proposed by the table in Figure
5.

The results show that on our 250 trading day horizon environmental risk — as measured by the
hazard rate and the implied jump process — is on diversified portfolio level only relevant for longer
time horizons (> 50d), or in case of stressed scenarios. As measured by the Transition Density
of portfolio returns, and depending on how severe the hazard rates can become. In contrast,
on a single stock level, ESG risk is relevant under normal hazard rates on shorter time horizon
already. Our simulations indicate, that an exclusion list of the worst rated issuers and clear
limits on exposure to bad rated companies would already do the job of managing or – more
precisely – efficiently restricting current ESG risk. Whether this also covers the management
of regulatory restricted Principal Adverse Impact (PAI), depends on how the ESG rating is ob-
tained. In case the focus is on Asset Return risk, an additional limit framework for PAI is required.

As concerns an easy rule of thumb to modify current risk figures instead of performing regularly
a Monte Carlo simulation, a quadratic regression function depending on the median of Weighted
Average Portfolio Hazard Rate and modified by a correction factor based on the Weighted Average

48



Portfolio Correlation showed very promising results in our study, cf. Section 4.4. This approach
proved to be very stable over different time horizons, hazard rates and correlation levels. The ob-
tained modification factors can also be used to derive stress scenarios applied to ordinary VaR
figures based on scenarios for hazard rate and correlation, or even to modify historical
returns to perform an environmental risk adjusted Historical VaR simulation.

Next steps will be to investigate this proposal in light of a respective simulation for a Fixed Income
portfolio. In addition, the split of transition risk into a systematic and specific environmental risk
component, together with a respective hazard rate calibration and stress scenario definition is a
topic. Thus, the stress scenarios will be not only sector specific but also depend on the level of
systematic and specific environmental risk.

49



A Proofs

A.1 Proof for probabilities of dNi,t at Equation 3.5

P (dNi,t ≥ 1) =

∞∑
i=1

e−λdt(λdt)i

i!
= e−λdt ·

∞∑
i=1

(λdt)i

i!︸ ︷︷ ︸
exp.Row = eλdt − 1

= 1− e−λdt =

= 1−
(
1− λdt+

λ2dt2

2
− · · ·

)
= λdt+ o(λdt)2, o(λdt)2 < 0

A.2 Proof for Restricted Polynomial Regression

Given a sample x = (x1, ..., xn) of the explaining variable, and the dependent variable y =
(y1, ..., yn) that is to be explained, we wish to fit the polynomial regression function y = b0 +
b1x + ... + bmxm with b0 = 1 and coefficient vector b = (b0, b1, ..., bm). The ordinary quadratic
optimization problem without restriction is to solve

Min
b

((y −X · b)T · (y −X · b))

Thereby, matrix X is defined as follows

X =


1 x1 · · · xm

1

1 x2 · · · xm
2

...
...

. . .
...

1 xn · · · xm
n


As we want to fix b0 = 1, we consider the the reduced matrix XR and the reduced coefficient
vector bR as follows:

XR =


x1 · · · xm

1

x2 · · · xm
2

...
. . .

...
xn · · · xm

n

 , bTR = (b1, ..., bm)

Then the restricted optimization problem with b0 fixed can be written as

Min
bR

((y − (b⃗0 +XR · bR))T · (y − (b⃗0 +XR · bR)), where b⃗0
T
= (b0, ..., b0)

⇐⇒ Min
bR

((y − b⃗0)−XR · bR))T · ((y − b⃗0)−XR · bR))

⇐⇒ Min
bR

((y − b⃗0)
T (y − b⃗0)− 2bTRX

T
R(y − b⃗0) + bTR ·XT

RXR · bR)

Differentiating with respect to bR, setting this to zero to obtain the necessary condition for a
minimum, and rearranging for bR we arrive at our modified restricted regression, and obtain
finally, the searched coefficient vector of the restricted polynomial regression b̂ = (b0, b̂R):

d

dbR

(
−2bTRX

T
R(y − b⃗0) + bTR ·XT

RXR · bR
)

= −2 ·XT
R(y − b⃗0) + 2 ·XT

RXR · bR = 0

⇐⇒ b̂R = (XT
RXR)

−1 ·XT
R · (y − b⃗0)

b̂ = (b0, b̂R)
T = (1, b̂R)

T
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A.3 Proof of Explicit Solution of Jump Diffusion

We will apply the generalized Lemma of Ito (cf. Privault, n.d., Proposition 20.13 and 20.14) to de-
rive the closed form solution in Equation 3.7 from the SDE we use for our Monte Carlo simulation:
dSt = µStdt+ σStdWt − ξ(λ)StdNt. Note, the Lemma of Ito is the stochastic calculus version of
the Chain Rule in ordinary differentiation. It can thus considered piecewiese additively, that is: it
can be applied separately for the GBM part and the jump part and added together the two results.

The Lemma of Ito in its differential form is in our case as follows - given a twice differentiable
function f(St):

df(St) = µSt · f ′(St) · dt+
1

2
(σSt)

2 · f ′′(St) · dt+ σSt · f ′(St) · dWt

+(f(St)− f(St−dt)) · dNt

with jump size: f(St)− f(St−dt) and and number of jumps: dNt.

In order to derive the formula of Equation 3.7 we consider f(St) = ln(St), then the stochastic
calculus chain rule of the famous Ito Kiyoshi delivers

dln(St) = µSt ·
1

St
· dt− 1

2
σ2S2

t · 1

S2
t

· dt+ σSt ·
1

St
· dWt

+(ln(St)− ln(St−dt)) · dNt

⇐⇒ dln(St) = µ · dt− 1

2
σ2 · dt+ σ · dWt + ln

(
St

St−dt

)
· dNt

and with St = St−dt − ξ · St−dt = (1− ξ) · St−dt we obtain:

ln(St) = ln(St−dt) + µ · dt− 1

2
σ2 · dt+ σ · dWt + ln(1− ξ) · dNt

Repeated iterative application of the last difference equation yields:

ln(St) = ln(S0) + µ · t− 1

2
σ2 · t+ σ ·Wt + ln(1− ξ) ·Nt

We apply the exponent to both sides:

St = S0 · eµ·t−
1
2σ

2·t+σ·Wt+ln(1−ξ)·Nt

Or alternatively:

St = S0 · eµ·t−
1
2σ

2·t+σ·Wt · eln((1−ξ)Nt)

⇐⇒ St = S0 · eµ·t−
1
2σ

2·t+σ·Wt · (1− ξ)Nt

The jump version of the Lemma of Ito can also be used to check how our SDE of JGBM should
have been ”equivalently” defined, to avoid the above natural logarithm. For this we apply the
following jump version of Ito’s Lemma. Let f(t,Wt, Nt) = St again a twice differentiable function
in Wt and differentiable in t,Nt, then:

df(t,Wt, Nt) =
∂f

∂t
dt+

∂f

∂Wt
dWt +

1

2

∂2f

∂W 2
t

dW 2
t +

∂f

∂Nt
dNt

thereby note: dW 2
t −→ dt
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and: ∂f
∂Nt

= f(Nt)−f(Nt−dt)
Nt−Nt−dt

= f(Nt)−f(Nt−dt)
1 = f(Nt)− f(Nt−dt)

=⇒ df(t,Wt, Nt) =
∂f

∂t
dt+

∂f

∂Wt
dWt +

1

2

∂2f

∂W 2
t

dt+ (f(Nt)− f(Nt−dt))dNt

We now consider the following closed form solution: f(t,Wt, Nt) = St = S0 · e(µ−
1
2σ

2)t+σWt−ξ̂·Nt .
Then we have:

∂f

∂t
· dt = S0 · e(∗) · (µ− 1

2
σ2) · dt = St · (µ− 1

2
σ2) · dt

∂f

∂Wt
· dWt = S0 · e(∗) · σ · dWt = St · σ · dWt

1

2

∂2f

∂W 2
t

· dt = S0 · e(∗) ·
1

2
σ2 · dt = St ·

1

2
σ2 · dt

In summary the GBM part becomes:

df(t,Wt, Nt) = St = µSt · dt+ σSt · dWt

As concerns the Jump part it follows:

∂f

∂Nt
dNt =

(
S0 · e(µ−

1
2σ

2)t+σWt−ξ̂·Nt − S0 · e(µ−
1
2σ

2)t+σWt−ξ̂·Nt−dt

)
· dNt

and because the term in brackets is the jump size - given a jump, we can rewrite to:

df(Nt) =
(
S0 · e(µ−

1
2σ

2)t+σWt−ξ̂·(Nt−dt+1) − S0 · e(µ−
1
2σ

2)t+σWt−ξ̂·Nt−dt

)
· dNt

⇐⇒ df(Nt) = S0 · e(µ−
1
2σ

2)t+σWt−ξ̂·Nt−dt ·
(
e−ξ̂ − 1

)
· dNt

⇐⇒ df(Nt) = St−dt ·
(
e−ξ̂ − 1

)
· dNt

⇐⇒ df(Nt) = −St−dt ·
(
1− e−ξ̂

)
· dNt

And overall we receive the searched alternative JGBM to avoid the logarithm:

dSt = µSt · dt+ σSt · dWt −
(
1− e−ξ̂(λ)

)
St−dt · dNt

Thereby, 1− e−ξ̂(λ) ∈ (0, 1], with ξ̂(λ) ∈ [0,∞).

We did not go for this version of the JGBM because we wanted to have a clear and direct interpre-
tation of ξ(λ) as the jump size in the SDE as well as in its closed form solution. In this alternative
version the jump size is given by 1− e−ξ(λ).
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B Portfolio Information

Figure 10: Static Data for Simulation based on Systematic and Specific E-Risk
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Figure 11: Static Data for Simulation based on Transition and Physical E-Risk
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Figure 12: Moderate Correlation Structure between Companies and Industry Sectors
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Figure 13: High Correlation Structure between Companies and Industry Sectors

56



Table 9: Scope 123 Carbon Intensity for CO2 Rating Derivation

EuroStoxx50 ISIN MSCI Sector Intensity in Avg Sector
EQ Position tCO2/M.EUR Intensity
Daimler DE0007100000 Automobiles & Components 0,83 0,63
Stellantis NL00150001Q9 Automobiles & Components 0,67 0,63
Volkswagen DE0007664039 Automobiles & Components 0,63 0,63
BMW DE0005190003 Automobiles & Components 0,40 0,63
BNP Paribas FR0000131104 Banks 0,19 0,18
Santander ES0113900J37 Banks 0,17 0,18
ING NL0011821202 Banks 0,11 0,18
Intesa IT0000072618 Banks 0,12 0,18
BBVA ES0113211835 Banks 0,34 0,18
Siemens DE0007236101 Capital Goods 2,11 1,64
Schneider Electric FR0000121972 Capital Goods 2,33 1,64
Airbus NL0000235190 Capital Goods 1,41 1,64
Vinci FR0000125486 Capital Goods 1,89 1,64
Safran FR0000073272 Capital Goods 0,72 1,64
Kone FI0009013403 Capital Goods 1,41 1,64
LVMH FR0000121014 Consumer Durables & Apparel 3,30 1,35
EssilorLuxottica FR0000121667 Consumer Durables & Apparel 1,11 1,35
Kering FR0000121485 Consumer Durables & Apparel 0,43 1,35
Adidas DE000A1EWWW0 Consumer Durables & Apparel 0,58 1,35
Flutter Entertainment IE00BWT6H894 Consumer Services 0,14 0,14
Deutsche Boerse DE0005810055 Diversified Financials 0,16 0,16
TotalEnergies FR0000120271 Energy 20,20 15,18
Eni IT0003132476 Energy 10,17 15,18
Ahold NL0011794037 Food & Staples Retailing 0,70 0,70
Anheuser Busch BE0974293251 Food, Beverage & Tobacco 5,00 6,26
Pernod Ricard FR0000120693 Food, Beverage & Tobacco 3,76 6,26
Danone FR0000120644 Food, Beverage & Tobacco 10,01 6,26
Philips NL0000009538 Health Care Equipment & Services 0,56 0,56
Loreal FR0000120321 Household & Personal Products 1,46 1,46
Allianz DE0008404005 Insurance 0,16 0,09
Axa FR0000120628 Insurance 0,07 0,09
MunichRe DE0008430026 Insurance 0,05 0,09
Linde IE00BZ12WP82 Materials 82,98 36,64
Air Liquide FR0000120073 Materials 37,43 36,64
BASF DE000BASF111 Materials 8,56 36,64
CRH IE0001827041 Materials 17,57 36,64
Sanofi FR0000120578 Pharmaceuticals Biotec & Life Sciences 1,99 2,57
Bayer DE000BAY0017 Pharmaceuticals Biotec & Life Sciences 3,15 2,57
Vonovia DE000A1ML7J1 Real Estate 2,04 2,04
Prosus NL0013654783 Retailing 0,31 0,46
Inditex ES0148396007 Retailing 0,62 0,46
ASML NL0010273215 Semiconductors & Semiconductor Equipment 3,48 2,86
Infineon DE0006231004 Semiconductors & Semiconductor Equipment 2,24 2,86
SAP DE0007164600 Software & Services 1,18 0,64
Adyen NL0012969182 Software & Services 0,09 0,64
Deutsche Telekom DE0005557508 Telecommunication Services 1,25 1,25
Deutsche Post DE0005552004 Transportation 1,93 1,93
Iberdrola SA ES0144580Y14 Utilities 11,14 14,32
Enel IT0003128367 Utilities 17,49 14,32
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C Transition Densities From Systematic Risk and Specific
Risk

C.1 Normal Market Conditions

Figure 14: Transition Density over Time: JGBM vs GBM SysSpec Current Risk, Moderate
Jmp-Correlation
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Figure 15: Transition Density over Time: JGBM vs GBM SysSpec Current Risk, No
Jmp-Correlation
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Figure 16: Transition Density over Time: JGBM vs GBM SysSpec Current Risk, High
Jmp-Correlation

Figure 17: MinMax Trajectories: High, Normal and No Correlation
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C.2 Intensively Stressed Market Condition

Figure 18: Transition Density over Time SysSpec Intensive Stress Risk: JGBM vs GBM,
Moderate Jmp-Correlation
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Figure 19: Transition Density over Time: JGBM vs GBM SysSpec Intensive Stress Risk, No
Jmp-Correlation
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Figure 20: Transition Density over Time SysSpec Intensive Stress Risk: JGBM vs GBM, High
Jmp-Correlation

Figure 21: MinMax Trajectories: High, Normal and No Correlation
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D Transition Densities From Transition Risk and Physical
Risk

D.1 Stressed Market Conditions

Figure 22: Transition Density over Time TransPhy Stressed Risk: JGBM vs GBM, Moderate
Jmp-Correlation
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Figure 23: Transition Density over Time TransPhy Stressed Risk: JGBM vs GBM, No
Jmp-Correlation
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Figure 24: Transition Density over Time TransPhy Stressed Risk: JGBM vs GBM, High
Jmp-Correlation

Figure 25: MinMax Trajectories: High, Normal and No Correlation
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