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This article is part of a comprehensive research project on 
liquidity risk in asset management, which can be divided 
into three dimensions. The first dimension covers the 
modeling of the liability liquidity risk (or funding liquidity), 
the second dimension is dedicated to the modeling of the 
asset liquidity risk (or market liquidity), whereas the 
third dimension considers the management of the asset-
liability liquidity risk (or asset-liability matching). The 
purpose of this research is to propose a methodological 
and practical framework in order to perform liquidity 
stress testing programs, which comply with regulatory 
guidelines (ESMA, 2019, 2020) and are useful for fund 
managers. The review of the academic literature and 
professional research studies shows that there is a lack 
of standardized and analytical models. The aim of this 
research project is then to fill the gap with the goal of 
developing mathematical and statistical approaches, and 
providing appropriate answers.

In this third and last research paper focused on managing 
the asset-liability liquidity risk, we explore the ALM tools 
that can be put in place to control the liquidity gap. These 
ALM tools can be split into three categories: measurement 
tools, management tools and monitoring tools. In terms 
of measurement tools, we focus on the computation of 
the redemption coverage ratio (RCR), which is the central 
instrument of liquidity stress testing programs. We also 
study the redemption liquidation policy and the different 
implementation methodologies, and we show how reverse 
stress testing can be developed. In terms of liquidity 
management tools, we study the calibration of liquidity 
buffers, the pros and cons of special arrangements 
(redemption suspensions, gates, side pockets and in-kind 
redemptions) and the effectiveness of swing pricing. In 
terms of liquidity monitoring tools, we compare the macro- 
and micro-approaches of liquidity monitoring in order to 
identify the transmission channels of liquidity risk.
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Liquidity Stress Testing in Asset Management

1 Introduction

The guidelines on liquidity stress testing in UCITS and AIFs produced by ESMA (2020a)
are rooted in the banking regulation defined by the Basel Committee on Banking Super-
vision (BCBS, 2010, 2013). For instance, the redemption coverage ratio, which is the key
instrument of LST programs, is a copy-paste of the liquidity coverage ratio (LCR) in the
Basel III Accord. According to BCBS (2008), liquidity risk management in the banking
industry must be structured around three pillars: measurement, management and monitor-
ing. Beyond the redemption coverage ratio, which is typically a measurement tool, ESMA
(2020a) adopt a similar approach by mixing the three Ms.

Liquidity risk is an important topic for the banking sector because it concerns systemic
risk. We face similar issues for the asset management industry because it can generate
big market risks. Since liquidity risk is an ALM risk (Roncalli, 2020, Chapter 7), it con-
cerns both liabilities and assets. As mentioned by Brunnermeier and Pedersen (2009), the
interconnectedness between funding liquidity and market liquidity amplifies the liquidity
risk. This is obvious in stress periods, but this is even the case in normal periods when
we consider the asset management industry. The reason is that redeeming investors impose
negative externalities on the remaining investors:

“Strategic interaction is a key determinant of investors’ behavior in financial
markets and institutions. When choosing their investment strategy, investors
have to consider, not only the expected fundamentals of the investment, but also
the expected behavior of other investors, which could have a first-order effect on
investment returns. Particularly interesting are situations with payoff comple-
mentarities, where investors’ incentives to take a certain action increase if they
expect that more investors will take such an action. Payoff complementarities
are expected to generate a multiplier effect, by which they amplify the impact
that shocks to fundamentals have on investors’ behavior. Such amplification is
often referred to as financial fragility” (Chen et al., 2010, page 239).

This financial fragility has been documented in several asset classes (Bouveret and Yu,
2021; Chernenko and Sunderam, 2020; Fricke and Fricke, 2021; Fricke and Wilke, 2020;
Rohleder et al., 2017; Goldstein et al., 2017). The negative externalities and their major
impact when considering stress periods explain that financial regulators have recently paid
more attention to liquidity management in the asset management industry (AMF, 2017;
BaFin, 2017; EFAMA, 2020; ESRB, 2017), while the regulation of asset managers in terms
of liquidity management was light in the 2000s. Nevertheless, introducing more stringent
regulations in the asset management industry is not a new concept and dates back to the
roadmap of the Financial Stability Board (FSB) when it was created in April 2009 after the
2008 Global Financial Crisis to monitor the stability of the financial system and manage
systemic risk (Roncalli, 2020, page 453).

However, the lack of maturity and benchmarking is an obstacle for the development
of liquidity stress testing in the asset management industry. One of the big challenges
for regulators is standardizing models and practices. In the case of the banking industry,
the Basel Committee has been successful in proposing statistical frameworks for market and
credit risks. This is not the case in the asset management industry, where academic research
is relatively invisible on the liability side. As such, most solutions are in-house and not
published, implying limited distribution of best practices and, generally simplistic and naive
methods being developed. Against this backdrop, it is not surprising that mathematical and
statistical models are completely absent from regulatory publications, especially in the case
of the ESMA guidelines on liquidity stress testing in asset management.
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Liquidity Stress Testing in Asset Management

This paper completes a research project that began in April 2020 and was organized into
three streams. The first stream covered the liability side and funding liquidity modeling.
In Roncalli et al. (2021a), we introduced two statistical approaches that can be used to
define a redemption shock scenario. The first one is the historical approach and considers
non-parametric risk measures such as the historical or conditional value-at-risk. The second
approach deals with frequency-severity models, which produces parametric risk measures and
stress scenarios. Three of these probabilistic models are particularly interesting: the zero-
inflated (or population-based) statistical model, the behavioral (or individual-based) model
and the factor-based model. The second stream focused on the asset side and transaction
cost modeling. In Roncalli et al. (2021b), we proposed a two-regime model to estimate ex-
ante transaction costs and market impacts. This model is an extension of the square-root
model and considers trading limits in order to comply with the practices of asset managers.
Based on proprietary and industry data, we were able to perform the calibration for large cap
stocks, small cap stocks, sovereign bonds and corporate bonds. Moreover, we have detailed
the analytics of liquidation rate, time to liquidation and liquidation shortfall to assess the
liquidity risk profile of investment funds. The third stream corresponds to this research
paper. The aim is to combine liability and asset risks in order to define the ALM tools.
Therefore, this paper extensively mixes the previous models. For instance, a stress scenario
may originate from the liabilities or the assets or both. Synthetic measures such as the
funding gap or funding ratio are essential for asset-liability management. These measures
are particularly exploited for the purpose of defining appropriate liquidation policies and
the management tools that can be put in place. Besides traditional management methods,
asset managers are paying more and more attention to liquidity buffers. The widespread use
of cash buffers for the purpose of liquidity stress testing may have some significant impacts
in terms of reducing or increasing systemic risk. The recent debate on cash buffering versus
cash hoarding and the “dash for cash” episode during the Covid-19 crisis in March 2020
demonstrate that the liquidity issue in asset management remains as before. This implies
that asset managers must continue to develop the required tools and adopt more responsive
tools. This is especially true for monitoring tools that must use higher frequency data.

The rest of the paper is organized as follows. Section 2 presents the liquidity measure-
ment tools. We introduce the redemption coverage ratio (RCR) and the two computational
approaches (time to liquidation and high-quality liquid assets). We also focus on the redemp-
tion liquidation policy and the differences between vertical and horizontal slicing. Compared
to banks, reverse stress testing (RST) is more complex because two dimensions can be cho-
sen, implying that we can define a liability or an asset RST scenario. Section 3 is dedicated
to liquidity managements tools (LMTs). Besides swing pricing and special arrangements (re-
demption suspensions, gates, side pockets and in-kind redemptions), we extensively study
the set-up of a liquidity buffer. We propose an optimization model that considers the costs
and benefits of implementing a cash buffer and derive the optimal solution that depends
on the risk premium of assets, the tracking error risk and the liquidation gain. Using the
square-root transaction cost model, we obtain analytical formulas and test the impact of the
different parameters. The liquidity monitoring tools are discussed in Section 4. We distin-
guish the macro-economic and micro-economic approaches. The macro-economic approach
helps to define overall liquidity and is related to central bank liquidity and the economic
outlook. This approach is extensively used by financial regulators and international bodies.
In a liquidity stress testing framework, it must be complemented by a micro-economic ap-
proach that considers the daily liquidity at the asset class, security and issuer levels. Data
collection from order books, market infrastructure and the trading desk of the asset manager
is the key to successfully building a suitable monitoring system. Finally, Section 5 concludes
the paper.
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2 Liquidity measurement tools

Among the three Ms, measurement is certainly the most important and difficult step of
liquidity stress testing programs. Indeed, it encompasses two sources of uncertainty: liability
risk and asset risk. As shown by Roncalli et al. (2021a), there are two main approaches for
measuring the liability risk. We can use an historical approach or a frequency-severity
framework. For this latter, we also have the choice between three models: the zero-inflated
statistical model, the behavioral model or the factor-based model. On the asset risk side,
things are simpler since we generally consider the power-law model as a standard approach.
However, calibrating the parameters remains a fragile exercise that is highly dependent on
the historical data of the asset manager (Roncalli et al., 2021b).

As explained in the introduction, benchmarking will be a key factor for improving these
measures. Nevertheless, there is certainly another issue that is even more detrimental. In-
deed, the definition of the concepts is not always precise, and the regulators of the asset
management industry are less prolific than the regulators of the banking industry. How-
ever, the devil is in the details. This is why we define the different measurement concepts
more precisely in this section. First, we present the redemption coverage ratio and the two
approaches for computing it. Then, we focus on the redemption liquidation policy, which
must specify the appropriate decision in the case of a liquidity crisis. Finally, the regula-
tion requires that the asset manager defines reverse stress testing scenarios and explores
circumstances that might cause them to occur.

2.1 Redemption coverage ratio

According to ESMA (2020a), the redemption coverage ratio (RCR) is “a measurement of
the ability of a fund’s assets to meet funding obligations arising from the liabilities side of
the balance sheet, such as a redemption shock”. Except for this definition1, there are no
other references to this concept in the ESMA guidelines. Therefore, we must explore other
resources to clarify it, but they are few in number (Bouveret, 2017; IMF, 2017; ESMA,
2020b).

The redemption coverage ratio was introduced by Bouveret (2017), who defines it as
follows:

RCR =
Liquid assets

Net outflows
(1)

where net outflows and liquid assets correspond respectively to redemption shocks and the
amount of the portfolio that can be liquidated over a given time horizon. There are two
possible cases:

• if the RCR is above 1, then the fund’s portfolio is sufficiently liquid to cope with the
redemption scenario;

• if the RCR is below 1, then the liquidity profile of the fund may be worsened when
the redemption scenario occurs.

In this second case, the outcome will depend largely on the market liquidity conditions.
Indeed, there is a pricing risk on the NAV because the fund will have to sell illiquid assets in
an illiquid market. The amount of additional assets to be sold is called the liquidity shortfall
(LS):

LS = max (0,Net outflows− Liquid assets) (2)

1It can be found on page 7 of the ESMA guidelines (ESMA, 2020a).
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In order to compare the liquidity profile of several funds, the measure LS is expressed as a
percentage of the fund’s total net assets (TNA).

Remark 1 The RCR and LS measures refer to banking ALM concepts. Indeed, asset-
liability management is based on two risk measures: the funding ratio and the funding gap
(Roncalli, 2020, Chapter 7, page 376). When the ALM is applied to liquidity risk, we refer
to liquidity ratio and liquidity gap. It is obvious that the redemption coverage ratio is related
to the liquidity (coverage) ratio, while the liquidity shortfall is equivalent to the liquidity gap.

The International Monetary Fund has used the redemption coverage ratio in the case of
its financial sector assessment program (FSAP) for two countries: Luxembourg in 2017 and
the United States in 2020. These two FSAP exercises showed that a significant proportion
of the funds would have enough liquid assets to meet redemption shocks. However, the IMF
found that the most vulnerable categories are HY and EM bond funds in Luxembourg (IMF,
2017) and HY and loan mutual funds in the US (IMF, 2020). In the case of Luxembourg
funds, Figure 1 shows that about 30 bond funds have an RCR below 1, and 50% of them
have a liquidity shortfall greater than 10%, which is the borrowing limit for UCITS funds.

Figure 1: LS and RCR for selected investment funds

Source: IMF (2017, Figure 19, page 59).

2.1.1 Time to liquidation approach

Mathematical framework We consider a fund, whose asset structure is given by the
vector ω = (ω1, . . . , ωn) where ωi is the number of shares of security i and n is the number
of securities that make up the asset portfolio. By construction, the fund’s total net assets
are equal to:

TNA =

n∑
i=1

ωi · Pi (3)

where Pi is the current price of security i. The mathematical expressions of Equations (1)
and (2) are:

RCR =
A
R

(4)
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and:

LS = max (0,R − A) (5)

where A is the ratio of liquid assets in the fund and R is the redemption shock expressed in
%. Following Roncalli et al. (2021b), the redemption shock expressed in dollars is equal to
R = R · TNA. Let q = (q1, . . . , qn) be a redemption portfolio and qi (h) be the number of
shares liquidated after h trading days2. The amount of liquid assets is equal to the amount
of assets that can be sold:

A (h) =

n∑
i=1

h∑
k=1

qi (k) · Pi (7)

By definition, we have A (h) = A (h) · TNA. We notice that asset liquidation requires a
parameter h to be defined, which is the time horizon. Therefore, it is better to define RCR
and LS measures as follows:

RCR (h) =
A (h)

R
=

A (h)

R
(8)

and:

LS (h) =
max (0,R− A (h))

TNA
= R ·max (0, 1− RCR (h)) (9)

Since h is a liquidation time horizon, the previous computation method is called the time
to liquidation (TTL) approach (Bouveret, 2017).

Relationship with the liquidation ratio As its name suggests, the time to liquidation
approach is related to the liquidation ratio. Following Roncalli et al. (2021b), the liquidation
ratio LR (q;h) is the proportion of the redemption scenario q that is liquidated after h
trading days:

LR (q;h) =

∑n
i=1

∑h
k=1 qi (k) · Pi∑n
i=1 qi · Pi

(10)

By definition, LR (q;h) is between 0 and 1 whereas RCR (h) ≥ 0. Using Equation (7), we
deduce that:

A (h) = LR (q;h) · V (q) (11)

where V (q) =
∑n
i=1 qi · Pi is the value function of the portfolio q. It follows that:

RCR (h) =
V (q)

R
· LR (q;h) (12)

The redemption coverage ratio can be seen as an extension of the concept of the liquida-
tion ratio when the liquidation portfolio q corresponds to the pool of liquid assets and the
redemption shock is defined without any reference to q. Roncalli et al. (2021b) define the
liquidation period h+ = {inf h : LR (q;h) = 1} as the number of trading days we need to
liquidate the portfolio q. We can then have three cases:

2We recall that qi (h) is equal to:

qi (h) = min

(qi − h−1∑
k=0

qi (k)

)+

, q+i

 (6)

where qi (0) = 0 and q+i denotes the maximum number of shares that can be sold during a trading day for
the asset i (Roncalli et al., 2021b, Section 3.2, page 14).
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1. The redemption coverage ratio is equal to the liquidation ratio if and only if the
redemption scenario is equal to the value of the liquidation portfolio:

RCR (h) = LR (q;h)⇔ R = V (q) (13)

Since LR (q;h) is an increasing function of h and LR (q;h+) = 1, we have:{
RCR (h) < 1 if h < h+

RCR (h) = 1 if h ≥ h+ (14)

2. If V (q) > R, we have RCR (h) > LR (q;h) and:

RCR (h) =
V (q)

R
> 1 ∀h ≥ h+ (15)

3. If V (q) < R, we have RCR (h) < LR (q;h) and:

RCR (h) < 1 ∀h ≥ 0 (16)

Equation (12) shows that the redemption coverage ratio is an increasing function of h. From
a risk management perspective, the RCR is below one if the value V (q) of liquid assets
is lower than the redemption shock R or if the time to liquidation is not acceptable. Let
h? = {inf h : RCR (h) > 1} be the number of trading days we need to absorb the redemption
shock. The shorter the period h? is, the better the liquidity profile. Indeed, if the period
h? is too long and even if RCR (h?) > 1, we cannot consider that the criterion is satisfied.
This is why the risk management department must define an acceptable time to liquidation
τh. In this case, the liquidity profile of the fund is appropriate if and only if RCR (τh) > 1.
By definition, τh depends on the asset class. In the case of public equities, τh is equal to
a few days, whereas τh may range from a few weeks to several months for private equities,
depending on the liquidity objective of the investment fund.

Similarly, the liquidity shortfall LS (h) can be seen as an extension of the liquidation
shortfall, which is defined as “the remaining redemption that cannot be fulfilled after one
trading day” (Roncalli et al., 2021b, Section 3.2.3, page 18):

LS (q) = 1− LR (q; 1) (17)

Indeed, we have:

LS (h) = R ·max

(
0, 1− V (q)

R
· LR (q;h)

)
(18)

In the case where V (q) = R, we obtain:

LS (h) = R ·max (0, 1− LR (q;h))

= R · (1− LR (q;h))

= R · LS (q;h) (19)

where LS (q;h) = 1−LR (q;h) is the generalized liquidation shortfall, that is the remaining
redemption that cannot be fulfilled after h trading days. While the liquidation shortfall is
calculated with one trading day, the liquidity shortfall can be calculated with h ≤ τh. In
the other cases, the liquidity shortfall is not equal to the product of the redemption rate R
and the generalized liquidation shortfall because we have:

LS (h) = R ·max

(
0, 1− V (q)

R
· (1− LS (q;h))

)
(20)
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Nevertheless, we always verify that:

0 ≤ LS (h) ≤ R (21)

By construction, the liquidity shortfall cannot exceed the redemption rate.

Portfolio distortion Since the asset structure of the fund is given by the portfolio ω =
(ω1, . . . , ωn), the portfolio weights are equal to w (ω) = (w1 (ω) , . . . , wn (ω)) where:

wi (ω) =
ωi · Pi∑n
j=1 ωj · Pj

(22)

Let q = (q1, . . . , qn) be the redemption scenario. It follows that the redemption weights are
given by:

wi (q) =
qi · Pi∑n
j=1 qj · Pj

(23)

After the liquidation of q, the new asset structure is equal to ω − q, and the new weights of
the portfolio become:

wi (ω − q) =
(ωi − qi) · Pi∑n
j=1 (ωj − qj) · Pj

(24)

Except in the case of the proportional rule qi ∝ ωi, there is no reason that wi (ω − q) =
wi (ω). In fact, we have3:

wi (ω − q) = wi (ω) + ∆wi (ω | q)

= wi (ω) +
V (q)

(V (ω)− V (q))
(wi (ω)− wi (q)) (25)

The previous analysis can be extended to the case h < h+. Indeed, it assumes that the
liquidation is fully executed. Again, we can have h+ � τh, meaning the redemption shock
cannot be perfectly absorbed. In this case, we can compute wi (q;h) and wi (ω − q;h) by

replacing qi with
∑h
k=1 qi (k).

Examples We consider a fund, whose asset structure ω is given in Table 1. The investment
universe is made up of 7 assets. We also indicate the current price Pi and the trading limit
q+i of each asset. The fund’s total net assets are equal to $141.734 mn. We assume that the
redemption shock is equal to 20% or $28.347 mn.

3The weight difference ∆wi (ω | q) is equal to:

∆wi (ω | q) = wi (ω − q)− wi (ω)

=
(ωi − qi) · Pi
V (ω)− V (q)

−
ωi · Pi
V (ω)

=
V (ω) · (ωi − qi) · Pi − (V (ω)− V (q)) · ωi · Pi

(V (ω)− V (q)) · V (ω)

=
V (q) · ωi · Pi − V (ω) · qi · Pi

(V (ω)− V (q)) · V (ω)

=
V (q) · wi (ω) · V (ω)− V (ω) · wi (q) · V (q)

(V (ω)− V (q)) · V (ω)

=
V (q)

(V (ω)− V (q))
(wi (ω)− wi (q))
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Table 1: Fund’s asset structure and liquidation policy

Asset 1 2 3 4 5 6 7
ωi 435 100 300 100 50 400 200 500 75 500 17 500 1 800

wi (ω) 27.32% 26.04% 17.35% 14.43% 8.90% 3.94% 2.02%
Pi 89 123 488 102 167 319 1 589
q+i 20 000 20 000 10 000 20 000 20 000 2 000 1 000

Example 1 (naive pro-rata liquidation) We first consider the pro-rata liquidation (also
called the proportional rule or the vertical slicing approach). In this case, the liquidation
portfolio is equal to q = R · ω = 0.20 · ω.

We first determine the number of liquidated shares qi (h) for h = 1, 2, . . . (see Table 12
on page 81) in order to compute the value of A (h) and the associated redemption coverage
ratio RCR (h). Results are given below in Table 2. We notice that RCR (1) = 52.53% and
LS (1) = 9.49%. If the time horizon τh to absorb the redemption shock is equal to one day,
then there are not enough liquid assets since the redemption coverage ratio is less than 1.
Indeed, we need a week (or five trading days) to perfectly absorb the redemption shock.
In this case, we have RCR (5) = 100% and LS (5) = 0%. In Table 2, we also verify that
RCR (h) = LR (q;h). Moreover, we notice the convergence of the portfolio weights after
the liquidation to the current portfolio weights (see Table 14 on page 81). Nevertheless, the
matching of the two portfolios ω − q and ω is only valid when h ≥ h+ = 5.

Table 2: Computation of the RCR (Example 1, naive pro-rata liquidation)

h
LR (q;h) A (h) RCR (h) LS (h)

(in %) (in $ mn) (in %) (in %)
1 52.53 14.892 52.53 9.49
2 76.51 21.689 76.51 4.70
3 91.51 25.939 91.51 1.70
4 97.80 27.722 97.80 0.44
5 100.00 28.347 100.00 0.00
6 100.00 28.347 100.00 0.00

In this example, we assume that q = R · ω, implying that V (q) = R. This scheme is not
optimal because we have demonstrated that RCR (h+) = 1 and RCR (τh) ≤ 1. The best
case is then obtained if τh = h+, implying the following constraints:

RCR (τh) = 1⇔
{
∀ i = 1, . . . , n : qi = R · ωi ≤ τh · q+i

}
(26)

If we set τh < h+, we necessarily have RCR (τh) < 1, meaning that there are not enough
liquid assets to fulfill the redemption scenario. Moreover, we are not sure that q = R · ω
is the optimal solution to maximize the redemption coverage ratio RCR (τh). Indeed, the
previous analysis suggests that V (q) > R is a better choice when it is possible. However,
this constraint is not always satisfied and is highly dependent on the value τh of the time
horizon. In fact, the optimal solution necessarily depends on τh and is given by the following
optimization problem:

q? (τh) = arg max RCR (τh)

s.t.

{
q ∝ ω
q ≥ 0n

(27)
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By construction, the solution is independent from the value R of the redemption shock since
we have:

arg max RCR (τh) := arg maxA (τh) (28)

We obtain a trivial combinatorial problem. Indeed, the solution must satisfy the following
set of constraints: {

q ∝ ω
qi ≤ min

(
τh · q+i , ωi

) (29)

We deduce that:
q? (τh) = ϕ (τh) · ω (30)

where:

ϕ (τh) = inf
i=1,...,n

min

(
τh ·

q+i
ωi
, 1

)
(31)

Moreover, we have:

A (τh) =

n∑
i=1

(
h∑
k=1

qi (k)

)
Pi

=

n∑
i=1

q?i (τh) · Pi

= ϕ (τh)

(
n∑
i=1

ωi · Pi

)
= ϕ (τh) · TNA (32)

We conclude that the redemption coverage rate is equal to the ratio between ϕ (τh) and R :

RCR (τh) =
ϕ (τh)

R
(33)

Example 2 (optimal pro-rata liquidation) We consider the optimal pro-rata liquida-
tion when the redemption shock R is equal to 20% and the time horizon τh varies from one
trading day to one trading week.

In Table 3, we indicate the optimal value ϕ (τh) for each time horizon τh. We also re-
port4 LR (q;h), A (h), RCR (h) and LS (h) for h ≤ τh. When τh = 1, the optimal liquidation
portfolio is equal to (20 000, 13 795, 2 317, 9 216, 3 470, 804). The redemption coverage ratio
is equal to 22.98%, implying a high liquidity shortfall representing 15.40% of the total net as-
sets. When τh = 2, the optimal portfolio q? becomes (40 000, 27 589, 4 633, 18 433, 6 941, 1 609).
The redemption coverage ratio is then equal to 45.97% whereas the liquidity shortfall rep-
resents 10.81% of the total net assets. In Exercise 1, the liquidation period h+ was equal
to five trading days, and we obtained RCR (5) = 100%. We notice that we achieve a bet-
ter redemption coverage ratio with the optimal pro-rata liquidation rule. Indeed, we have
RCR (5) = 114.92%.

Remark 2 Since the optimal portfolio q? (τh) does not depend on the redemption shock R,
A (τh) indicates the maximum redemption shock that can be absorbed, implying that:

R ≤ A (τh)⇒ RCR (τh) ≥ 1

4We don’t need to report the statistics for h ≥ τh because we have LR (q;h) = LR (q; τh), A (h) = A (τh),
RCR (h) = RCR (τh) and LS (h) = LS (τh).
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Table 3: Computation of the RCR (Example 2, optimal pro-rata liquidation)

τh
ϕ (τh)

h
LR (q;h) A (h) RCR (h) LS (h)

(in %) (in %) (in $ mn) (in %) (in %)
1 4.60 1 100.00 6.515 22.98 15.40

2 9.19
1 79.18 10.317 36.39 12.72
2 100.00 13.030 45.97 10.81

3 13.79
1 63.66 12.443 43.89 11.22
2 90.02 17.595 62.07 7.59
3 100.00 19.545 68.95 6.21

4 18.39

1 54.81 14.284 50.39 9.92
2 79.18 20.633 72.79 5.44
3 93.17 24.280 85.65 2.87
4 100.00 26.060 91.93 1.61

5 22.98

1 47.13 15.353 54.16 9.17
2 70.74 23.044 81.29 3.74
3 85.68 27.911 98.46 0.31
4 94.54 30.795 108.64 0.00
5 100.00 32.575 114.92 0.00

By definition, the maximum admissible redemption shock is equal to R (τh) = A (τh) or
R (τh) = ϕ (τh). For instance, the maximum admissible redemption shock is equal to $6.515
mn (or 4.60% of the TNA) when the time horizon is set to one trading day. Figure 2 shows
the evolution of R (τh) with respect to τh.

Figure 2: Maximum admissible redemption shock in % (Example 2, optimal pro-rata liqui-
dation)
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Example 3 (waterfall liquidation) We now consider the waterfall liquidation. In this
case, the fund manager liquidates assets in order of their liquidity starting from the most
liquid ones. The redemption shock is still equal to 20%.

Table 4: Computation of the RCR (Example 3, waterfall liquidation)

h
LR (q;h) A (h) RCR (h) LS (h)

(in %) (in $ mn) (in %) (in %)
1 11.80 16.727 59.01 8.20
2 23.38 33.136 116.90 0.00
3 34.06 48.274 170.30 0.00
4 44.21 62.661 221.05 0.00
5 52.53 74.459 262.67 0.00
6 57.55 81.572 287.76 0.00

Figure 3: Maximum admissible redemption shock in % (pro-rata vs. waterfall liquidation)
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In the waterfall approach, there are no constraints on the liquidation portfolio q, which
is equal to the fund’s portfolio ω. In this case, the redemption coverage ratio is entirely
determined by the trading limits q+ and the current portfolio ω. Every day, we sell q+i
shares of security i until there is nothing left – qi (h) = 0. Results are given in Table
4. Since there are no constraints on the asset structure of the portfolio ω − q, we obtain
higher values of the redemption coverage ratio compared to the naive or optimal pro-rata
liquidation approach. Indeed, we have RCR (1) = 59.01%, but RCR (2) = 116.90%. In this
example, we have RCR (τh) > 1 when τh ≥ 2. By construction, the waterfall approach will
always give higher redemption coverage ratios than the pro-rata approach. To illustrate this
property, we compare the maximum admissible redemption shock in Figure 3 for the two
approaches.
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2.1.2 High-quality liquid assets approach

Mathematical framework In the high-quality liquid assets (HQLA) method, the amount
of liquid assets is estimated by splitting securities by HQLA classes and applying liquidity
weights. We assume that we have m HQLA classes. Let ccfk denote the liquidity weight or
the cash conversion factor (CCF) of the kth HQLA class. The ratio of liquid assets in the
fund is defined by:

A =

n∑
i=1

wi (ω) · CCF`(i) (34)

where ` (i) indicates the HQLA class k of security i. We have:

A =

n∑
i=1

wi (ω) ·

(
m∑
k=1

1 {i ∈ k} · CCFk

)

=

m∑
k=1

(
n∑
i=1

1 {i ∈ k} · wi (ω)

)
· CCFk

=

m∑
k=1

wk · CCFk (35)

where wk is the weight of the kth HQLA class5. We deduce that:

RCR =

∑m
k=1 wk · CCFk

R
(37)

and:

LS = R ·max

(
0, 1−

∑m
k=1 wk · CCFk

R

)
(38)

Definition of HQLA classes The term HQLA refers to the liquidity coverage ratio
(LCR) introduced in the Basel III framework (BCBS, 2010, 2013). An asset is considered to
be a high-quality liquid asset if it can be easily converted into cash. Therefore, the concept
of HQLA is related to asset quality and asset liquidity. The first property indicates if the
asset can be sold without discount, while the second property indicates if the asset can be
easily and quickly sold (Roncalli, 2020). Thus, the LCR ratio measures whether or not the
bank has the necessary assets to face a one-month stressed period of outflows. The stock
of HQLA is computed by defining eligible assets and applying haircut values. For instance,
corporate debt securities rated above BBB− are eligible, implying that high yield bonds
are not. Then, a haircut of 15% (resp. 50%) is applied to corporate bonds rated AA− or
higher (resp. between A+ and BBB−). Since the time horizon of the LCR is one month, the
underlying idea is that (1) high yield bonds can be illiquid for one month, (2) investment
grade corporate bonds can be sold during the month but with a discount, (3) corporate

5We also have:

A = A · TNA

=
m∑
k=1

(wk · TNA) · CCFk

=
m∑
k=1

TNAk ·CCFk (36)

where TNAk is the dollar amount of the kth HQLA class.
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bonds rated AA− or higher can lose 15% of their value in the month and (4) corporate
bonds rated between A+ and BBB− can lose 50% of their value in the month.

In Table 5, we report the HQLA matrix given by Bouveret (2017) and IMF (2017), which
corresponds to the HQLA matrix of the Basel III Accord using the following rule:

CCFk = 1−Hk (39)

where Hk is the haircut value. By construction, the CCF value is equal to 100% for cash. For
equities, it is equal to 50%. Although common equity shares are highly liquid, we can face
a price drop before the liquidation. Therefore, this value of 50% mainly reflects a discount
risk. Sovereign bonds are assumed to be a perfect substitute for the cash if the credit rating
of the issuer is AA− or higher. Otherwise, the CCF is equal to 85% and 50% for other IG
sovereign bonds and 0% for HY sovereign bonds. In the case of corporate bonds, securities
rated below BBB− receive a CCF of 0%, while the CCF is respectively equal to 50% and
85% for BBB− to A+ and AA− to AAA. For securitization, the CCFs are the same as for
corporate bonds, except the category BBB− to BBB+ for which the CCF is set to zero.

Table 5: Cash conversion factors

Credit
Cash

Sovereign Corporate
Securitization Equities

Rating bonds bonds
AA− to AAA

100%

100% 85% 85%

50%
A− to A+ 85% 50% 50%

BBB− to BBB+ 50% 50% 0%
Below BBB− 0% 0% 0%

Source: Bouveret (2017, Table 6, page 14) and IMF (2017, Box 2, page 56).

Remark 3 ESMA (2019b, Exhibit 38, page 26) uses the same HQLA matrix, except for
securitization products. In this case, the CCFs are between 65% and 93% if the credit rating
of the structure is between AA- and AAA, and 0% otherwise.

As noticed by ESMA (2019b), “the HQLA approach is very attractive from an operational
point of view since it is easy to compute and interpret”. However, this approach has three
drawbacks. First, the HQLA matrix proposed by the IMF and ESMA is a copy/paste of the
HQLA matrix proposed by the Basel Committee, suggesting that the implicit time horizon
τh is one month or 21 trading days. However, the time horizon is never mentioned, implying
that there is a doubt about the IMF and ESMA’s true intentions. Second, the granularity of
the HQLA matrix is quite coarse. For instance, there is no distinction between large cap and
small cap stocks. In the case of sovereign bonds, the CCR only depends on the credit rating.
However, we know that some bonds are more liquid than others even if they belong to the
same category of credit rating. For example, sovereign bonds issued by France, Germany, the
UK and the US are more liquid than sovereign bonds issued by Belgium, Denmark, Finland,
Ireland, Japan, Netherlands and Sweden6. We observe the same issue with peripheral debt
securities (Greece, Italy, Portugal, Spain) and EM bonds. In the case of corporate bonds,
this problem is even more serious, because liquidity is not only an issuer-related question.
For instance, the maturity impacts the liquidity of the bonds issued by the same company.
The last drawback concerns the absence of the portfolio structure in the computation of
the RCR. Indeed, the RCR depends neither on the portfolio holdings nor on the portfolio

6This can be measured by the turnover ratio.
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concentration. Therefore, the HQLA method is a specific top-down approach, which only
focuses on asset classes. Two equity funds will have the same redemption coverage ratio
for the same redemption shock (top left-hand panel in Figure 4). For example, we have
RCR = 2.5 if R = 20%. The RCR is below one if the redemption shock is greater than 50%.
For a high yield fund, the RCR is equal to zero whatever the value of the redemption shock
(bottom right-hand panel in Figure 4). For a balanced fund, comprised of 50% IG bonds
and 50% public equities, we obtain the following bounds:

50%

R
≤ RCR ≤ 75%

R
(40)

Therefore, it is obvious that the HQLA method is a macro-economic approach, that can
make sense for regulators to monitor the liquidity risk at the industry level, but it is not
adapted for comparing the liquidity risk of two funds.

Figure 4: Redemption coverage ratio in % with the HQLA approach

Implementation of the HQLA approach Because of the previous comments, asset
managers that would like to implement the HQLA approach must take into account the
following considerations:

• The HQLA matrix must be more granular.

• The asset manager must use different time horizons.

• The calibration of the cash conversion factor mixes two factors7:

CCFk (τh) = LFk (τh) ·
(

1−DFk

(τh
2

))
(41)

7See Appendix B.1 on page 67 for the derivation of this result. A more conservative formula is
CCFk (τh) = LFk (τh) · (1−DFk (τh)).
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where LFk (τh) is the (pure) liquidity factor and DFk (τh) is the discount (or drawdown)
factor.

• The liquidity factor LFk (τh) is an increasing function of τh. It indicates the proportion
of the HQLA bucket that can be sold in τh trading days. By definition, we have
LFk (0) = 0 and LFk (∞) = 1.

• The drawdown factor DFk (τh) is an increasing function of τh. It indicates the loss
value of the HQLA bucket in a worst-case scenario of a price drop after τh trading
days. By definition, we have DFk (0) = 0 and DFk (∞) ≤ 1.

Concerning the HQLA classes, we can consider more granularity concerning the asset class.
For example, we can distinguish DM vs. EM equities, LC vs. SC equities, etc. Moreover, we
can introduce the specific risk factor of the fund, which encompasses two main dimensions:
the fund’s size and its portfolio structure. For instance, liquidating a fund of $100 mn is
different to liquidating a fund of $10 bn. Similarly, the liquidation of two funds with the
same size can differ because of the weight concentration difference. Indeed, liquidating a
S&P 500 index fund of $1 bn is different to liquidating an active fund of $1 bn that is
concentrated on 10 American stocks. Therefore, the cash conversion factor becomes:

CCFk,j (τh) = LFk (τh) ·
(

1−DFk

(τh
2

))
· (1− SFk (TNAj ,Hj)) (42)

where SFk ∈ [0, 1] is the specific risk factor associated to the fund j. This is a decreasing
function of the fund size TNAj and the Herfindahl index Hj of the portfolio. Concerning
the time horizon, τh can be one day, two days, one week, two weeks or one month. Finally,
the three functions LFk (τh), DFk (τh) and SFk (TNAj ,Hj) can be calibrated using standard
econometric procedures.

A basic specification of the liquidity factor is:

LFk (τh) = min (1.0, λk · τh) (43)

where λk is the selling intensity. For the drawdown factor, it is better to use a square root
function8:

DFk (τh) = min (MDDk, ηk ·
√
τh) (44)

where MDDk is the maximum drawdown and ηk is the loss intensity of the HQLA class. Let
us consider the example of a large cap equity fund, whose total net assets are equal to $1 bn.
The redemption shock is set to $400 mn. We assume that λk = 5% per day, ηk = 6.25% and
MDDk = 50%. Results are reported in Figure 5. We notice that the RCR depends on the
value of τh. For small values of τh (less than 10 days), the RCR is below 1. For large values
of τh (greater than 10 days), the RCR is above 1 because the liquidation factor overtakes
the drawdown factor. Finally, we observe that the CCF and RCR functions are increasing
and then decreasing with respect to the time horizon9. We now consider a second fund with
the same assets under management, which is invested in small cap stocks. In this case, we
assume that λk is reduced by a factor of two and ηk is increased by 20%. Results are given
in Figure 5. We verify that the small cap fund has a lower RCR than the large cap fund.

8This is what we observe when we compute the value-at-risk of equity indices. For instance, we have
reported the historical value-at-risk of the S&P 500 index in Figure 20 on page 83 for different confidence
levels α. We obtain a square-root shape. In risk management, the square-root-of-time rule is very popular
and is widely used for modeling drawdown functions (Roncalli, 2020, page 46).

9This is normal since we combine an increasing linear function with a decreasing square-root function.
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Figure 5: Specification of the cash conversion factor
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Figure 6: Specification of the specific risk factor
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As explained previously, we should consider the specific risk of the fund. We propose the
following formula:

SFk (TNA,H) = min

ξsizek

(
TNA

TNA? − 1

)+

+ ξconcentrationk

(√
H
H?
− 1

)+

,SF+

 (45)

where TNA and H are the total net assets and the Herfindahl index of the fund, which is
computed as H =

∑n
i=1 w

2
i (ω). By definition, we have n−1 ≤ H ≤ 1. TNA? and H? are two

thresholds. Below these two limits, SFk (TNA,H) is equal to zero. ξsizek and ξconcentrationk are
two coefficients that control the importance of the size and concentration risks. Moreover,
SF+ indicates the maximum value that can be taken by the specific risk since we have the
following inequalities: {

0 ≤ SF+ ≤ 1
0 ≤ SFk (TNA,H) ≤ SF+ (46)

Figure 6 illustrates the specific risk of the fund when TNA? = $1 bn, H? = 1/100, ξsizek =
10%, ξconcentrationk = 25% and SF+ = 0.80. We have also reported the two components
SFsize

k (TNA) and SFconcentration
k (H):

SFk (TNA,H) = min
(
SFsize

k (TNA) + SFconcentration
k (H) ,SF+

)
(47)

It is better to use additive components than multiplicative components, because the specific
risk tends quickly to the cap value SF+ in this last case.

Example 4 We assume that λk = 5% per day, ηk = 6.25%, MDDk = 50%, TNA? = $1 bn,
H? = 1/100, ξsizek = 10%, ξconcentrationk = 25% and SF+ = 0.80. We consider four mutual
funds, whose TNA are respectively equal to $1, $5, $7 and $10 bn. The redemption shock is
equal to 40% of the total net assets.

Results are given in Table 6 with respect to the horizon time τh and the fund size. We
consider two concentration indices: H = 0.01 and H = 0.04. We notice the impact of the
fund size on the RCR. For instance, when τh is set to 10 days and the concentration index
is equal to 1%, RCR is respectively equal to 1.08, 0.65, 0.43 and 0.22 for a fund size of $1
bn, $5 bn, $7 bn, and $10 bn. Therefore, the RCR is above one only when the fund size is
$1 bn. If we increase the concentration index, the RCR can be below one even if the fund
size is small. For instance, when τh is set to 10 days and H is equal to 4%, RCR is equal to
0.81 for a fund size of $1 bn. To summarize, the redemption coverage ratio is an increasing
function of the time to liquidation τh, but a decreasing function of the concentration index
H and the fund size TNA.

Table 6: Computation of the RCR in the HQLA approach

τh H = 0.01 H = 0.04
$1 bn $5 bn $7 bn $10 bn $1 bn $5 bn $7 bn $10 bn

1 0.12 0.07 0.05 0.02 0.09 0.04 0.02 0.02
5 0.56 0.34 0.23 0.11 0.42 0.20 0.11 0.11

10 1.08 0.65 0.43 0.22 0.81 0.38 0.22 0.22
20 2.01 1.20 0.80 0.40 1.50 0.70 0.40 0.40
60 1.64 0.99 0.66 0.33 1.23 0.58 0.33 0.33
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2.2 Redemption liquidation policy

The previous analysis demonstrates that the redemption coverage ratio is highly dependent
on the redemption portfolio q = (q1, . . . , qn). Generally, the redemption shock is expressed
as a percentage. R represents the proportion of the fund size that can be redeemed. Then,
we can convert the redemption shock is nominal value by using the identity formula:

R = R · TNA (48)

For instance, if the redemption rate R is set to 10% and the fund size TNA is equal to $1 bn,
the redemption shock R is $100 mn. However, the computation of RCR requires defining
the liquidation policy or the portfolio q. Two main approaches are generally considered:
the pro-rata liquidation and the waterfall liquidation. The first one ensures that the asset
structure of the fund is the same before and after the liquidation. The second one minimizes
the time to liquidation. In practice, fund managers can mix the two schemes. In this case,
it is important to define the objective function in order to understand the trade-off between
portfolio distortion and liquidation time.

2.2.1 The standard approaches

Vertical slicing The pro-rata liquidation uses the proportional rule, implying that each
asset is liquidated such that the structure of the asset portfolio is the same before and after
the liquidation. This rule is also called the vertical slicing approach. From a mathematical
point of view, we have:

q = R · ω (49)

where ω is the fund’s asset portfolio (before the liquidation). In practice, qi is not necessarily
an integer and must be rounded10. For instance, if ω = (1000, 514, 17) and R = 10%, we
obtain q = (100, 51.4, 1.7). Since we cannot sell a fraction of an asset, we can choose
q = (100, 51, 2).

We recall that the tracking error due to the liquidation is equal to:

σ (ω | q) =

√
(w (ω − q)− w (ω))

>
Σ (w (ω − q)− w (ω))

=

√
∆w (ω | q)> Σ ∆w (ω | q) (50)

where Σ is the covariance matrix of asset returns, w (ω) is the weight vector of portfolio ω
(before liquidation) and w (ω − q) is the weight vector of portfolio ω− q (after liquidation).
The proportional rule ensures that the asset composition does not change because of the
redemption. Since the weights are the same — ∆w (ω | q) = 0n, the tracking error is equal
to zero:

σ (ω | q) = 0 (51)

This property is important because there is no portfolio distortion with the pro-rata liqui-
dation rule.

We have seen that the redemption coverage ratio is highly dependent on the time to
liquidation τh. In Roncalli et al. (2021b, Section 3.2.2, page 18), we have defined the
liquidation time as the inverse function of the liquidation ratio:

LT (q, p) = LR−1 (q; p) = inf {h : LR (q;h) ≥ p} (52)

10This is why the waterfall slicing approach is also called the near proportional rule.
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We now define the liquidity time (or time to liquidity) as follows:

TTL (p) = RCR−1 (p) = inf {h : RCR (h) ≥ p} (53)

It measures the required number of days to have a redemption coverage ratio larger than p.
As we have seen that RCR (h) and LS (h) are related to LR (q;h) and LS (q;h), TTL (p)
is also related to LT (q, p). In the case where the redemption portfolio satisfies R = V (q),
we verify that TTL (p) = LT (q, p) because we have RCR (h) = LR (q;h) and LS (h) =
LS (q;h). In the general case, we have:

TTL (p) = inf

{
h :

V (q)

R
· LR (q;h) ≥ p

}

=

 LT
(
q,

R
V (q)

· p
)

if p ≤ V (q)

R
+∞ otherwise

(54)

While vertical slicing is optimal to minimize the tracking risk, the liquidation of the
redemption portfolio can however take a lot of time. Indeed, the maximum we can liquidate
each day is bounded by the liquidation policy limit q+i . We have:

τh∑
h=1

qi (h) ≤ τh · q+i (55)

In the case of the pro-rata liquidation rule, we have qi = R · ωi. We deduce that the
redemption portfolio can be fully liquidated after TTL (1) =

⌊
τ+h
⌋

days where:

τ+h = R · sup
i=1,...,n

ωi

q+i
(56)

It may be difficult to sell some assets, because the value of q+i is low. Nevertheless, the re-
maining redemption value may be very small. This is why fund managers generally consider
in practice that the portfolio is liquidated when the proportion p is set to 99%.

Horizontal slicing Horizontal slicing is the technical term to define waterfall liquidation.
In this approach, the portfolio is liquidated by selling the most liquid assets first. Contrary
to vertical slicing, the fund manager accepts that the portfolio composition will be disturbed
and his investment strategy has te be modified, implying a tracking error risk:

σ (ω | q) > 0 (57)

It is obvious that the waterfall approach minimizes the liquidity risk when it is measured
by the liquidity shortfall. Let us illustrate this property with the example described in Table
1 on page 14. If we consider the naive pro-rata liquidation rule, we obtain the liquidity
times given in Figure 21 on page 84. We notice that they are very similar for p = 95%,
99% and 100%. We now assume that q+7 = 20, meaning that the seventh asset is not very
liquid. Therefore, we have a huge position on this asset (ω7 = 1 800) compared to the daily
liquidation limit. If we would like to liquidate the full exposure on this asset, it will take
90 trading days versus 2 trading days previously. The consequence of this illiquid exposure
is that the liquidity times are very different for p = 95%, 99% and 100% (see Figure 22
on page 84). For instance, the maximum liquidity time11 is respectively equal to 20, 46

11It is obtained by considering the case R = 100%.
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and 90 trading days for p = 95%, 99% and 100%. Previously, the maximum liquidity time
was equal to 18, 21 and 22 trading days when q+7 was equal to 1 000. Having some illiquid
assets in the portfolio may then dramatically increase the liquidity time when we choose the
pro-rata liquidation rule. We have also computed the liquidity time when we consider the
waterfall liquidation rule. Results are reported in Figures 23 and 24 on page 85. We observe
two phenomena. First, if we compare Figures 21 and 23, we notice the higher convexity
of the waterfall approach when we increase the redemption shock. Second, we retrieve the
similarity pattern for p = 95%, 99% and 100% except for very large redemption shocks when
we have illiquid assets. The reason is that the part of illiquid assets is much lower than the
remaining value of the portfolio. Figure 7 summarizes the two phenomena by comparing
the pro-rata and waterfall approaches when q+7 = 20.

Figure 7: Liquidity time in days (pro-rata versus waterfall liquidation, illiquid exposure,
p = 99%)
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In order to determine the proportion of non-liquidated assets in the case of the waterfall
approach, we consider an analysis in terms of weights. We recall that the portfolio weight
of Asset i is given by:

wi (ω) =
ωi · Pi
TNA

(58)

Since the number of required trading days to liquidate the exposure to Asset i is equal to:

τi (ω) =
ωi

q+i
(59)

the portfolio weight of Asset i that can be liquidated with a trading day is given by the
following formula:

ψi (ω) =
wi (ω)

τi (ω)
=
q+i · Pi
TNA

(60)
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Figure 8: Daily liquidation
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Using Equation (9) on page 11, we deduce that the liquidity shortfall of a full redemption
scenario under the waterfall approach is equal to12:

LS (h) = 1−
n∑
i=1

min (h · ψi (ω) , wi (ω)) (61)

The relative weight of the portfolio that can be liquidated at time h is then equal to W (h) =
LS (h− 1) − LS (h). W (h) is the daily liquidation expressed in %. In Figure 8, we have
reported the values taken by W (h) for the previous example. We notice that significant
liquidation occurs over the first 22 days. After this period, the amount liquidated decreases
substantially because it concerns illiquid assets.

Remark 4 We can use the previous analysis to determine the amount of “illiquid assets”
in the portfolio. For that, we choose a threshold w? below which the amount liquidated is too
small13:

h? = inf {h : W (h) ≤ w?} (62)

Alternatively, we can directly set the value of h? above which we assume it corresponds to
an illiquid time. The amount of illiquid assets is then equal to

∑
k≥h? W (h) or equivalently

LS (h? − 1) = 1 −
∑n
i=1 min ((h? − 1) · ψi (ω) , wi (ω)). In the previous example, it is equal

to 2.50% if w? = 1% and 1.52% if w? = 0.5%.

2.2.2 The mixing approach

So far, the analysis of the redemption coverage ratio and the redemption liquidation policy
has been focused on the trading limits and the daily amounts that can be liquidated. This

12We have LS (0) = 100%.
13w? is generally set to 0.5%.
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volume-based approach is not enough and may lead to misleading conclusions. Indeed, the
previous analysis completely omits the transaction costs. This is obviously the case of the
vertical slicing approach, where the fund manager is forced to sell exposures that are not
liquid. Therefore, no cost analysis is done in the pro-rata liquidation rule. This is also the
case in the above presentation of the horizontal slicing approach, since the liquidation policy
only considers the daily trading limits through the variable q+. Nevertheless, the practice of
the waterfall approach is a little bit different, because it is not limited to the liquidity depth.
Indeed, the ultimate goal of this approach is to liquidate the exposures at the lowest cost.
Therefore, it includes a cost analysis. However, as seen previously, the waterfall approach
implies a tracking risk that is not controlled. This is not acceptable in practice.

The optimal liquidation approach consists in defining a maximum acceptable level T R+

of tracking risk and to minimize the transaction cost T C (q) of the liquidation portfolio:

q? = arg min
q
T C (q) (63)

s.t.


T R (ω | q) ≤ T R+

LS (q;h) ≤ LS+
1>nw (ω − q) = 0
w (ω − q) ≥ 0n

In the case of an equity portfolio, the tracking risk is equal to the tracking error volatility:

T R (ω | q) = σ (ω | q) =

√
∆w (ω | q)>Σ∆w (ω | q) (64)

In the case of a bond portfolio, it is more difficult to define the tracking risk because the
volatility is not the right approach to measure the risk of fixed-income instruments (Roncalli,
2020). Moreover, there are several risk dimensions to take into account. For instance, Ben
Slimane (2021) considers three dimensions14: sectorial risk, duration risk and credit risk.
Following Ben Slimane (2021), we can define the tracking risk as the sum of three risk
measures:

T R (ω | q) = Rw (ω | q) +RMD (ω | q) +RDTS (ω | q) (65)

The weight risk measure Rw (ω | q) is the weight difference between Portfolio ω − q and
Portfolio ω within the sector s:

Rw (ω | q) =

nSector∑
s=1

∣∣∣∣∣∣
∑

i∈Sector(s)

∆wi (ω | q)

∣∣∣∣∣∣ (66)

where nSector is the number of sectors and ∆wi (ω | q) = wi (ω − q) − wi (ω) is the weight
distortion of Bond i because of the liquidation. We define RMD (ω | q) as the modified
duration risk of ω − q with respect to ω within the sector s:

RMD (ω | q) =

nSector∑
s=1

nBucket∑
j=1

∣∣∣∣∣∣
∑

i∈Sector(s)

∆wi (ω | q) ·MDi (Bucketj)

∣∣∣∣∣∣ (67)

where nBucket is the number of maturity buckets and MDi (Bucketj) is the modified duration
contribution of Bond i to the maturity bucket j. The rationale of this definition is to track

14In fact, Ben Slimane (2021) adds two liquidity components: the first one concerns the liquidity costs
whereas the second one concerns the liquidity depth (or the axis component of market makers).
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the difference in modified duration per bucket. Finally, we define the DTS risk measure
RDTS (ω | q) as the weighted DTS difference between ω − q and ω:

RDTS (ω | q) =

nSector∑
s=1

∣∣∣∣∣∣
∑

i∈Sector(s)

∆wi (ω | q) ·DTSi

∣∣∣∣∣∣ (68)

where DTSi is the duration-times-spread of Bond i. Regarding the transaction cost function,
we recall that it is defined as follows (Roncalli et al., 2021b, Equation (26), page 25):

T C (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · qi (h) · Pi · ccci
(
qi (h)

vi

)
(69)

where ccci (x) is the unit transaction cost function associated with Asset i. In Roncalli et al.
(2021b), ccci (x) follows a two-regime power-law model. We also notice that the optimization
problem (63) includes a constraint related to the liquidation shortfall. Without this con-
straint, the solution consists in liquidating each day an amount qi (h) much smaller than
the trading limit q+i in order to minimize the transaction costs due to the market impact.
Of course, the idea is not to indefinitely delay the liquidation. Therefore, this constraint is
very important to ensure that a significant portion of the redemption portfolio has been sold
before h. It follows that the optimization problem (63) can be tricky to solve from a nu-
merical point of view, in particular for bond funds. Nevertheless, it perfectly illustrates the
trade-off between the three risk dimensions: the transaction cost risk T C (q), the tracking
risk T R (ω | q) and the liquidation shortfall risk LS (q;h).

Once again, we consider the example described in Table 1 on page 14. We assume that
the volatility of the assets is respectively equal to15 20%, 18%, 15%, 15%, 22%, 30% and
35% whereas the bid-ask spread is equal to 5, 3, 5, 8, 12, 15 and 15 bps. The transaction cost
function corresponds to the SQRL model defined by Roncalli et al. (2021b) with ϕ1 = 0.4,
x̃ = 5% and x+ = 10%. We deduce that the daily volume vi of each asset is equal to
10× q+i . In Table 7, we define five liquidation portfolios where the redemption rate R is set
to 10%. Portfolio #1 satisfies the pro-rata liquidation rule. We verify that the tracking risk
(measured by the tracking error volatility) is equal to zero. The total transaction cost is
equal to 22.4 bps with the following break-down: 6.1 bps for the bid-ask spread component
and 16.2 bps for the market impact component. This is a low tracking error. However, if the
fund manager’s objective is to liquidate the redemption in one trading day, we notice that
the liquidation shortfall is equal to 23.5%. In Portfolio #2, the liquidation is concentrated
in the second and third assets. Because these assets are more liquid than the others, the
transaction cost is lower and equal to 20.4 bps. Nevertheless, this portfolio leads to a high
tracking error risk of 79.6 bps. Portfolio #3 is made up of the less liquid assets. Therefore,
it is normal to obtain a high transaction cost of 42.5 bps. Again, this portfolio presents a
high tracking risk since we have T R (ω | q) ≈ 2%! If the objective function is to fulfill the
redemption in one day, Portfolio #4 is a good candidate since we have LS (q; 1) = 0 and

15The correlation matrix of asset returns is given by:

ρ =



100%
10% 100%
40% 70% 100%
50% 40% 80% 100%
30% 30% 50% 50% 100%
30% 30% 50% 50% 70% 100%
30% 30% 50% 50% 70% 70% 100%


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the transaction cost is moderate16 (T C (q) = 25.6 bps). However, the tracking risk is high
and is equal to 35.4%. Portfolio #5 is a compromise between tracking risk and liquidity
shortfall17, because we have T R (ω | q) = 21.2 bps, T C (q) = 22.6 bps but LS (q; 1) = 9.4%.
If the objective is to find the optimal liquidation policy with the constraints LS (q; 1) ≤ 10%
and T R (ω | q) = 20%, Portfolio #5 is a good starting point.

Table 7: Comparison of five redemption portfolios

Liquidation portfolio #1 #2 #3 #4 #5
q1 43 510 0 0 20 000 29 404
q2 30 010 27 000 0 20 000 24 004
q3 5 040 22 238 0 10 000 8 016
q4 20 050 0 0 20 000 20 020
q5 7 550 0 34 315 18 044 13 846
q6 1 750 0 17 500 0 700
q7 180 0 1 800 0 72

T R (ω | q) (in bps) 0.0 79.6 201.0 35.4 21.2
T C (q) (in bps) 22.4 20.4 42.5 25.6 22.6
T Cs (q) (in bps) 6.1 4.5 13.8 6.6 6.4
T Cπππ (q) (in bps) 16.2 15.9 28.7 19.1 16.2
LS (q; 1) (in %) 23.5 48.2 60.7 0.0 9.4

2.3 Reverse stress testing

Reverse stress testing is a “fund-level stress test which starts from the identification of the
pre-defined outcome with regards to fund liquidity (e.g. the point at which the fund would no
longer be liquid enough to honor requests to redeem units) and then explores scenarios and
circumstances that might cause this to occur” (ESMA, 2020a, page 6). Following Roncalli
(2020), reverse stress testing consists in identifying stress scenarios that could bankrupt
the fund. Therefore, reverse stress testing can be viewed as an inverse problem. Indeed,
liquidity stress testing starts with a liability liquidity scenario and an asset liquidity scenario
in order to compute the redemption coverage ratio. The liability liquidity scenario is defined
by the redemption shock R (or the redemption rate R ), while the asset liquidity scenario is
given by the stressed trading limits q+ or the HQLA classification. Given a time horizon
τh, the outcome is RCR (τh). From a theoretical point of view, the bankruptcy of the fund
depends on whether the condition RCR (τh) ≥ 1 is satisfied or not. The underlying idea
is that the fund is not viable if RCR (τh) < 1. In practice, the fund can continue to exist
because it can use short-term borrowing or other liquidity management tools such as gates
or side pockets18. In fact, the fund’s survival depends on many parameters. However, we
can consider that a too small value of RCR (τh) is critical and can produce the collapse of
the fund. Let RCR− be the minimum acceptable level of the redemption coverage ratio.
Then, reverse stress testing consists in finding the liability liquidity scenario and/or the asset
liquidity scenario such that RCR (τh) = RCR−.

16It is a little bit higher than the transaction cost of the vertical slicing approach.
17Portfolio #5 is equal to 40% of Portfolio #1 and 60% of Portfolio #4.
18These different tools will be explored in the next section on page 33.
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2.3.1 The liability RST scenario

From a liability perspective, reverse stress testing consists in finding the redemption shock
above which the redemption coverage ratio is lower than the minimum acceptable level:

RCR (τh) ≤ RCR− =⇒


R ≥ RRST (τh) =

A (τh)

RCR−

or

R ≥ R RST (τh) =
A (τh)

RCR−

(70)

RRST (τh) (or R RST (τh)) is called the liability reverse stress testing scenario. At first sight,
computing the liability RST scenario seems to be easy since the calculation of A (τh) is
straightforward. However, it is a little bit more complicated since A (τh) depends on the
liquidation portfolio q. Therefore, we have to define q. This is the hard task of reverse
stress testing. Indeed, the underlying idea is to analyze each asset exposure individually
and decide the quantity of each asset that can be sold in the market during a stress period.

The simplest way to define q is to use the multiplicative approach with respect to the
portfolio ω:

qRST
i = αi · ωi (71)

where αi represents the proportion of the asset i than can be sold during a liquidity stress
event. In particular, αi = 0 indicates that the asset is illiquid during this period. αi also
depends on the size ωi. For instance, a large exposure on an asset can lead to a small value
of αi because it can be difficult to liquidate such exposure.

Table 8: Computation of the liability RST scenario

RRST (τh) (in $ mn) R RST (τh) (in %)
RCR− 25% 75% 50% 100% 25% 75% 50% 100%
τh = 1 25.1 12.6 8.4 6.3 17.7 8.9 5.9 4.4
τh = 2 46.2 23.1 15.4 11.5 32.6 16.3 10.9 8.1
τh = 3 63.2 31.6 21.1 15.8 44.6 22.3 14.9 11.1
τh = 4 80.1 40.1 26.7 20.0 56.5 28.3 18.8 14.4
τh ≥ 5 87.5 43.8 29.2 21.9 61.8 30.9 20.6 15.4

Let us consider again the example described in Table 1 on page 14. We assume that
the third, fifth, sixth and seventh assets are illiquid in a stress period. For the other assets,
we set α1 = 20%, α2 = 30% and α4 = 15%. Results are given in Table 8. For instance, if
the minimum acceptable level of the redemption coverage ratio is equal to 25%, we obtain
R RST (1) = 17.7%. This means that the fund may support a redemption shock below 17.7%,
whereas the RCR limit of 25% is broken if the fund experiences a redemption shock above
17.7%. If the minimum acceptable level is set to 100%, which is the regulatory requirement,
the liability RST scenario corresponds to R RST (1) = 4.4%.

Remark 5 We don’t always have a solution to Problem (70). Nevertheless, we notice that:

RCR (∞) =

∑n
i=1 q

RST
i · Pi∑n

i=1 ωi · Pi
=

n∑
i=1

αi · wi (ω) (72)

A condition to obtain a solution such that R ≤ TNA and R ≤ 1 is to impose the constraint
RCR− ≥

∑n
i=1 αi · wi (ω).
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2.3.2 The asset RST scenario

The asset RST scenario consists in finding the asset liquidity shock above which the redemp-
tion coverage ratio is lower than the minimum acceptable level. Contrary to the liability
RST scenario, for which the liquidity shock is measured by the redemption rate, it is not
easy to define what a liquidity shock is when we consider the asset side. For that, we recall
that the stress testing of the assets consists in defining three multiplicative (or additive)
shocks for the bid-ask spread, the volatility and the daily volume (Roncalli et al., 2021b,
Section 5.4, page 51). Let xi be the participation rate. We have:

xi =
qi
vi

(73)

where vi is the daily volume. The trading limit x+i (expressed in participation rate) is
supposed to be fixed, implying that it is the same in normal and stress periods. However,
the stress period generally faces a reduction in the daily volume, meaning that the trading
limit q+i (expressed in number of shares) is not the same:

q+i =

{
vi · x+i in a normal period
mv · vi · x+i in a stressed period

(74)

where mv < 1 is the multiplicative shock of the daily volume. The underlying idea of the
asset RST scenario is then to define the upper limit mRST

v below which the redemption
coverage ratio is lower than the minimum acceptable level:

RCR (τh) ≤ RCR− =⇒ mv ≤ mRST
v (τh) < 1 (75)

Nevertheless, the computation of mRST
v (τh) requires defining a liquidation portfolio. For

that, we can use the vertical slicing approach where qi = R ? · ωi and R ? is a standard
redemption rate19. As in the case of the liability RST problem, the solution may not exist
if RCR (τh) ≤ RCR− when mv is set to one.

Remark 6 In the liability RST problem, a low value of R RST indicates that the fund is
highly vulnerable. Indeed, this means that a small redemption shock may produce a funding
liquidity stress on the investment fund. In the asset RST problem, the fund is vulnerable if
the value of mRST

v is high. In this case, a slight deterioration of the market depth induces
a market liquidity stress on the investment fund even if it faces a small redemption. To
summarize, fund managers would prefer to have low values of R RST and high values of
mRST
v .

The computation of mRST
v for the previous example is reported in Figure 9. We first

notice that the solution cannot exist because there is no value of mv such that RCR (τh) ≤
RCR−. For instance, this is the case of τh ≤ 6 when R ? is set to 30% (bottom right-hand
panel). By construction, mRST

v (τh) is a decreasing function of τh. Indeed, the reverse stress
testing scenario is more severe for short time windows than for long time windows. We also
verify that mRST

v (τh) is an increasing function of RCR−, because the constraint is tighter.

Remark 7 Reverse stress testing does not reduce to the computation of R RST (τh) or mRST
v (τh).

This step must be completed by the economic analysis to understand what market or financial
scenario can imply R ≥ R RST (τh) or mv ≤ mRST

v (τh).

19A typical value of R ? is 10%. It is important to use a low value for R ? because the asset RST scenario
measures the liquidity stress from the asset perspective, not from the liability perspective.
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Figure 9: Computation of the asset RST scenario
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3 Liquidity management tools

Liquidity management tools are measures applied by fund managers in exceptional circum-
stances to control or limit dealing in fund units (ESMA, 2020a). According to Darpeix et
al. (2020), the main LMTs are anti-dilution levies, gates, liquidity buffers, redemption fees,
in-kind redemptions, redemption suspensions, short-term borrowing, side pockets and swing
pricing. They can be grouped into three categories (Table 9). First, we have liquidity buffers
that may or not be mandatory, and short-term borrowing. The underlying idea is to invest a
portion of assets in cash and to use it in the case of a liquidity stress. As such, this category
has an impact on the structure of the asset portfolio. Second, we have special arrangements
that include gates, in-kind redemptions, redemption suspensions and side pockets. The ob-
jective of this second group is to limit or delay the redemptions. Finally, we have swing
pricing mechanisms20, the purpose of which is clearly to protect the remaining investors.

Table 9: LMTs available to European corporate debt funds (June 2020)

AIF UCITS
Short-term borrowing 78% 91%

Gates 23% 73%
Special arrangements Side pockets 10% 10%

In-kind redemptions 34% 77%
Swing pricing 7% 57%
Anti-dilution levies 11% 17%

Source: ESMA (2020b, page 38).

20They include anti-dilution levies.
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3.1 Liquidity buffer and cash holding

As noticed by Yan (2006), cash is a critical component of mutual funds’ portfolios for three
reasons. First, cash is generally used to manage the inflows and outflows of the fund. For
instance, in the case of a subscription, the fund manager may decide to delay the investment
in order to find better investment opportunities later. In the case of a redemption, cash
can be used to liquidate a part of the portfolio without selling the risky assets. Second,
cash is important for the day-to-day management of the fund for paying management fees,
managing collateral risk, investing in derivatives, etc. Third, cash is a financial instrument
of market timing (Simutin, 2010, 2014). This explains that cash holding is an old practice
of mutual funds.

Since the 2008 Global Financial Crisis, the importance of cash management has increased
due to liquidity policies of asset managers, and liquidity (or cash) buffers have become a
central concept in liquidity risk management. Nevertheless, implementing a cash buffer has
a cost in terms of expected return. Therefore, cash buffer policies are increasingly integrated
into investment policies.

3.1.1 Definition

A liquidity buffer refers to the stock of cash instruments held by the fund manager in order
to manage the future redemptions of investors. This suggests the intentionality of the fund
manager to use the buffer only for liquidity purposes. Because it is difficult to know whether
cash is used for other purposes (e.g. tactical allocation, supply/demand imbalance), the cash
holding of the investment fund is considered as a measurement proxy of its liquidity buffer.
Chernenko and Sunderam (2016) go further and suggest that cash holding is “a good measure
of a fund’s liquidity transformation activities”.

Since we use a strict definition, we consider that a liquidity buffer corresponds to the
following instruments:

• Cash

– Cash at hand

– Deposits

• Cash equivalents

– Repurchase agreements (repo)

– Money market funds

– Short-term debt securities

Generally, we assume that short-term debt securities have a maturity less than one year.
We notice that cash and cash equivalents do not exactly coincide with liquid assets. Indeed,
liquid assets may include stocks and government bonds that can be liquidated the next day.
Therefore, our definition of the liquidity buffer is in fact the definition of a cash buffer.

3.1.2 Cost-benefit analysis

Maintaining a cash buffer has the advantage of reducing the cost of redemption liquidation
and mitigating funding risk. However, it also induces some costs in terms of return, tracking
error, beta exposure, etc. Since a cash buffer corresponds to a deleverage of the risky assets, it
may breach the fiduciary duties of the fund manager. Indeed, the investors pay management
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and performance fees in order to be fully exposed to a given asset class. Therefore, all these
dimensions make the cost-benefit analysis difficult and complex, and computing an “optimal”
level of cash buffer is a difficult task from a professional point of view.

Cash buffer analytics In what follows, we define the different concepts that are necessary
to conduct a cost-benefit analysis.

Cash-to-assets ratio We assume that a cash buffer is implemented in the fund, and
we note wcash as the cash-to-assets ratio:

wcash =
cash

TNA
(76)

wcash indicates the proportion of cash held for liquidity purposes, whereas wasset = 1−wcash

measures the risky exposure to the assets. Traditionally, the fund is fully exposed to the
assets, meaning that wcash = 0% and wasset = 100%. Implementing a cash buffer implies that
wcash > 0. Nevertheless, it is difficult to give an order of magnitude in terms of policies and
practices by asset managers. Using a sample of US funds regulated by the SEC, Chernenko
and Sunderam (2016) found that wcash is equal to 7.5% and 7.9% for equity and bond funds
on average. However, the dispersion is very high because σ (wcash) is approximately equal
to 8%. Moreover, this high dispersion is observed in both the cross section and the time
series. Using the percentile statistics, we can estimate that the common practice is to have
a cash buffer between 0% and 15%.

Mean-variance analysis In Appendix B.2 on page 68, we derive several statistics by
comparing a fund that is fully exposed to the assets and a fund that implements a cash
buffer. Let R be the random return of this latter. We have:

E [R] = µasset − wcash · (µasset − µcash) (77)

and:

σ (R) =
√
w2

cash · σ2
cash + w2

asset · σ2
asset + 2wcash · wasset · ρcash,asset · σcash · σasset (78)

where µcash and µasset are the expected returns of the cash and asset components, σcash and
σasset are the corresponding volatilities, and ρcash,asset is the correlation between the cash
and the assets. Since the volatility of the cash buffer is considerably lower than the volatility
of the assets, we deduce that:

σ (R) ≈ (1− wcash) · σasset (79)

We observe that both the expected return21 and the volatility decrease with the introduction
of the cash buffer. In conclusion, maintaining constant liquidity consists in taking less risk
with little impact on the Sharpe ratio of the fund. Indeed, we obtain:

SR (R) ≈ SR (Rasset)

where SR (Rasset) is the Sharpe ratio of the assets. Therefore, the implementation of a
cash buffer is equivalent to deleveraging the asset portfolio. This result is confirmed by the
portfolio’s beta, which is lower than one:

β (R | Rasset) ≈ 1− wcash ≤ 1 (80)
21Because we generally have µasset > µcash.
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Tracking error analysis In this analysis, we consider that the benchmark is the
asset portfolio (or the index of the corresponding asset class). On page 68, we show that
the expected excess return is equal to:

E [R | Rasset] = −wcash · (µasset − µcash) (81)

whereas the tracking error volatility σ (R | Rasset) is equal to:

σ (R | Rasset) ≈ wcash · σasset (82)

In a normal situation where µasset > µcash, the expected excess return is negative whereas
the tracking error volatility is proportional to the cash-to-assets ratio. An important result
is that the information ratio is the opposite of the Sharpe ratio of the assets:

IR (R | Rasset) ≈ −SR (Rasset) (83)

Again, this implies that the information ratio is generally negative.

Liquidation gain The previous analysis shows that there is a cost associated to the
cash buffer. Nevertheless, there are also some benefits. The most important is the liquidation
gain, which is related to the difference of the transaction costs without and with the cash
buffer:

LG (wcash) = T Cwithout − T Cwith (84)

where T Cwithout is the transaction cost without the cash buffer and T Cwith is the transaction
cost with the cash buffer. In Appendix B.2.5 on page 70, we show that:

LG (wcash) = T Casset (R )− T Ccash (R ) · 1 {R < wcash} −
T Casset ((R − wcash)) · 1 {R ≥ wcash} (85)

and:

E [LG (wcash)] =

∫ wcash

0

(T Casset (R )− T Ccash (R )) dF (R ) +∫ 1

wcash

(T Casset (R )− T Casset (R − wcash)) dF (R ) (86)

where T Casset (R ) and T Ccash (R ) are the asset and cash transaction cost functions, and
F (x) is the distribution function of the redemption rate R . Implementing a cash buffer has
two main effects on the liquidity gain:

• First, we sell cash instead of the assets if the redemption shock is lower than the cash
buffer and we have:

T Casset (R )� T Ccash (R ) (87)

• Second, we sell a lower proportion of risky assets if the redemption rate is greater than
the cash-to-assets ratio and we have:

T Casset (R )� T Casset (R − wcash) (88)

The expected liquidation gain is then made up of two terms which are positive:

E [LG (wcash)] = E [LGcash (wcash)] + E [LGasset (wcash)] (89)

with the following properties22:

22See Appendix B.2.6 on page 72.
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• E [LGcash (wcash)] is an increasing function of wcash with E [LGcash (0)] = 0 and a
maximum reached at w?cash = 1:

supE [LGcash (wcash)] = E [LGcash (1)]

=

∫ 1

0

(T Casset (R )− T Ccash (R )) dF (R ) (90)

• E [LGasset (0)] = 0 and E [LGasset (1)] = 0, implying that E [LGasset (wcash)] is not an
increasing function of wcash. In fact, we can show that it is a bell curve, which is first
increasing and then decreasing.

If we combine the two effects, we can show that:

∂ E [LG (wcash)]

∂ wcash
= −T Ccash (wcash) · f (wcash) +

∫ 1

wcash

T C′asset (R − wcash) dF (R ) (91)

where f (x) is the probability density function of the redemption rate R and T C′asset is the
derivative of the transaction cost function. We deduce that E [LG (wcash)] is an increasing
function almost everywhere, except when wcash is close to one. Therefore, the function
E [LG (wcash)] reaches its maximum at a point w?cash, which is close to 1.

Under the assumption that liquidating cash has zero cost and the additive property of
the transaction cost function is almost satisfied, we demonstrate that23:

E [LG (wcash)] =

∫ wcash

0

T Casset (R ) dF (R ) + T Casset (wcash) · (1− F (wcash)) (92)

The interpretation of this formula is very simple. The first term corresponds to the expected
transaction cost of liquidating the risky assets when the redemption rate is lower than the
cash-to-assets ratio, whereas the second term is the transaction cost of liquidating the asset
amount equivalent to the cash buffer times the probability of observing a redemption shock
greater than the cash buffer. In Appendix B.2.6 on page 72, we demonstrate that:

∂ E [LG (wcash)]

∂ wcash
= T C′asset (wcash) · (1− F (wcash)) (93)

If we compare Equations (91) and (93), we observe that they are not the same. The first
term has vanished because T Casset (R ) ≈ 0. The second term is obtained by assuming that
T C′asset is relatively constant24:∫ 1

wcash

T C′asset (R − wcash) dF (R ) ≈ T C′asset (wcash)

∫ 1

wcash

dF (R )

= T C′asset (wcash) · (1− F (wcash)) (94)

Since ∂wcash
E [LG (wcash)] ≥ 0, the main impact of the approximation is to eliminate the hill

effect when wcash → 1.

Example 5 Using a square-root model, we assume that the transaction cost of liquidating
the risky assets is equal to:

T Casset (x) = x ·
(

s + βπππσ
√
x
)

(95)

23See Equation (161) on page 72.
24The choice of wcash for the derivative function T C′asset (R ) is explained later.
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where s is the bid-ask spread, σ is the daily volatility and βπππ is the price impact coefficient.
Concerning the cash, it may be liquidated at a fixed rate c:

T Ccash (x) = x · c

where c � s. We also consider that the redemption rate follows a power-law distribution:

F (x) = xη (96)

where η > 0.

In the top left-hand panel in Figure 10, we have reported the transaction cost function
T Casset (R ) for the following parameters: a bid-ask spread s of 20 bps, a price impact
sensitivity βπππ of 0.4 and an annualized volatility of 20%. We notice that the transaction
cost is between 0 and 70 bps. Whereas the unit transaction cost function is concave, the
total transaction cost is convex. The first derivative T C′asset (R ) is given in the top right-
hand panel in Figure 10. We verify that T C′asset (R ) > 0, but T C′asset (R ) is far from
constant. Therefore, the approximation of T Casset (R − wcash) by the function T Casset (R )−
T Casset (wcash) is not accurate. This discrepancy is illustrated in the bottom panels in Figure
10 when wcash is equal to 10% and 50%.

Figure 10: Transaction cost function (95) in bps
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As such, this is not surprising if the exact formula of E [LG (wcash)] is:

E [LG (wcash)] =
η (s − c)

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
+

ηs · wcash (1− wcash)− ηβπππσ · I (wcash; η) (97)

whereas the approximate formula is very different:

E [LG (wcash)] ≈ s · wcash + βπππσ · w1.5
cash −

s
η + 1

· wη+1
cash −

3βπππσ

2η + 3
· wη+1.5

cash (98)

38



Liquidity Stress Testing in Asset Management

We have reported these two functions in Figure 11. The liquidation gains are expressed
in bps. We observe some differences between the exact formula (97) and the approximate
formula (98), but these differences tend to diminish when wcash tends to 1. Moreover,
the differences increase with respect to the parameter η, which controls the shape of the
redemption rate distribution function25. This is normal because the probability of observing
a large redemption rate increases with the parameter η. In fact, the poor approximation of
E [LG (wcash)] mainly comes from the solution of E [LGasset (wcash)] and not the solution of
E [LGcash (wcash)] as illustrated in Figure 28 on page 87.

Figure 11: Exact vs. approximate solution of E [LG (wcash)] in bps (Example 5, page 37)
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This example allows us to verify the properties that have been demonstrated previously.
Indeed, Figure 11 confirms that the approximate function of E [LG (wcash)] is increasing and
reaches its maximum at w?cash = 1, whereas the exact function of E [LG (wcash)] increases
almost everywhere and only decreases when wcash is close to 1. This implies that the
maximum of E [LG (wcash)] reaches its maximum at w?cash < 1. In our example, w?cash is
equal to 97.40%, 96.67%, 93.55% and 83.37% when η is respectively equal to 0.5, 1, 2 and
3.

Example 6 We consider Example 5 on page 37, but we impose a daily trading limit x+.
This example is more realistic than the previous one, because selling 100% of the assets
generally requires more than one day. This is especially true in a liquidity stress testing
framework. For example, x+ = 10% imposes that we can sell 10% of the fund every trading
day, implying that we need 10 trading days to liquidate the fund.

25On page 87, Figure 27 shows the density and distribution functions of the redemption rate. If η = 1, we
obtain the uniform probability distribution. If η → 0, the redemption rate is located at R = 0. If η → 1,
the redemption rate is located at R = 1. If η < 1, the probability that the redemption rate is lower than
50% is greater than 50%. If η > 1, the probability that the redemption rate is lower than 50% is less than
50%. Therefore, η controls the location of the redemption rate. The greater the value of η, the greater the
risk of observing a large redemption rate.
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If x ≤ x+, we have:
T Casset (x) = x

(
s + βπππσ

√
x
)

(99)

If x+ < x ≤ 2x+, we need two trading days to liquidate x and we have:

T Casset (x) = x+
(

s + βπππσ
√
x+
)

︸ ︷︷ ︸
First trading day

+
(
x− x+

) (
s + βπππσ

√
x− x+

)
︸ ︷︷ ︸

Second trading day

= x · s + βπππσ ·
(
x+
√
x+ +

(
x− x+

)√
x− x+

)
(100)

More generally, if κx+ < x ≤ (κ+ 1)x+, x is liquidated in κ + 1 trading days, and we
obtain:

T Casset (x) = x · s + κβπππσ · x+
√
x+ + βπππσ ·

(
x− κx+

)√
x− κx+ (101)

where:
κ := κ

(
x;x+

)
=
⌊ x
x+

⌋
(102)

Figure 12 represents the transaction cost function T Casset (R ) for the following parameters:
a bid-ask spread s of 20 bps, a price impact sensitivity βπππ of 0.4, an annualized volatility of
20% and a trading limit x+ = 10%. Compared to Figure 10, the transaction cost is reduced
and is between 0 and 40 bps. This is normal because the daily price impact is bounded in
this example, and we cannot sell more than 10%. The first derivative T C′asset (R ) lies in the
interval [20, 43] bps and can be assumed to be constant. Therefore, the approximation of
T Casset (R − wcash) by the function T Casset (R )−T Casset (wcash) is good as illustrated in the
bottom panels in Figure 12 when wcash is equal to 10% and 50%.

Figure 12: Transaction cost function (101) in bps with x+ = 10%
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In Appendix C.2 on page 88, we report the transaction cost function when the trading
limit is respectively equal to x+ = 30% and x+ = 50% (Figures 29 and 30). We observe

40



Liquidity Stress Testing in Asset Management

that the approximation is less and less accurate when the trading limit x+ increases. Let us
define the approximation error by:

Error
(
wcash;x+

)
= sup

R∈[0,1]
|(T Casset (R )− T Casset (wcash))− T Casset (R − wcash)| (103)

This function is represented in Figure 31 on page 89 for three values of x+: 10%, 20% and
30%. We see that the approximation error is cyclical:

Error
(
wcash;x+

)
= Error

(
wcash + k · x+;x+

)
for k = 1, 2, . . . (104)

and we observe a modulo pattern because of the introduction of trading limits. In Figure
13, we have reported the maximum approximation error:

MaxError
(
x+
)

= sup
wcash∈[0,1]

Error
(
wcash;x+

)
(105)

The maximum error is not acceptable when we would like to trade a large amount in
the market, but it is relatively low for usual trading limits. In our example, imposing
MaxError (x+) ≤ 1 bp is achieved when x+ ≤ 16%.

Figure 13: Maximum approximation error function MaxError (x+) in bps
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Remark 8 In Appendix B.2.8 on page 74, we derive the approximation of E [LG (wcash)].
Figure 14 shows the values of the liquidity gain when x+ = 10%. The two components are
reported in Figure 32 on page 89. Moreover, the comparison between the exact formulas
(computed with numerical integration) and the approximation formulas is given in Figure
33 on page 90. We verify that the approximation is very good.

41



Liquidity Stress Testing in Asset Management

Figure 14: Approximation of the liquidity gain E [LG (wcash)] in bps when x+ = 10% (Ex-
ample 6, page 39)
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Optimal cash buffer We can now formulate the fund manager’s optimization program.
Its objective is to minimize the expected cost of the buffer BC (wcash) and maximize its
expected gain BG (wcash):

w?cash = arg min
w∈[0,1]

BC (wcash)− BG (wcash)︸ ︷︷ ︸
Net cost NC(wcash)

(106)

Since the buffer cost and the buffer gain are two increasing functions, the minimum of
BC (wcash) is reached at w?cash = 0 while the maximum of BG (wcash) is obtained for w?cash = 1.
Therefore, there is a trade-off between these two functions. For instance, if we consider that
the expected cost of the cash buffer corresponds to the opposite of the expected excess return
penalized by the tracking error variance, we obtain:

BC (wcash) = −E [R | Rasset] +
λ

2
σ2 (R | Rasset) (107)

= wcash (µasset − µcash) +
λ

2
w2

cash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)

where λ ≥ 0 represents the aversion parameter to the tracking error risk. For the specifica-
tion of the buffer gain, we can choose the expected liquidation gain:

BG (wcash) = E [LG (wcash)] (108)

We deduce the expression of the net buffer cost NBC (wcash):

NBC (wcash) = wcash (µasset − µcash) +

λ

2
w2

cash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)
−

E [LG (wcash)] (109)
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It is made up of three components:

1. the return component that compares the expected asset return and the cash return;

2. the tracking error risk that measures the discrepancy of the fund’s behavior with
respect to the expected behavior;

3. the liquidity gain.

In order to find the solution to the optimization problem, we compute the derivative of the
net buffer cost:

∂NBC (wcash)

∂ wcash
= µasset − µcash +

λwcash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)
−

∂ E [LG (wcash)]

∂ wcash
(110)

Finally, we conclude that:

w?cash ∈

 {0} if ∂wcash
NBC (wcash) ≥ 0

{1} if ∂wcash
NBC (wcash) ≤ 0

]0, 1[ otherwise
(111)

The optimal value is equal to w?cash = 0 in particular when the expected return difference
between the assets and the cash is greater than the marginal expected liquidation gain:

µasset − µcash ≥
∂ E [LG (wcash)]

∂ wcash
⇒ ∂NBC (wcash)

∂ wcash
≥ 0 (112)

If the fund manager is not sensitive to the tracking error risk (λ = 0), we have:

µasset ≤ 0 =⇒ w?cash = 1 (113)

The two extreme solutions are easy to interpret. The first extreme case w?cash = 0 is obtained
because the liquidation gain does not compensate the (large) risk premium µasset − µcash

of the assets, whereas the second extreme case w?cash = 100% is achieved because the fund
manager anticipates that the assets will generate a negative return. In the first case, it is
inefficient to implement a cash buffer because we expect the assets to perform very well.
Therefore, implementing a cash buffer will dramatically reduce the fund’s return and the
cost of the liquidity stress is not sufficient to offset this later. In the second case, it is better
to implement a 100% cash buffer because we anticipate that the assets will face a drawdown.
However, if the fund manager and the investors are sensitive to the tracking error risk, this
result no longer holds. Indeed, if µasset ≤ 0, the sign of the derivative depends on the value
of λ:

∂NBC (wcash)

∂ wcash
≈ µasset −

∂ E [LG (wcash)]

∂ wcash︸ ︷︷ ︸
negative

+

λ · wcash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)︸ ︷︷ ︸

positive

(114)

For a large value of λ, w?cash = 100% is not optimal because it induces a high tracking error
risk. This is especially true if the asset volatility σasset is large. Nevertheless, the tracking

43



Liquidity Stress Testing in Asset Management

error risk vanishes if ρcash,asset = 1 and σcash = σasset, which corresponds to a pure cash
fund, but this case is obvious. All these results indicate that the optimal cash buffer is
generally equal to 0% or 100%, whereas the probability of obtaining an intermediate value
is low.

Let us illustrate the previous analysis. For the transaction cost function, we consider the
square-root model with several sets of parameters:

(a) s = 20 bps, c = 1 bps, βπππ = 0.40, σ = 20% and x+ = 10%

(b) s = 20 bps, c = 1 bps, βπππ = 0.40, σ = 20% and x+ = 100%

(c) s = 50 bps, c = 1 bps, βπππ = 0.40, σ = 80% and x+ = 10%

(d) s = 50 bps, c = 1 bps, βπππ = 0.40, σ = 80% and x+ = 100%

The only difference between cases (a) and (b) (resp. cases (c) and (d)) is the trading limit.
There is no trading limit for cases (b) and (d), whereas we cannot sell more than 10% of
total net assets in cases (a) and (c). Cases (a) and (b) correspond to a normal period,
whereas cases (c) and (d) are more suitable for a liquidity stress period. Indeed, the bid-ask
spread is larger (50 bps vs. 20 bps), and we observe a higher volatility (80% versus 20%).
In Figure 15, we report the net buffer cost NBC (wcash) when µasset−µcash is set to 1% and
λ is equal to zero. Each plot corresponds to a different value of the parameter η. We notice
that the function NBC (wcash) is strictly increasing in cases (a) and (b), implying that the
optimal cash buffer is w?cash = 0. If we consider a normal transaction cost function, there is
no interest to implement a liquidity buffer. Cases (c) and (d) are more interesting, because
the function NBC (wcash) may be decreasing and then increasing, meaning that w?cash > 0.
Therefore, it is more interesting to use a “stressed” transaction cost function when we would
like to calculate cash buffer analytics. This is why we only focus on cases (c) and (d) in
what follows. Figure 16 shows the optimal value w?cash of the cash buffer with respect to
the expected redemption rate26. We verify that w?cash increases with the trading limit x+

and the expected redemption rate. For instance, the optimal cash buffer is equal to 10%
if E [R ] = 50% and x+ = 10%. If there is no trading limit, w?cash = 10% if E [R ] = 23%.
Of course, these results are extremely sensitive to the values of µasset − µcash, λ and σasset.
For example, we obtain Figure 34 on page 90 when µasset − µcash is equal to 2.5%. w?cash
is dramatically reduced, and there is no liquidity buffer when x+ = 10%. There is also no
implementation when x+ = 100% and E [R ] ≤ 50%. Therefore, the value of w?cash is very
sensitive to µasset−µcash. We observe the same phenomenon with the parameter λ. Indeed,
when we take into account the tracking error risk, the optimal value w?cash is reduced27.

Given wcash, we define the break-even risk premium as the value of µasset − µcash such
that the net cost function is minimum. It is equal to:

% (wcash) =
∂ E [LG (wcash)]

∂ wcash
− λwcash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)

(115)

In Figures 37 and 38 on page 90, we have reported the value of % (wcash) for the previous
example. Once % (wcash) is computed, we obtain the following rules28: µasset − µcash < % (wcash)⇒ w?cash > wcash

µasset − µcash = % (wcash)⇒ w?cash = wcash

µasset − µcash > % (wcash)⇒ w?cash < wcash

(116)

26We have E [R ] = η
η+1

when F (x) = xη .
27See Figures 35 and 36 on page 91.
28For instance, Figures 39 and 40 on page 93 illustrate this set of rules for a liquidity buffer of 10%.
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Figure 15: Net buffer cost (µasset − µcash = 1% and λ = 0)
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Figure 16: Optimal cash buffer (µasset − µcash = 1% and λ = 0)
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In particular, a cash buffer must be implemented if the risk premium of the asset is below
the threshold % (0):

w?cash > 0⇔ µasset − µcash < % (0) =
∂ E [LG (0)]

∂ wcash
(117)

We notice that % (0) does not depend on the tracking error risk. Figures 17 and 18 show
when a liquidity buffer is implemented with respect to the risk premium µasset − µcash and
the expected redemption rate E [R ].

3.1.3 The debate on cash hoarding

We cannot finish this section without saying a few words about the debate on cash hoarding.
Indeed, the underlying idea of the previous analysis is to implement a cash buffer before
the redemption occurs, and to help the liquidation process during the liquidity stress period
(Chernenko and Sunderam, 2016; Goldstein, 2017; Ma et al., 2021). However, Morris et al.
(2017) found that asset managers can hoard cash during redemption periods, because they
anticipate worst days. Instead of liquidating the cash buffer to meet investor redemptions,
asset managers can preserve the liquidity of their portfolios (Jiang et al., 2021) or even in-
crease the proportion of cash during the stress period (Schrimpf et al., 2021). In this case,
cash hoarding may amplify fire sales and seems to be contradictory with the implementation
of a cash buffer. However, cash hoarding is easy to understand in our framework. Indeed,
during a stress period, asset managers may anticipate a very pessimistic scenario, meaning
that they dramatically reduce the expected risk premium µasset−µcash. This implies increas-
ing the level of the optimal cash buffer w?cash. Therefore, the previous framework explains
that cash buffering and cash hoarding are compatible if we consider that asset managers
have a dynamic view of the risk premium of assets.

3.2 Special arrangements

Special arrangements are used extensively by the hedge fund industry. In particular, gates
and side pockets were extensively implemented during the 2008 Global Financial Crisis
after the Lehman Brothers collapse (Aiken et al., 2015; Teo, 2011). Nevertheless, mutual
funds are increasingly familiar with these tools and are allowed in many European countries
(Darpeix et al., 2020, Table 4.3.A, page 33). For instance, gates, in-kind redemptions, side
pockets and redemption suspensions are active in France, Italy, Spain and the Netherlands.
In Germany, gates and side pockets are not permitted whereas side pockets are prohibited
in the United Kingdom.

3.2.1 Redemption suspension and gate

When implementing a gate, the fund manager temporarily limits the amount of redemptions
from the fund. In this case, the gate forces the redeeming investors to wait until the next
regular withdrawal dates to receive the balance of their withdrawal request. For instance,
the fund manager can impose that the daily amount of withdrawals do not exceed 2% of the
fund’s net assets. Let us assume a redemption rate of 5% at time t (investors A) and 2% at
time t + 1 (investors B). Because we have a daily gate of 2%, only 40% of the withdrawal
of investors A may be executed at time t. The next 60% are executed at time t + 1 and
t + 2. Investors B who would like to redeem at time t + 1 must wait until time t + 2,
because redeeming investors A take precedence. Finally, we obtain the redemption schedule
reported in Table 10. We notice that the last redeeming investors may be greatly penalized
because of the queuing system. If there are many redemptions, the remaining investors have
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Figure 17: Implementation of a cash buffer when x+ = 10%

Figure 18: Implementation of a cash buffer when x+ = 100%

47



Liquidity Stress Testing in Asset Management

no incentive to redeem because they face two risks. The risk of time redemption depends
on the frequency of withdrawal dates. In the case of monthly withdrawals, investors can
wait several months before obtaining their cash. For instance, we observed this situation
during the hedge fund crisis at the end of 2008. The second risk concerns the valuation.
Indeed, the unit price can change dramatically during the redemption gate period. This
is why regulators generally impose a maximum period for mutual funds that would like to
impose a redemption gate.

Table 10: Stress scenarios of the participation rate

Redemption Redeeming Time
Gate Investors t t+ 1 t+ 2 t+ 3

No gate
A

5%
(100%)

B
2%

(100%)

2%
A

2% 2% 1%
(40%) (40%) (20%)

B
1% 1%

(50%) (50%)

An extreme case of a redemption gate is when the manager completely suspends re-
demptions from his fund. A redemption suspension is rare and was originally used by hedge
funds29. However, it is now part of the liquidity management tools that can be used by
mutual funds. For instance, it is the only mechanism that is available in all European
jurisdictions (ESRB, 2017; Darpeix et al., 2020). It was used by at least 215 European in-
vestment funds (with net assets totaling e73.4 bn) during the coronavirus crisis in February
and March 2020 (Grill et al., 2021). The authors found that “many of those funds had
invested in illiquid assets, were leveraged or had lower cash holdings than funds that were
not suspended”.

At first sight, a suspension of redemptions seems to be a tougher decision than a re-
demption gate. Indeed, in this last case, redemptions continue to be accepted, but they
are delayed. However, it is not certain that a redemption gate will have less impact than
a redemption suspension. In a period of fire sales, gates can also exacerbate the liquidity
crisis because of the asset liquidation/market transmission channel of systemic risk (Roncalli
and Weisang, 2015a). On the contrary, redemption suspensions do not directly contribute
to the asset liquidation from a theoretical point of view. However, we generally observe
higher redemptions when suspensions are stopped. This means that we can have an ex-post
overreaction of investors. In fact, it seems that a suspension of redemptions is preferable
when the fund manager faces a temporary liquidity crisis such that many securities can not
be priced. In the absence of price valuation, it may be good to wait until normal conditions
are restored. Of course, it is not always possible and depends on the nature of the liquidity
crisis.

The impact of gates has received little attention from academics. Nevertheless, the
theoretical study of Cipriani et al. (2014) showed that there can be preemptive runs when
a fund manager is able to impose a gate, although it can be ex-post optimal for the fund’s
investors. This illustrates the issue of strategic interaction and payoff complementarities
described by Chen et al. (2010). Moreover, imposing a gate generally leads to a reputational

29See for instance the famous suspension of redemptions decided by GAM after its top manager in charge
of absolute return strategies was the subject of a disciplinary procedure (GAM, 2018).
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risk for the fund and a negative externality for the corresponding asset class and the other
similar investment funds. More generally, Voellmy (2021) showed that redemption gates are
less efficient than redemption fees, which are described on page 57.

3.2.2 Side pocket

When a side pocket is created, the fund separates illiquid assets from liquid assets. Therefore,
the fund is split into two funds: the mirror fund, which is made up of the liquid assets and
the side pocket of illiquid assets. Each investor in the initial fund receives the same number
of units of the mirror fund and the side pocket. The mirror fund inherits the properties of
the original fund. Therefore, the mirror fund can continue to be subscribed or redeemed. On
the contrary, the side pocket fund becomes a closed-end fund (Opromolla, 2009). The fund
manager’s objective is then to liquidate the assets of the side pocket fund. However, he is
not forced to liquidate them immediately and can wait until market conditions improve. For
instance,it took many months (and sometimes one or two years) for hedge fund to manage
the side pockets created in October 2008 and for investors to retrieve their cash.

To the best of our knowledge, the only academic study on side pocketing is the research
work conducted by Aiken et al. (2015), who analyzed the behavior of 740 hedge funds
between 2006 and 2011. The authors found that side pockets and gates are positively
correlated, meaning that hedge funds both gated investors and placed assets into a side
pocket during the 2008 Global Financial Crisis. This result suggests that gates and side
pockets are not mutually exclusive. This explains the bad reputation of side pockets. Indeed,
investors generally have the feeling of facing a double sentence. A part of their investment
is segregated, and they don’t know when and how much of their capital they will retrieve.
And the remainder of their investment is gated. This is not the original objective of side
pocketing, since the underlying idea is to separate the original fund into a healthy portfolio
and a bad portfolio. But generally, the healthy fund is also gated.

Certainly, side pocketing is a last-resort discretionary liquidity restriction because of the
reputational risk. First, the fund manager gives a strong signal to the market that the
liquidity crisis is not temporary but will persist for a long time. Therefore, side pocketing
indirectly contributes to strengthening the spillover effect of the liquidity crisis because
market sentiment is getting worse. Second, if we restrict our analysis to the fund level,
the effect of side pocketing is ambiguous. It is obvious that it eliminates the first-mover
advantage, but it is also a sign that the liquidity calibration of the original fund was worse.
Moreover, side pockets can be used to protect management fees on the more liquid assets or to
hide a poor risk management process. This explains that side pocketing is generally followed
by the collapse of the fund, which generally suffers from existing investors’ withdrawing while
it is not able to attract new investors.

3.2.3 In-kind redemptions

In-kind redemptions are non-monetary payments. In this case, the fund manager offers a
basket of securities to the redeeming investor, generally the asset portfolio of the fund on
a pro-rata basis. Since the beginning of the 2000s, in-kind redemptions have been used
extensively in order to improve the tax efficiency of US exchange traded funds (Poterba
and Shoven, 2002). Even though they are less common in the mutual fund industry, in-
kind redemptions have become increasingly popular to manage liquidity runs. For instance,
according to ESRB (2017), in-kind redemptions are the most common available tool in the
European Union, just after the suspension of redemptions.

In-kind redemptions are generally considered as an efficient tool for managing liquidity
runs since they transfer the liquidation issue to redeeming investors. As showed by Agarwal
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et al. (2020), redemption-in-kind funds tend to deliver more illiquid securities. Moreover,
these funds “experience less flow subsequently because investors avoid such funds where they
are unable to benefit from liquidity transformation function of funds” (Agarwal et al., 2020,
page 30).

Normally, in-kind redemptions solve the valuation problem of the redemption portfolio
when it corresponds to the pro-rata asset portfolio30. This property is appealing in a period
of liquidity stress. However, the pro-rata rule only concerns large redemptions in order to be
sure that the rounding effect and the decimalization impact are small. From a technical point
of view, redemption-in-kind is certainly more difficult to manage than gating the fund. This
certainly explains why there are few mutual funds that have applied in-kind redemptions in
Europe.

3.3 Swing pricing

The objective of swing pricing is to protect existing investors from dilution31 caused by
large trading costs and market impacts due to subscriptions and/or redemptions. Since
this mechanism is relatively new, there are few research studies on its benefit. From a
theoretical and empirical point of view, it seems that swing pricing can eliminate the first-
mover advantage (Jin et al., 2019; Capponi et al., 2020) and mitigate the systemic risk
(Malik and Lindner, 2017; Jin et al., 2019). Nevertheless, these results must be challenged
as shown by the works of Lewrick and Schanz (2017a,b):

[...] “we show that, within our theoretical framework, swing pricing can prevent
self-fulfilling runs on the fund. However, in practice, the scope for swing pricing
to prevent self-fulfilling runs is more limited, primarily because the share of
liquidity-constrained investors is difficult to assess” (Lewrick and Schanz, 2017a).

[...] “we show that swing pricing dampens outflows in reaction to weak fund
performance, but has a limited effect during stress episodes. Furthermore, swing
pricing supports fund returns, while raising accounting volatility, and may lead
to lower cash buffers” (Lewrick and Schanz, 2017b).

3.3.1 Investor dilution

Following Roncalli et al. (2021a), the total net assets (TNA) equal the total value of assets
A (t) less the current or accrued liabilities D (t):

TNA (t) = A (t)−D (t)

The net asset value (NAV) represents the share price or the unit price:

NAV (t) =
TNA (t)

N (t)

where the total number N (t) of shares or units in issue is the sum of all units owned by all
unitholders. In the sequel, we assume that the debits are negligible: D (t) � A (t). This
implies that:

NAV (t+ 1) ≈ A (t+ 1)

N (t+ 1)

RA (t+ 1) denotes the return of the assets. We can then face three situations:

30Indeed, the valuation problem is transferred to the redeeming investors.
31This means a reduction in the fund’s value.
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1. There is no net subscription or redemption flows, meaning that N (t+ 1) = N (t) and
A (t+ 1) = (1 +R (t+ 1)) ·A (t). In this case, we have:

NAV (t+ 1) = (1 +RA (t+ 1))
A (t)

N (t)

= (1 +RA (t+ 1)) ·NAV (t) (118)

The growth of the net asset value is exactly equal to the return of the assets:

RNAV (t+ 1) =
NAV (t+ 1)

NAV (t)
− 1 = RA (t+ 1)

2. If the investment fund experiences some net subscription flows, the number of units
becomes:

N (t+ 1) = N (t) + ∆N (t+ 1)

where ∆N (t+ 1) = N+ (t+ 1) is the number of units to be created. At time t + 1,
we have32:

A (t+ 1) = (1 +RA (t+ 1)) · (A (t) + ∆N (t+ 1) ·NAV (t))

= (1 +RA (t+ 1)) · (N (t) ·NAV (t) + ∆N (t+ 1) ·NAV (t))

= (1 +RA (t+ 1)) ·N (t+ 1) ·NAV (t)

and:
TNA (t+ 1) = A (t+ 1)− T C (t+ 1)

where T C (t+ 1) is the transaction cost of buying the new assets. We deduce that:

NAV (t+ 1) =
A (t+ 1)− T C (t+ 1)

N (t+ 1)

= (1 +RA (t+ 1)) ·NAV (t)− T C (t+ 1)

N (t+ 1)
(119)

In this case, the growth of the net asset value is less than the return of the assets:

RNAV (t+ 1) = RA (t+ 1)− T C (t+ 1)

N (t+ 1) ·NAV (t)
≤ RA (t+ 1)

3. If the investment fund experiences some net redemption flows, the number of units
becomes:

N (t+ 1) = N (t) + ∆N (t+ 1)

where ∆N (t+ 1) = −N− (t+ 1) and N− (t+ 1) is the number of units to be re-
deemed. At time t+ 1, we have:

NAV (t+ 1) =
(1 +RA (t+ 1)) ·N (t) ·NAV (t)− T C (t+ 1)

N (t)

= (1 +RA (t+ 1)) ·NAV (t)− T C (t+ 1)

N (t)
(120)

In this case, the growth of the net asset value is less than the return of the assets:

RNAV (t+ 1) = RA (t+ 1)− T C (t+ 1)

N (t) ·NAV (t)
≤ RA (t+ 1)

32∆N (t+ 1) ·NAV (t) is the amount invested in the new assets at time t.
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When comparing Equations (118), (119) and (120), we notice that subscription/redemption
flows may penalize existing/remaining investors, because the net asset value is reduced by
the transaction costs that are borne by all investors in the fund:

NAV (t+ 1 | ∆N (t+ 1) = 0)−NAV (t+ 1 | ∆N (t+ 1) 6= 0) =
T C (t+ 1)

max (N (t) , N (t+ 1))

The decline in the net asset value is referred to as “investor dilution”.

In order to illustrate the dilution, we consider a fund with the following character-
istics: NAV (t) = $100, N (t) = 10 and RA (t+ 1) = 5%. In the absence of subscrip-
tions/redemptions, we have:

NAV (t+ 1) = (1 + 5%)× 100 = 105

We assume that creating/redeeming 5 shares induces a transaction cost of $30. In the case
of a net subscription of $500, we have N (t+ 1) = 15 and:

NAV (t+ 1) = (1 + 5%)× 100− 30

15
= 103

In the case of a net redemption of $500, we have N (t+ 1) = 5 and:

NAV (t+ 1) = (1 + 5%)× 100− 30

10
= 102

The transaction cost therefore reduces the NAV and impacts all investors in the fund. More-
over, we notice that the dilution is greater for redemptions than subscriptions. The reason
is that the number of shares increases in the case of a subscription, implying that the trans-
action cost by share is lower than in the case of a redemption.

This asymmetry property between subscriptions and redemptions is an important issue
when considering a liquidity stress testing program. Another factor is that the unit transac-
tion cost is an increasing function of the size of the subscription/redemption amount. This
is particularly true in a stress market when it is difficult to sell assets because of the low
demand. If we consider the previous example, we can assume that selling $500 in a stress
period may induce a transaction cost of $50. In this case, we obtain:

NAV (t+ 1) = (1 + 5%)× 100− 50

10
= 100

This example illustrates how investor dilution is an important issue when the fund faces
redemptions in a stress period.

3.3.2 The swing pricing principle

The swing pricing principle means that the NAV is adjusted for net subscriptions/redemptions.
Therefore, transaction costs are only borne by the subscribing/redeeming investors. In the
case of a net redemption, the NAV must be reduced by the transaction costs divided by the
number of net redeeming shares:

NAVswing (t+ 1) = NAVgross (t+ 1)− T C (t+ 1)

N− (t+ 1)−N+ (t+ 1)

where NAVgross is the “gross” net asset value calculated before swing pricing is applied
(AFG, 2016). In the case of a net subscription, the NAV becomes:

NAVswing (t+ 1) = NAVgross (t+ 1) +
T C (t+ 1)

N+ (t+ 1)−N− (t+ 1)
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Therefore, the NAV is increased if N+ −N− > 0. Finally, we obtain the following compact
formula:

NAVswing (t+ 1) = NAVgross (t+ 1) +
T C (t+ 1)

∆N (t+ 1)

The adjustment only impacts investors that trade on that day, since existing investors are
not affected by this adjustment. Indeed, the total net asset is equal to:

TNA (t+ 1) = A (t+ 1)− T C (t+ 1)

= N (t) ·NAVgross (t+ 1) + ∆N (t+ 1) ·NAVswing (t+ 1)− T C (t+ 1)

= N (t) ·NAVgross (t+ 1) + ∆N (t+ 1) ·NAVgross (t+ 1)

= N (t+ 1) ·NAVgross (t+ 1)

meaning that it is exactly equal to the gross net asset value. If there is no redemp-
tion/subscription at time t+ 2, we obtain:

NAV (t+ 2) = (1 +RA (t+ 2)) ·NAVgross (t+ 1)

= (1 +RA (t+ 2)) · (1 +RA (t+ 1)) ·NAV (t+ 1)

We notice that swing pricing has protected the fund’s buy-and-hold investors.

If we consider the previous example, we have NAVgross (t+ 1) = 105 and:

NAVswing (t+ 1) =


105 +

30

5
= 111 if subscription

105− 30

5
= 99 if redemption

We observe that swing pricing increases the fund’s volatility since the NAV adjustment with
swing pricing is greater than the NAV adjustment without swing pricing. Moreover, the
adjustment is smaller for subscriptions because the number of shares increases33. Therefore,
we notice an asymmetry between subscriptions and redemptions since the latter impact the
unit price more than the former. In the case of a liquidity crisis where there is a substantial
imbalance between demand and supply, the impact of redemptions is even stronger and the
contagion risk of a spillover effect is increased.

3.3.3 Swing pricing in practice

Swing pricing is regulated in Europe and the U.S. and can be used under regulatory con-
straints (Malik and Lindner, 2017). For instance, in France, the asset manager should inform
the AMF and the fund’s auditor of the implementation of swing pricing (AFG, 2016). The
use of swing pricing has also been encouraged during the Coronavirus crisis in order to
manage the liquidity:

“The AMF also favors the use of swing pricing and anti-dilution levies mech-
anisms during the current crisis, given the low liquidity of certain underlying
assets and the sometimes-high costs involved in restructuring portfolios” (AMF,
2020, page 4).

According to ESMA (2020b), swing pricing was the most used LMT in Europe during the
market stress in February and March 2020, far ahead of redemption suspension. This follows
the recommendations provided by the ESRB. Similar rules have existed in the U.S. for some
years (SEC, 2016), even though the use of swing pricing is less widespread than in E.U.
jurisdictions.

33Indeed, we have max (N (t) , N (t+ 1)) = N (t+ 1) > N (t) in the case of net subscriptions and
max (N (t) , N (t+ 1)) = N (t) in the case of net redemptions.
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Full vs. partial vs. dual pricing According to Jin et al. (2019), asset managers use
three alternative pricing mechanisms:

1. Partial swing pricing
The NAV is adjusted only when the net fund flow is greater than a threshold.

2. Full swing pricing
The NAV is adjusted every time there is a net inflow or outflow. Full swing pricing
is a special case of partial swing pricing by considering that the threshold is equal to
zero.

3. Dual pricing
We distinguish bid and ask NAVs, meaning that the investment fund has two NAVs.
Therefore, investors purchase the fund shares at the ask price and sell at the bid price.

Using a dataset of UK based asset managers, Jin et al. (2019) estimated that approximately a
quarter of investment funds use traditional pricing mechanisms whereas the three remaining
quarters consider alternative pricing mechanisms. Within this group, the break down is the
following: 25% employ full swing pricing, 50% prefer partial swing pricing and 25% promote
dual pricing.

Dual pricing is an extension of full swing pricing that distinguishes between subscriptions
and redemptions. However, dual pricing is more complex to calibrate. Indeed, it is not
obvious to allocate transaction costs to both redeeming and subscribing investors because
of the netting process. We have:

NAVask (t+ 1) = NAVgross (t+ 1) +
α · T C (t+ 1)

N+ (t+ 1)

and:

NAVbid (t+ 1) = NAVgross (t+ 1)− (1− α) · T C (t+ 1)

N− (t+ 1)

where α is the portion of the transaction costs allocated to gross subscriptions. For instance,
we can use the pro-rata rule:

α =
N+ (t+ 1)

N+ (t+ 1) +N− (t+ 1)

but we can also penalize redeeming investors:

α =
N+ (t+ 1)

N+ (t+ 1) + γ ·N− (t+ 1)

where γ ≥ 1 is the penalization factor. Let us consider the previous example withN+ (t+ 1) =
10, N− (t+ 1) = 5 and T C (t+ 1) = 30. We have NAVswing (t+ 1) = 111. If we assume
that γ = 1, we have NAVask (t+ 1) = 107 and NAVbid (t+ 1) = 103. If γ is set to 2, the
previous figures become NAVask (t+ 1) = 106.5 and NAVbid (t+ 1) = 102.

Remark 9 The previous example illustrates one of the drawbacks of swing pricing. Indeed,
since there are 10 subscriptions and 5 redemptions, the swing NAV is greater than the gross
NAV ($111 vs. $105). Redeeming investors benefit from the entry of new investors. In the
case of dual pricing, the unit price of redeeming investors is equal to $103 (if γ is set to 1),
which is lower than $111.
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Setting the swing threshold and the swing factor In most cases, swing pricing is
applied only when the net amount of subscriptions and redemptions reaches a threshold34:∣∣∣∣ ∆N (t+ 1)

min (N (t) , N (t+ 1))

∣∣∣∣ ≥ swthreshold

where swthreshold is the swing threshold. For example, swthreshold = 5% implies that the
swing pricing mechanism is activated every time we observe at least 5% of inflows/outflows.
A swing factor is then applied to the NAV:

NAVswing (t+ 1) =

{
(1 + swfactor) ·NAV (t+ 1) if net subscription ≥ swthreshold

(1− swfactor) ·NAV (t+ 1) if net redemption ≥ swthreshold

We can use different approaches to calibrate the parameters swthreshold and swfactor.
For instance, we can assume that swthreshold is constant for a family of funds (e.g. equity
funds). In this case, swthreshold is estimated using a historical sample of flow rates and
transaction costs. The underlying idea is to use a value of swthreshold such that transaction
costs become significant. However, this approach may appear too simple in a liquidity stress
testing framework. Indeed, transaction costs are larger in a stress period, meaning that
swthreshold is a decreasing function of the stress intensity. For instance, the asset manager
can calibrate two values of swthreshold, a standard figure which is valid for normal periods
and a lower figure which is valid for normal periods. Typical values are 5% and 2%. The
parameter swfactor must reflect the transaction costs. Again, two approaches are possible:
ex-ante or ex-post transaction costs. In the first case, we consider the transaction cost
function calibrated to measure the asset risk, whereas the effective cost is used in the second
case.

By construction, the swing factor swfactor varies over time while the swing threshold
swthreshold is more static. When the swing pricing mechanism is applied, we can estimate
the amount of transaction costs:

T C (t+ 1) = swfactor ·NAV (t+ 1) · |∆N (t+ 1)|

We deduce that the transaction cost ratio is greater than the product of the swing threshold
and the swing factor:

T C (t+ 1)

min (N (t) , N (t+ 1)) ·NAV (t+ 1)
= swfactor ·

∣∣∣∣ ∆N (t+ 1)

min (N (t) , N (t+ 1))

∣∣∣∣
≥ swfactor · swthreshold

Another approach consists in fixing the value of the product:

swfactor · swthreshold = swproduct

In this case, we are sure that the swing pricing is activated when the transaction cost ratio
is greater than the swing product swproduct. In the previous approaches, the swing factor
is calculated once we have verified that the fund flow is larger than swthreshold. In this new
approach, the swing factor is first calculated in order to determine the swing threshold:

swthreshold =
swproduct

swfactor

Therefore, the swing threshold is dynamic and changes every day.

34An alternative approach is to replace min (N (t) , N (t+ 1)) with N (t).
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Let us see an example to illustrate the difference between the static and dynamic ap-
proaches. We consider that swthreshold = 5% and swfactor = 40 bps. We deduce that
swproduct = 2 bps. In the static approach, the swing pricing mechanism is not activated if
we face a redemption rate of 4% whatever the value of the swing factor. We assume that
we are in a period of stress and a redemption rate of 4% implies a swing factor of 60 bps.
In the dynamic approach, the swing threshold is equal to 3.33%, implying the activation of
the swing pricing mechanism. More generally, we have a hyperbolic relationship between
swfactor and swthreshold as illustrated in Figure 19.

Figure 19: Dynamic approach of swing pricing
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3.3.4 Anti-dilution levies

Anti-dilution levies (ADL) are very close to swing pricing since the fund manager does not
use the transaction costs to adjust the NAV, but to adjust entry and exit fees. According
to AFG (2016), these fees are equal to:

N+ > N− N+ < N− Pro-rata

ADL+ T C (t+ 1)

N+ (t+ 1)

T C (t+ 1)

∆N (t+ 1)
0 0

T C (t+ 1)

N+ (t+ 1) +N− (t+ 1)

ADL− 0 0
T C (t+ 1)

N− (t+ 1)
− T C (t+ 1)

∆N (t+ 1)

T C (t+ 1)

N+ (t+ 1) +N− (t+ 1)

where ADL+ is the entry fees and ADL− is the exit fees. In the case of a pro-rata rule, the
transaction costs are borne by subscribing and redeeming investors. In the other cases, the
transaction costs are charged to subscribing investors if N+ > N− or redeeming investors if
N+ < N−. Moreover, anti-dilution levies may or may not recognize netting figures. This is
why we have reported two columns for the cases N+ > N− and N+ < N−.
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The main advantage of anti-dilution levies is that the NAV is not noisy and reflects the
fair value of the unit price. Remaining investors may be sensitive because the mark-to-
market is smoother. However, subscribing/redeeming investors may prefer swing pricing,
because they may pay more attention to additional costs than to an adjusted price. Indeed,
they may have the feeling that swing pricing is fairer, because the published NAV applies
to all investors, whereas entry/exit costs only concern them.

Remark 10 Sometimes there is a confusion between redemption fees and exit fees35. Indeed,
redemption fees are charged to investors in a systematic way whatever the market conditions.
They are indicated in the prospectus and their level is disclosed. Therefore, they are not
a liquidity management tool for liquidity stress testing. On the contrary, swing pricing
and anti-dilution levies are only charged in stress markets. Their levels are not necessarily
disclosed. Table 11 summarizes the differences between these three mechanisms.

Table 11: Differences between redemption fees, anti-dilution levies and swing pricing

Characteristics
Redemption Anti-dilution Swing

fees levies pricing

Justification No obligation
Documented and general principles

externalised to fundholders
Requirements

Any redemption
Based on the net S/R balance

for activation and an activation threshold
Indication to Level of fees No detail

the level defined in the prospectus concerning the parameters

Source: Darpeix et al. (2020, page 15).

3.3.5 Effectiveness of swing pricing

Based on the empirical study of US funds and their Luxembourg counterparts, Lewrick and
Schanz (2017b) noticed that negative returns imply larger outflows during normal market
conditions for US funds. In stressed markets, in particular during the 2013 US taper tantrum,
they found no difference. Since swing pricing is applied in Luxembourg and not in the US
during the study period, they concluded that swing pricing failed to reduce the liquidity
risk. For Capponi et al. (2020), the reason lies in the scale and application of swing pricing.
These authors consider that swing factors are too small and must be larger to reduce the
incentive to redeem immediately to capture the first-mover advantage premium.

We reiterate here that the purpose of swing pricing is to protect the remaining investors.
In particular, during a period of market stress, they do not pay other investors’ transaction
costs. The objective of swing pricing is not to prevent a liquidity crisis, but it may help
fund managers to better rebalance their portfolio and reduce the use of horizontal slicing.

Remark 11 This section dedicated to liquidity management tools demonstrates that there
is not one solution, but several approaches to managing the liquidity risk. Nevertheless, this
section also shows that the perfect tool does not exist. In liquidity risk, the number of known
and unknown unknowns is much greater than the number of known knowns. Therefore, the
tools presented here give a partial answer to the problem, because the liquidity issue concerns
the balance between buying and selling forces. Therefore, it makes sense to complement the
liquidity framework by monitoring its level.

35See for instance Greene et al. (2007) and Lenkey and Song (2016).
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4 Liquidity monitoring tools

It is obvious that monitoring liquidity is an important stage of a liquidity stress testing
program. For instance, the step is mandatory in banking regulations. In addition to the
LCR and NSFR, BCBS (2013) defines a set of liquidity risk monitoring tools, in order to
“capture specific information related to a bank’s cash flows, balance sheet structure, available
unencumbered collateral and certain market indicators”. We can classify these tools36 into
two categories. The first category concerns the metrics that measure the liquidity at a global
level. It corresponds to the macro-economic approach of liquidity monitoring, and it mainly
uses market-wide information. The second category is specific to the managed portfolios.
It corresponds to the micro-economic approach of liquidity monitoring, and it mainly uses
security-based information.

4.1 Macro-economic approach to liquidity monitoring

The ESMA risk assessment uses several metrics (ESMA TRV Report, 2021, page 4) to mon-
itor financial risks: (a) risk participants (market environment, securities markets, infras-
tructure and services, asset management and consumers), (b) risk categories (liquidity risk,
market risk, contagion risk, credit risk, operational risk) and (c) risk drivers (macro-economic
environment, interest-rate environment, sovereign and private debt markets, infrastructure
disruption, political and event risks). Some of them are interesting when monitoring global
liquidity from an asset management viewpoint. We notice that the starting point of ESMA
for measuring financial risks is the market environment, more precisely the economic out-
look (real output, inflation risk, etc.) and the policy responses. Therefore, central bank
liquidity is an important monitoring metric. Besides money market conditions, monitoring
the banking sector is also essential, because of its interconnectedness with asset managers
and asset owners. Therefore, statistics on the repo market activity are important to track37.
Of course, traditional market risk metrics can be used to assess global liquidity. These in-
clude market sentiment (for instance, the levels of the VIX index and flight to liquidity),
the performance of asset classes, the average level of credit spreads (for both sovereign and
corporate bonds), the high yield premium, etc. Finally, the analysis of inflows/outflows, the
number of active LMTs, liquidity demand from investors, the dynamics of trading volumes
and the average bid-ask spreads can complement the macro-economic approach to liquidity
monitoring.

4.2 Micro-economic approach to liquidity monitoring

The micro-economic approach focuses on asset classes, security instruments and issuers. For
instance, the global liquidity metric gives no information on the liquidity of US municipal
bonds, the investment grade segment of the ETF market, Italian BTP bonds, etc. The
underlying idea is to then use more specific measures, including the daily spread, the daily
volume, the number of daily quotes, etc. These metrics can be computed by asset class,
security or issuer. Other information may be useful, for instance market-making activity,
issuance activity, ETF liquidity, etc. Other important information flows are the metrics that
can be computed from order books or the activity of trading desks. A typical example is
the order imbalance proposed by Easley et al. (2015).

36The exhaustive list of liquidity monitoring metrics in the case of the Basel III framework is available in
BCBS (2019).

37Other statistics are easily available such as the one-month return of banks’ stocks, CDS and credit
spreads of banks, etc.
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5 Conclusion

This article concludes a series of research studies dedicated to liquidity stress testing in
asset management. As already said, academics and professionals have so far paid little
attention when asset-liability management concerns the asset management industry. The
goal of this research project was then to fill the gap to develop mathematical and statistical
approaches and provide appropriate answers. The first part of this project was dedicated to
the liability liquidity risk (Roncalli et al., 2021a) and focused on the statistical modeling of
redemption shocks. The second part concerned the asset liquidity risk (Roncalli et al., 2021b)
and dealt with the modeling of the transaction cost function. Finally, this article, which
constitutes the third part of the project, establishes the ALM framework of the liquidity risk
in asset management (Roncalli, 2021c). It is organized around the three Ms: measurement,
management and monitoring.

The primary liquidity measurement tool is the redemption coverage ratio or RCR. Using
a redemption scenario, the RCR measures the fund manager’s ability to liquidate the re-
demption portfolio in a stress period. Two methods exist to calculate the RCR: the time to
liquidation approach and the HQLA framework. The RCR depends on several assumptions
about liability and asset risks, but also on the liquidity policy (trading limits and liquidation
method38). We show that the latter has a big impact. Moreover, we show how reverse stress
testing can be implemented, in particular how to define liability and asset RST scenarios.

Liquidity management tools are many and varied. However, we can classify them into
three main categories. The first category concerns cash management and the implementation
of liquidity buffers. For that, we propose an analytical framework that compares the costs
and benefits of a cash buffer. Therefore, we are able to define the optimal value of the cash
buffer, which depends on marginal transaction costs, the expected return of assets and the
sensitivity to the tracking error risk. In particular, we illustrate the central role of the risk
premium. This analysis enabled us to reconcile the paradox around cash buffering and cash
hoarding. In particular, we explain cash hoarding by the dynamic implementation of a cash
buffer when the asset manager formulates negative expectations on the risk premium. The
second category of LMTs are special arrangements. It concerns redemption suspensions,
gates, side pockets and in-kind redemptions. Finally, the last category revolves around
swing pricing.

Liquidity monitoring tools are more classical since they are not specific to the asset
management industry. Indeed, central and commercial banks, regulators, market makers,
investors, hedge funds and asset managers use very similar approaches. This is especially
true for global liquidity that is highly dependent on central bank liquidity, economic outlook
and market sentiment. Monitoring liquidity at asset class, security or issuer level is more
challenging, but this is mainly a data management project.

Once again, financial regulation has sped up the development of liquidity risk manage-
ment with the publication of the ESMA guidelines on liquidity stress testing in UCITS and
AIFs. Even though these guidelines are less specific than those applied in the banking sector,
they give sufficient information about what is expected and the road that asset managers
must take in the future in terms of liquidity management. This study has been completed
with the sole aim of complying with ESMA guidelines and asset management practices. It
can be viewed as a benchmark for asset managers and a guidebook for academics, who want
to develop practical models in this research field.

38We compare vertical slicing (naive and optimal pro-rata liquidation) and horizontal slicing (waterfall
liquidation).
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Appendix

A Glossary

ALMT

ALMT (or a-LMT) is the acronym of “Additional Liquidity Management Tool”. They in-
clude the tools applied by asset managers in exceptional circumstances to control or limit
dealing in fund units/shares in the interests of investors. Examples of ALMT are suspension
of dealing in units, deferral of dealing, side-pocketing and special arrangements.

Anti-diluation levy

Anti-diluation levies correspond to entry and exit fees. Their levels are calculated with
respect to the transaction costs induced by subscriptions and redemptions.

Cash buffer

A cash buffer is a special type of liquidity buffers that is exclusively composed of cash
instruments and cash equivalents.

Cash conversion factor

A CCF is a multiplicative factor, which indicates how to convert $1 of assets into a liquid
cash exposure.

Cash hoarding

Cash hoarding corresponds to a situation where the asset manager increases its cash holding
in a liquidity stress period.

Gate

When a gate is implemented, the fund manager temporarily limits the amount of redemp-
tions.

Horizontal slicing

See waterfall liquidation.

HQLA class

The term HQLA refers to high quality liquid asset. An HQLA class groups all the securities
that present the same ability to be converted into cash.

In-kind redemption

When in-kind redemptions are implemented, the fund manager offers a basket of securities to
the redeeming investor. In-kind redemptions are also called physical redemptions as opposed
to cash redemptions that imply a monetary payment.
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Liquidation policy

See trading limit.

Liquidation time

See time to liquidation.

Liquidity buffer

A liquidity buffer refers to the stock of liquid instruments held by the fund manager in order
to manage future redemptions.

Liquidity management tool

Liquidity management tools include liquidity buffers, special arrangements, swing pricing
and anti-dilution levies. See also ALMT.

Liquidity shortfall

The liquidation shortfall is defined as the residual redemption that cannot be fulfilled after
h trading days. It is expressed as a percentage of the redemption value. If it is equal to
0%, this means that we can liquidate the redemption in h trading days. More generally, its
mathematical expression is:

LS (h) = R ·max (0, 1− RCR (h))

Pro-rata liquidation

The pro-rata liquidation uses the proportional rule, implying that each asset is liquidated
such that the structure of the portfolio is the same before and after the liquidation.

Redemption coverage ratio

The redemption coverage ratio RCR (h) is the proportion of the redemption that is liquidated
after h trading days. We generally focus on daily and weekly liquidation ratios RCR (1) and
RCR (5). The RCR is also used to define the liquidation time (or time to liquidation), which
is an important measure for managing the liquidity risk.

Redemption scenario

A redemption scenario q is defined by the vector (q1, . . . , qn) where qi is the number of shares
of security i to sell. This scenario can be expressed in dollars:

Q := (Q1, . . . , Qn) = (q1P1, . . . , qnPn)

where Pi is the price of security i. The redemption scenario may also be defined by its dollar
value R:

R = V (q) =

n∑
i=1

qiPi
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Redemption suspension

A redemption suspension is a temporary measure where the investors are unable to withdraw
their capital in the fund.

Reverse stress testing

Side pocket

A side pocket is a segregated portfolio of illiquid assets.

Special arrangement

Special arrangements are specific types of LMT measures available to some AIFs and which
impact investors’ redemption rights, such as side pockets or gates.

Swing pricing

Swing pricing is a NAV adjustment process to incorporate redemption and subscription
costs.

Time to liquidation

The time to liquidation is the inverse function of the liquidation ratio. It indicates the
minimum number of days required to liquidate the proportion p of the redemption.

Trading limit

The trading limit q+ is the maximum number of shares that can be sold in one trading day.

Vertical slicing

See pro-rata liquidation.

Waterfall liquidation

In this approach, the portfolio is liquidated by selling the most liquid assets first.
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B Mathematical results

B.1 Computation of the cash conversion factor

We define H (t) as the following integral function:

H (t) =

∫ t

0

f (u)

(
1−

∫ u

0

g (s) ds

)
du (121)

where f (u) ≥ 0 and g (u) ≥ 0 are two positive functions. We note:

F (t) =

∫ t

0

f (u) du (122)

and:

G (t) =

∫ t

0

g (u) du (123)

We assume that:

• F (t) is an increasing function with F (0) = 0 and F (∞) = 1;

• G (t) is an increasing function with G (0) = 0 and G (∞) ≤ 1.

We deduce that

0 ≤ H (t) ≤ 1 (124)

In the case where f (u) = ξ is constant, we obtain:

H (t) = ξ

∫ t

0

(
1−

∫ u

0

g (s) ds

)
du

=
F (t)

∫ t
0

(1−G (u)) du

t
(125)

because we have F (t) = ξt. Using the integral mean value theorem, we deduce that∫ t
0
G (u) du = t (1−G (c)) where c ∈ [0, t]. If g (u) is relatively smooth, it follows that:

H (t) = F (t) (1−G (c))

≈ F (t)

(
1−G

(
t

2

))
(126)

This result has been obtained by considering that f (u) is constant. Nevertheless, we assume
that this result holds in the general case.

Let us apply the previous result to the computation of the cash conversion factor. f (u)
is the instantaneous amount of the liquidation portfolio that can be sold in the market at
time u, whereas F (t) is the cumulated amount of the liquidation portfolio that can be sold
between 0 and t. G (u) =

∫ u
0
g (s) ds is the drawdown during the period [0, t]. Using the

notations on page 20, Equation (126) becomes:

CCF (t) = LF (t)

(
1−DF

(
t

2

))
(127)
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B.2 Analytics of the cash buffer

B.2.1 Mean-variance analysis of the portfolio

Let wcash be the cash-to-assets ratio:

wcash =
cash

TNA
(128)

The random return of the portfolio that includes the cash buffer is equal to:

R = wcash ·Rcash + (1− wcash) ·Rasset

= Rasset − wcash · (Rasset −Rcash) (129)

where Rcash and Rasset are the random returns of the cash and the assets. We deduce that:

E [R] = µasset − wcash · (µasset − µcash) (130)

and:

σ2 (R) = w2
cash · σ2

cash + (1− wcash)
2 · σ2

asset +

2wcash · (1− wcash) · ρcash,asset · σcash · σasset (131)

where µcash and µasset are the expected returns of the cash and asset components, σcash and
σasset are the corresponding volatilities, and ρcash,asset is the correlation between the cash
and the assets. Generally, we assume that σcash ≈ 0 (or σcash � σasset), implying that:

σ (R) ≈ (1− wcash) · σasset (132)

B.2.2 Tracking error analysis of the portfolio

Since the tracking error due to the cash buffer is given by:

e = R−Rasset

= −wcash · (Rasset −Rcash) (133)

we obtain the following formula for the expected excess return:

E [R | Rasset] = E [R−Rasset]

= −wcash · (µasset − µcash) (134)

whereas the tracking error volatility σ (R | Rasset) is equal to:

σ2 (R | Rasset) = σ2 (R−Rasset)

= w2
cash ·

(
σ2
cash + σ2

asset − 2ρcash,asset · σcash · σasset
)

(135)

If we assume that σcash ≈ 0, it follows that:

σ (R | Rasset) ≈ wcash · σasset (136)
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B.2.3 Beta and correlation of the portfolio

The covariance between the portfolio return and the asset return is equal to:

cov (R,Rasset) = E [R ·Rasset]− E [R] · E [Rasset]

= E
[
wcash ·Rcash ·Rasset + (1− wcash) ·R2

asset

]
−

(µasset − wcash · (µasset − µcash)) · µasset

= wcash · (ρcash,asset · σcash · σasset + µcash · µasset) +

(1− wcash) ·
(
σ2
asset + µ2

asset

)
−(

µ2
asset − wcash ·

(
µ2
asset − µcash · µasset

))
= wcash · ρcash,asset · σcash · σasset +

(1− wcash) · σ2
asset (137)

We deduce that:

β (R | Rasset) =
cov (R,Rasset)

σ2 (Rasset)

= 1− wcash

σ2
asset

(
σ2
asset − ρcash,asset · σcash · σasset

)
(138)

If σcash ≈ 0, we obtain:
β (R | Rasset) ≈ 1− wcash (139)

and:

ρ (R,Rasset) =
cov (R,Rasset)

σ (R) · σ (Rasset)

≈ 1 (140)

B.2.4 Sharpe and information ratios

The Sharpe ratio is equal to:

SR (R) =
E [R]− E [Rcash]

σ (R)

=
(1− wcash) · (µasset − µcash)

σ (R)
(141)

For the information ratio, we obtain:

IR (R | Rasset) =
E [R | Rasset]

σ (R | Rasset)

= − µasset − µcash√
σ2
cash + σ2

asset − 2ρcash,asset · σcash · σasset
(142)

If σcash ≈ 0, we deduce that:

SR (R) ≈ µasset − µcash

σasset
= SR (Rasset) (143)

and:

IR (R | Rasset) ≈ −
µasset − µcash

σasset
= −SR (Rasset) (144)
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B.2.5 Liquidation gain

Without the cash buffer, the transaction cost of the redemption shock R = R ·TNA is equal
to:

T Cwithout = T Casset (R · TNA) (145)

where T Casset (V ) is the transaction cost39 when liquidating the amount V of assets. With
the cash buffer, the breakdown of redemption shock is:

R = Rcash + Rasset

= min (wcash,R ) · TNA︸ ︷︷ ︸
Cash liquidation

+ (R − wcash)
+ · TNA︸ ︷︷ ︸

Asset liquidation

(146)

Indeed, the fund manager first sells the cash until the redemption rate reaches the cash-to-
assets ratio, and then liquidates the assets if necessary:

R =

 0 if R = 0
R · TNA if 0 < R ≤ wcash

wcash · TNA + (R − wcash) · TNA if R > wcash

(147)

We deduce that the transaction cost has two components:

T Cwith = T Ccash (min (wcash,R ) · TNA) + T Casset
(

(R − wcash)
+ · TNA

)
(148)

where T Ccash (V ) is the transaction cost when liquidating the amount V of cash. Another
more tractable expression of T Cwith is:

T Cwith = T Ccash (R · TNA) · 1 {R ≤ wcash}+

T Casset ((R − wcash) · TNA) · 1 {R > wcash} (149)

It follows that the liquidation gain of implementing a cash buffer is:

LG = T Cwithout − T Cwith (150)

We deduce that:

LG = T Casset (R · TNA)− T Ccash (R · TNA) · 1 {R ≤ wcash} −
T Casset ((R − wcash) · TNA) · 1 {R > wcash}

= T Casset (R · TNA) · 1 {R ≤ wcash}+ T Casset (R · TNA) · 1 {R > wcash} −
T Ccash (R · TNA) · 1 {R ≤ wcash} − T Casset ((R − wcash) · TNA) · 1 {R > wcash}

= (T Casset (R · TNA)− T Ccash (R · TNA)) · 1 {R ≤ wcash}+

(T Casset (R · TNA)− T Casset ((R − wcash) · TNA)) · 1 {R > wcash}
= LGcash + LGasset (151)

where:
LGcash = (T Casset (R · TNA)− T Ccash (R · TNA)) · 1 {R ≤ wcash} (152)

and:

LGasset = (T Casset (R · TNA)− T Casset ((R − wcash) · TNA)) · 1 {R > wcash} (153)

39The unit of the transaction cost function is expressed in % of the total net assets.
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Finally, we conclude that:

E [LG] = E [LGcash] + E [LGasset]

=

∫ wcash

0

(T Casset (R · TNA)− T Ccash (R · TNA)) dF (R ) +∫ 1

wcash

(T Casset (R · TNA)− T Casset ((R − wcash) · TNA)) dF (R ) (154)

where F (x) is the distribution function of the redemption rate R .

We can simplify the previous expressions in two different ways. If we assume that
T Ccash (R) ≈ 0, we have:

LGcash ≈ T Casset (R · TNA) · 1 {R ≤ wcash} (155)

and:

E [LGcash] =

∫ wcash

0

T Casset (R · TNA) dF (R ) (156)

We can also simplify LGasset with the following approximation:

T Casset ((R − wcash) · TNA) ≈ T Casset (R · TNA)− T Casset (wcash · TNA) (157)

This approximation is valid if the transaction cost function is perfectly additive. This is
not the case because of the price impact. However, the transaction cost function may be
decomposed as a sum of daily transaction costs. Because of the liquidation policy limits, the
daily transaction costs are almost the same for large redemptions and can justify the previous
approximation. To better illustrate the underlying idea, let us assume that R = 30% and
wcash = 5%. Moreover, we suppose that we can liquidate 5% of the total net assets every
day with a total cost of 7 bps in the stress regime40. Liquidating 30% is performed in 6
days: T Casset (R · TNA) = 6 × 7 = 42 bps. Liquidating 30% − 5% is performed in 5 days
and we have:

T Casset ((30%− 5%) · TNA) = T Casset (25% · TNA)

= 5× 7 = 35 bps

= 42− 7

= T Casset (30% · TNA)− T Casset (5% · TNA) (158)

In practice, we don’t verify the strict equality because of many factors, but we can consider
that the approximation is relatively valid compared to all uncertainties of a stress testing
program. Therefore, we have:

LGasset ≈ (T Casset (R · TNA)− T Casset (R · TNA) + T Casset (wcash · TNA)) · 1 {R > wcash}
= T Casset (wcash · TNA) · 1 {R > wcash} (159)

and:

E [LGasset] =

∫ 1

wcash

T Casset (wcash · TNA) dF (R )

= T Casset (wcash · TNA) · (1− F (wcash)) (160)

40We recall that the transaction cost function is expressed in % of the total net assets, and not with
respect to the liquidation amount. A total cost of 7 bps for the fund when the redemption rate is equal to
5% is then equivalent to a unit transaction cost of 140 bps
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Finally, we obtain:

E [LG] =

∫ wcash

0

T Casset (R · TNA) dF (R ) +

T Casset (wcash · TNA) · (1− F (wcash)) (161)

Remark 12 Since T Casset (R) is a function, we can replace it by the function T Casset (R )
without any impact on the previous equations. This is equivalent to normalize the total net
assets — TNA = 1.

B.2.6 First derivative of E [LG (wcash)]

Exact formula The first derivative of E [LGcash (wcash)] satisfies:

∂ E [LGcash (wcash)]

∂ wcash
= (T Casset (wcash)− T Ccash (wcash)) · f (wcash)

≥ 0 (162)

where f (x) is the probability density function of the redemption rate R . For E [LGasset (wcash)],
we use the Leibniz integral rule:

∂ E [LGasset (wcash)]

∂ wcash
= −T Casset (wcash) · f (wcash) +∫ 1

wcash

T C′asset (R − wcash) dF (R ) (163)

where T C′asset is the derivative of the transaction cost function, which is assumed to be
positive. We have:

∂ E [LGasset (0)]

∂ wcash
=

∫ 1

0

T C′asset (R ) dF (R )

≥ 0 (164)

and:

∂ E [LGasset (1)]

∂ wcash
= −T Casset (1) · f (1)

< 0 (165)

Finally, we obtain:

∂ E [LG (wcash)]

∂ wcash
= −T Ccash (wcash) · f (wcash) +

∫ 1

wcash

T C′asset (R − wcash) dF (R ) (166)

It follows that:

∂ E [LG (0)]

∂ wcash
=

∫ 1

0

T C′asset (R − wcash) dF (R )

≥ 0 (167)

and:

∂ E [LG (1)]

∂ wcash
= −T Ccash (1) · f (1)

< 0 (168)
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Approximate formula The first derivative of E [LGcash (wcash)] satisfies:

∂ E [LGcash (wcash)]

∂ wcash
= T Casset (wcash) · f (wcash)

≥ 0 (169)

For E [LGasset (wcash)], we obtain:

∂ E [LGasset (wcash)]

∂ wcash
= −T Casset (wcash) · f (wcash) + T C′asset (wcash) · (1− F (wcash)) (170)

We have:

∂ E [LGasset (0)]

∂ wcash
= T C′asset (0) · (1− F (0))

≥ 0 (171)

and:

∂ E [LGasset (1)]

∂ wcash
= −T Casset (1) · f (1)

< 0 (172)

Finally, we conclude that:

∂ E [LG (wcash)]

∂ wcash
= T Casset (wcash) · f (wcash)− T Casset (wcash) f (wcash) +

T C′asset (wcash) · (1− F (wcash))

= T C′asset (wcash) · (1− F (wcash))

≥ 0 (173)

B.2.7 Closed-form formula of Example 5 on page 37

Exact formula If T Casset (x) = x · (s + βπππσ
√
x), T Ccash (x) = x · c and F (x) = xη, we

have:

E [LGcash (wcash)] =

∫ wcash

0

(T Casset (R )− T Ccash (R )) dF (R )

= η

∫ wcash

0

x ·
(

s − c + βπππσ
√
x
)
· xη−1 dx

= η (s − c)

∫ wcash

0

xη dx+ ηβπππσ

∫ wcash

0

xη+0.5 dx

=
η (s − c)

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
· wη+1.5

cash (174)

and:

E [LGasset (wcash)] =

∫ 1

wcash

(T Casset (R )− T Casset ((R − wcash))) dF (R )

= η

∫ 1

wcash

(
swcash + βπππσ

(
x
√
x− (x− wcash)

√
x− wcash

))
· xη−1 dx

= ηswcash

∫ 1

wcash

dx+ ηβπππσ

∫ 1

wcash

xη+0.5 dx−

ηβπππσ

∫ 1

wcash

(x− wcash)
1.5
xη−1 dx (175)
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If we denote by I (wcash; η) the integral
∫ 1

wcash
(x− wcash)

1.5
xη−1 dx, we obtain:

E [LGasset (wcash)] = ηs ·wcash (1− wcash)+
2ηβπππσ

2η + 3
·
(

1− wη+1.5
cash

)
−ηβπππσ ·I (wcash; η) (176)

where41:

I (wcash; η) =
2

5
(1− wcash)

5/2
wη−1cash 2F1

(
1− η, 5

2
;

7

2
;
wcash − 1

wcash

)
(177)

We deduce that:

E [LG (wcash)] =
η (s − c)

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
+

ηs · wcash (1− wcash)− ηβπππσ · I (wcash; η) (178)

Approximate formula We have:

E [LGcash (wcash)] =

∫ wcash

0

T Casset (x) dF (x)

= η

∫ wcash

0

x ·
(

s + βπππσ
√
x
)
· xη−1 dx

= ηs
∫ wcash

0

xη dx+ ηβπππσ

∫ wcash

0

xη+0.5 dx

=
ηs

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
· wη+1.5

cash (179)

and:

E [LGasset (wcash)] = T Casset (wcash) · (1− F (wcash))

= wcash · (s + βπππσ
√
wcash) · (1− wηcash)

= s · wcash − s · wη+1
cash + βπππσ · w1.5

cash − βπππσ · w
η+1.5
cash (180)

We deduce that:

E [LG (wcash)] = s · wcash + βπππσ · w1.5
cash −

s
η + 1

· wη+1
cash −

3βπππσ

2η + 3
· wη+1.5

cash (181)

B.2.8 Closed-form formula of Example 6 on page 39

We have:

T Casset (x) = x · s︸︷︷︸+

linear

κβπππσ · x+
√
x+︸ ︷︷ ︸

constant

+ βπππσ ·
(
x− κx+

)√
x− κx+︸ ︷︷ ︸

nonlinear

:= g
(
x;κ, x+

)
(182)

where:

κ := κ
(
x;x+

)
=
⌊ x
x+

⌋
(183)

41See Equation (201) in Appendix B.3 on page 77.
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We recall that T Ccash (x) = x · c and F (x) = xη. By denoting κcash = κ (wcash;x+), we
obtain:

E [LGcash (wcash)] =

∫ wcash

0

T Casset (x) dF (x)

=

∫ x+

0

T Casset (x) dF (x) +

∫ 2x+

x+

T Casset (x) dF (x) + . . .+∫ κcashx
+

(κcash−1)x+

T Casset (x) dF (x) +

∫ wcash

κcashx+

T Casset (x) dF (x)

=

κcash∑
k=1

∫ kx+

(k−1)x+

T Casset (x) dF (x) +

∫ wcash

κcashx+

T Casset (x) dF (x)

(184)

We have the following cases:

T Casset (x) =

{
g (x; k − 1, x+) if x ∈ [(k − 1)x+, kx+]
g (x;κcash, x

+) x ∈ [κcashx
+, wcash]

(185)

We deduce that:

(∗) =

∫ kx+

(k−1)x+

T Casset (x) dF (x)

= ηs
∫ kx+

(k−1)x+

xη dx+

η (k − 1)βπππσx
+
√
x+
∫ kx+

(k−1)x+

xη−1 dx+

ηβπππσ

∫ kx+

(k−1)x+

(
x− (k − 1)x+

)√
x− (k − 1)x+xη−1 dx (186)

and:

(∗) =

∫ wcash

κcashx+

T Casset (x) dF (x)

= ηs
∫ wcash

κcashx+

xη dx+

ηκcashβπππσx
+
√
x+
∫ wcash

κcashx+

xη−1 dx+

ηβπππσ

∫ wcash

κcashx+

(
x− κcashx+

)√
x− κcashx+xη−1 dx (187)

For the first and second terms, we have:∫ b

a

xη dx =

[
xη+1

η + 1

]b
a

=
bη+1 − aη+1

η + 1
(188)
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and: ∫ b

a

xη−1 dx =
bη − aη

η
(189)

We also notice that:
κcash∑
k=1

(kx+)
η+1 − ((k − 1)x+)

η+1

η + 1
+
wη+1

cash − (κcashx
+)
η+1

η + 1
=
wη+1

cash

η + 1
(190)

We note:

H
(
wcash, κcash, x

+
)

=

κcash∑
k=1

(k − 1)
(
kx+

)η − ((k − 1)x+
)η

+ κcash
(
wηcash −

(
κcashx

+
)η)

For the third term, we have:∫ b

a

(x− a)
√
x− axη−1 dx = I (a, b; η) (191)

Except for some specific values42 of η, this term has no closed-form formula and we use a
numerical solution. We conclude that:

E [LGcash (wcash)] = ηs
wη+1

cash

η + 1
+

βπππσx
+
√
x+H

(
wcash, κcash, x

+
)

+ (192)

ηβπππσ

(
κcash∑
k=1

I
(
(k − 1)x+, kx+; η

)
+ I

(
κcashx

+, wcash; η
))

(193)

The computation of E [LGasset (wcash)] gives:

E [LGasset (wcash)] = T Casset (wcash) · (1− F (wcash))

= s
(
wcash − wη+1

cash

)
+ κcashβπππσx

+
√
x+ (1− wηcash) +

βπππσ ·
(
wcash − κcashx+

)√
wcash − κcashx+ · (1− wηcash) (194)

We conclude that:

E [LG (wcash)] = ηs
wη+1

cash

η + 1
+ βπππσx

+
√
x+H

(
wcash, κcash, x

+
)

+

ηβπππσ

(
κcash∑
k=1

I
(
(k − 1)x+, kx+; η

)
+ I

(
κcashx

+, wcash; η
))

+

s
(
wcash − wη+1

cash

)
+ κcashβπππσx

+
√
x+ (1− wηcash) +

βπππσ ·
(
wcash − κcashx+

)√
wcash − κcashx+ · (1− wηcash) (195)

B.3 Computation of the integral function I (wcash; η)

We consider the following integral:

I (wcash; η) =

∫ 1

wcash

(x− wcash)
3/2

xη−1 dx (196)

where η > 0 and wcash ∈ [0, 1].

42See Appendix B.4 on page 79.
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B.3.1 Preliminary result

Let B (a, b) =
∫ 1

0
xa−1 (1− x)

b−1
dx and 2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!
be the beta func-

tion and the ordinary hypergeometric function43. If c > b > 0, we know that:

B (b, c− b) 2F1 (a, b; c; z) =

∫ 1

0

xb−1 (1− x)
c−b−1

(1− zx)
−a

dx (197)

If c = 1 + b, we deduce that:∫ 1

0

xb−1 (1− zx)
−a

dx = B (b, 1) 2F1 (a, b; c; z)

=
2F1 (a, b; c; z)

b
(198)

because:

B (b, 1) =

∫ 1

0

xb−1 dx

=

[
xb

b

]1
0

=
1

b
(199)

B.3.2 Main result

We consider the change of variable:

y =
x− wcash

1− wcash
(200)

We deduce that:

I (wcash; η) =

∫ 1

0

((1− wcash) y)
3/2

(wcash + (1− wcash) y)
η−1

(1− wcash) dy

= (1− wcash)
5/2

wη−1cash

∫ 1

0

y3/2
(

1 +

(
1− wcash

wcash

)
y

)η−1
dy

= (1− wcash)
5/2

wη−1cashB

(
5

2
, 1

)
2F1

(
1− η, 5

2
;

7

2
;
wcash − 1

wcash

)
=

2

5
(1− wcash)

5/2
wη−1cash 2F1

(
1− η, 5

2
;

7

2
;
wcash − 1

wcash

)
(201)

Remark 13 From a theoretical point of view, Equation (201) is only valid for 0.5 < wcash ≤

1 if we adopt the definition 2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!
because we must have |z| < 1.

Nevertheless, we can show that Equation (197) remains valid for |z| ≥ 1 if we consider that
the hypergeometric function is the solution of Euler’s hypergeometric differential equation.
In this case, we can use Equation (201) for 0 ≤ wcash ≤ 0.5, but we must be careful about
the numerical implementation of the hypergeometric function 2F1 (a, b; c; z).

43(a)n is the rising Pochhammer symbol.
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B.3.3 Special cases

Specific values of η If η = 0.5, we have:

I (wcash; 0.5) =

∫ 1

wcash

(x− wcash)
3/2

√
x

dx

=
(4− 10wcash)

√
1− wcash + 3w2

cash

(
2 ln

(
1 +
√

1− wcash

)
− ln (wcash)

)
8

(202)

If η = 1, we obtain:

I (wcash; 1) =

∫ 1

wcash

(x− wcash)
3/2

dx

=

[
(x− wcash)

5/2

2.5

]1
wcash

=
2

5
(1− wcash)

5/2
(203)

We verify that:

2F1

(
1− 1,

5

2
,

7

2
; z

)
= 1 (204)

If η = 2, we have:

I (wcash; 2) =

∫ 1

wcash

(x− wcash)
3/2

xdx (205)

Let y = (x− wcash)
3/2

, we have x = y2/3 + wcash and dx =
2

3
y−1/3 dy. It follows that:

I (wcash; 2) =

∫ (1−wcash)
3/2

0

y
(
y2/3 + wcash

) 2

3
y−1/3 dy

=
2

3

∫ (1−wcash)
3/2

0

(
y4/3 + wcashy

2/3
)

dy

=
2

3

[
3y7/3

7
+ 3wcash

y5/3

5

](1−wcash)
3/2

0

=
2 (1− wcash)

7/2

7
+

2wcash (1− wcash)
5/2

5

=
2

5
(1− wcash)

5/2
wcash

(
1 +

5

7

(
1− wcash

wcash

))
(206)

We verify that:

2F1

(
1− 2,

5

2
,

7

2
; z

)
= 1− 5

7
z (207)

If η is integer, 2F1

(
1− η, 52 ,

7
2 ; z
)

is a polynomial function. The analytical solution
can be computed using the Wolfram’s alpha platform44 and the hypergeometric function

44https://www.wolframalpha.com
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Hypergeometric2F1[1-eta,5/2,7/2,z] by replacing eta with the corresponding integer.
For instance, we have:

2F1

(
1− 3,

5

2
,

7

2
; z

)
=

35z2 − 90z + 63

63
(208)

and:

2F1

(
1− 3,

5

2
,

7

2
; z

)
=
−105z3 + 385z2 − 495z + 231

231
(209)

It is then straightforward to find the analytical solution of I (wcash; η) by using Equation

(201) and replacing z by
wcash − 1

wcash
.

Specific values of wcash If wcash = 0, we have:

I (0; η) =
2

2η + 3
(210)

We deduce that:
E [LGasset (0)] = 0 (211)

If wcash = 0.5, we have:

2F1

(
1− η, 5

2
,

7

2
; 1

)
=

15
√
πΓ (η)

8Γ
(
η + 5

2

) (212)

and:

I (0.5; η) =
3
√
πΓ (η)

2η+7/2Γ
(
η + 5

2

) (213)

We deduce that:

E [LGasset (0.5)] =
ηs
4

+ ηβπππσ

(
2

2η + 3

(
1− 1

2

η+1.5)
− 3

√
πΓ (η)

2η+7/2Γ
(
η + 5

2

)) (214)

If wcash = 1, we have:

2F1

(
1− η, 5

2
,

7

2
; 0

)
= 1 (215)

and:
I (1; η) = 0 (216)

We deduce that:
E [LGasset (1)] = 0 (217)

B.4 Computation of I (a, b; η) in some special cases

Using the results derived previously, we deduce that:

I (a, b; 1) =
2

5
(b− a)

2.5

I (a, b; 2) =
2

35
(b− a)

2.5
(2a+ 5b)

I (a, b; 3) =
2

315
(b− a)

2.5 (
8a2 + 20ab+ 35b2

)
(218)
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For η = 0.5, we have:

I (a, b; 0.5) =
1

4

√
b− a

(
(2b− 5a)

√
b− 3ψ (a, b)

)
(219)

where:

ψ (a, b) =

 Re

(
a2 (a− b)−0.5 sin−1

√
b

a

)
if a 6= 0

0 if a = 0

(220)
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C Additional results

C.1 Tables

Table 12: Number of liquidated shares qi (h) (Example 1, naive pro-rata liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 20 000 20 000 10 000 20 000 15 100 2 000 360
2 20 000 20 000 80 20 000 0 1 500 0
3 20 000 20 000 0 100 0 0 0
4 20 000 20 0 0 0 0 0
5 7 020 0 0 0 0 0 0
6 0 0 0 0 0 0 0

Total 87 020 60 020 10 080 40 100 15 100 3 500 360

Table 13: Weights wi (q;h) in % (Example 1, naive pro-rata liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 11.95 16.52 32.77 13.70 16.93 4.28 3.84
2 16.41 22.68 22.68 18.81 11.63 5.15 2.64
3 20.59 28.45 18.96 15.77 9.72 4.30 2.21
4 25.68 26.63 17.74 14.75 9.10 4.03 2.06
5 27.32 26.04 17.35 14.43 8.90 3.94 2.02
6 27.32 26.04 17.35 14.43 8.90 3.94 2.02

Table 14: Weights wi (ω − q;h) in % (Example 1, naive pro-rata liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
0 27.32 26.04 17.35 14.43 8.90 3.94 2.02
1 29.13 27.16 15.54 14.51 7.95 3.90 1.80
2 29.29 26.65 16.39 13.64 8.40 3.72 1.91
3 28.83 25.50 16.99 14.13 8.71 3.86 1.98
4 27.72 25.90 17.26 14.35 8.85 3.92 2.01
5 27.32 26.04 17.35 14.43 8.90 3.94 2.02
6 27.32 26.04 17.35 14.43 8.90 3.94 2.02
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Table 15: Number of liquidated shares qi (h) (Example 3, waterfall liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 20 000 20 000 10 000 20 000 20 000 2 000 1 000
2 20 000 20 000 10 000 20 000 20 000 2 000 800
3 20 000 20 000 10 000 20 000 20 000 2 000 0
4 20 000 20 000 10 000 20 000 15 500 2 000 0
5 20 000 20 000 10 000 20 000 0 2 000 0
6 20 000 20 000 400 20 000 0 2 000 0
7 20 000 20 000 0 20 000 0 2 000 0
8 20 000 20 000 0 20 000 0 2 000 0
9 20 000 20 000 0 20 000 0 1 500 0

10 20 000 20 000 0 20 000 0 0 0
11 20 000 20 000 0 500 0 0 0
12 20 000 20 000 0 0 0 0 0
13 20 000 20 000 0 0 0 0 0
14 20 000 20 000 0 0 0 0 0
15 20 000 20 000 0 0 0 0 0
16 20 000 100 0 0 0 0 0
17 20 000 0 0 0 0 0 0
18 20 000 0 0 0 0 0 0
19 20 000 0 0 0 0 0 0
20 20 000 0 0 0 0 0 0
21 20 000 0 0 0 0 0 0
22 15 100 0 0 0 0 0 0
23 0 0 0 0 0 0 0

Total 435 100 300 100 50 400 200 500 75 500 17 500 1 800

Table 16: Weights wi (q;h) in % (Example 3, waterfall liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 10.64 14.71 29.17 12.20 19.97 3.81 9.50
2 10.74 14.85 29.45 12.31 20.16 3.85 8.63
3 11.06 15.29 30.33 12.68 20.76 3.96 5.92
4 11.36 15.70 31.15 13.02 20.12 4.07 4.56
5 11.95 16.52 32.77 13.70 16.93 4.28 3.84
6 13.09 18.09 30.15 15.01 15.46 4.69 3.51

Table 17: Weights wi (ω − q;h) in % (Example 3, waterfall liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
0 27.32 26.04 17.35 14.43 8.90 3.94 2.02
1 29.55 27.56 15.77 14.73 7.41 3.96 1.02
2 32.38 29.46 13.66 15.07 5.46 3.97 0.00
3 35.72 31.60 10.65 15.33 2.77 3.93 0.00
4 39.97 34.24 6.42 15.54 0.00 3.83 0.00
5 44.33 36.58 0.29 15.24 0.00 3.56 0.00
6 46.61 36.82 0.00 13.65 0.00 2.92 0.00
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C.2 Figures

Figure 20: Calibration of the drawdown function (S&P 500 index, 1990-2020, historical
value-at-risk)
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Figure 21: Liquidity time in days (naive pro-rata liquidation)
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Figure 22: Liquidity time in days (naive pro-rata liquidation, illiquid exposure)
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Figure 23: Liquidity time in days (waterfall liquidation)
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Figure 24: Liquidity time in days (waterfall liquidation, illiquid exposure)
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Figure 25: Impact of the cash buffer on the portfolio return (µasset = 10%, σasset = 20%
and ρcash,asset = 0%)
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Figure 26: Impact of the cash buffer on the portfolio return (µasset = 3%, σasset = 5% and
ρcash,asset = 20%)
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Figure 27: Probability distribution function of the redemption rate R (Example 5, page 37)
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Figure 28: Exact vs. approximate solution of E [LGcash (wcash)] and E [LGasset (wcash)] in
bps (Example 5, page 37)
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Figure 29: Transaction cost function (101) in bps with x+ = 30%
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Figure 30: Transaction cost function (101) in bps with x+ = 50%
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Figure 31: Approximation error function Error (wcash;x+) in bps
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Figure 32: Approximation of the liquidity gains E [LGcash (wcash)] and E [LGasset (wcash)] in
bps (Example 6, page 39)

0 20 40 60 80 100

0

5

10

15

20

25

0 20 40 60 80 100

0

5

10

15

20

25

0 20 40 60 80 100

0

5

10

15

20

0 20 40 60 80 100

0

5

10

15

20

89



Liquidity Stress Testing in Asset Management

Figure 33: Comparison of exact and approximate formulas in bps when x+ = 10% (Example
6, page 39)
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Figure 34: Optimal cash buffer (µasset − µcash = 2.5% and λ = 0)
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Figure 35: Optimal cash buffer (µasset − µcash = 1%, λ = 0.25 and σasset = 20%)
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Figure 36: Optimal cash buffer (µasset − µcash = 1%, λ = 2 and σasset = 20%)
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Figure 37: Break-even risk premium % (wcash) in % (x+ = 10%, λ = 0)
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Figure 38: Break-even risk premium % (wcash) in % (x+ = 100%, λ = 0)
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Figure 39: Decision rule for implementing a cash buffer of 10% (x+ = 10%, λ = 0)

Figure 40: Decision rule for implementing a cash buffer of 10% (x+ = 100%, λ = 0)
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